Using machine learning to increase equity in healthcare and public health.

Speaker

Emma Pierson
Cornell University

Host

Bonnie Berger
CSAIL MIT
Our society remains profoundly unequal. This talk discusses how data science and machine learning can be used to combat inequality in health care and public health by presenting several vignettes from domains like policing, women's health, and cancer risk prediction.

Bio: Emma Pierson is an assistant professor of computer science at the Jacobs Technion-Cornell Institute at Cornell Tech and the Technion, and a computer science field member at Cornell University. She holds a secondary joint appointment as an Assistant Professor of Population Health Sciences at Weill Cornell Medical College. She develops data science and machine learning methods to study inequality and healthcare. Her work has been recognized by best paper, poster, and talk awards, an NSF CAREER award, a Rhodes Scholarship, Hertz Fellowship, Rising Star in EECS, MIT Technology Review 35 Innovators Under 35, and Forbes 30 Under 30 in Science. Her research has been published at venues including ICML, KDD, WWW, Nature, and Nature Medicine, and she has also written for The New York Times, FiveThirtyEight, Wired, and various other publications.

Zoom link: https://mit.zoom.us/j/93513735220