Skip to main content
  • For Students
  • For Industry
  • For Members
  • Accessibility
  • Login
MIT CSAIL
  • Research
  • People
  • News
  • Events
  • Symposia
  • Forum
  • About
  • Research
  • People
  • News
  • Events
  • Symposia
  • Forum
  • About
  • For Students
  • For Industry
  • For Members
  • Accessibility
  • Login
  • Contact
  • Press Requests
  • Accessibility

News

Researchers from MIT CSAIL and EECS evaluated how closely language models could keep track of objects that change position rapidly. They found that they could steer the models toward or away from particular approaches, improving the system’s predictive capabilities (Credits: Image designed by Alex Shipps, using assets from Shutterstock and Pixabay).

The unique, mathematical shortcuts language models use to predict dynamic scenarios

A new paper by MIT CSAIL researchers maps the many software-engineering tasks beyond code generation, identifies bottlenecks, and highlights research directions to overcome them. The goal: to let humans focus on high-level design, while routine work is automated (Credits: Alex Shipps/MIT CSAIL, using assets from Shutterstock and Pixabay).

Can AI really code? Study maps the roadblocks to autonomous software engineering

The “PhysicsGen” system can multiply a few dozen VR demonstrations into nearly 3,000 simulations per machine for mechanical companions like robotic arms and hands (Credit: Alex Shipps/MIT CSAIL using photos from the researchers).

Simulation-based pipeline tailors training data for dexterous robots

Spotlighted News

The unique, mathematical shortcuts language models use to predict dynamic scenarios
Can AI really code? Study maps the roadblocks to autonomous software engineering
Simulation-based pipeline tailors training data for dexterous robots

MIT CSAIL

Massachusetts Institute of Technology

Computer Science & Artificial Intelligence Laboratory

32 Vassar St, Cambridge MA 02139

  • Contact
  • Press Requests
  • Accessibility
MIT Schwarzman College of Computing