
Verifiable Compilation of I/O Automata without Global

Synchronization

by

Joshua A. Tauber

B.S., Computer Science (1991)
B.A., Government (1991)

Cornell University
S.M., Electrical Engineering and Computer Science (1996)

Massachusetts Institute of Technology

Submitted to the

Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 16, 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 17, 2004

Certified by. .
Nancy A. Lynch

NEC Professor of Software Science and Engineering
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Verifiable Compilation of I/O Automata without Global Synchronization

by

Joshua A. Tauber

Submitted to the Department of Electrical Engineering and Computer Science
on September 17, 2004, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Part I of this thesis presents a strategy for compiling distributed systems specified in IOA into Java
programs running on a group of networked workstations. IOA is a formal language for describing
distributed systems as I/O automata. The translation works node-by-node, translating IOA pro-
grams into Java classes that communicate using the Message Passing Interface (MPI). The resulting
system runs without any global synchronization. We prove that, subject to certain restrictions on the
program to be compiled, assumptions on the correctness of hand-coded datatype implementations,
and basic assumptions about the behavior of the network, the compilation method preserves safety
properties of the IOA program in the generated Java code. We model the generated Java code itself
as a threaded, low-level I/O automaton and use a refinement mapping to show that the external
behavior of the system is preserved by the translation. The IOA compiler has been implemented at
MIT as part of the IOA toolkit. The toolkit supports algorithm design, development, testing, and
formal verification using automated tools.

The IOA language provides notations for defining both primitive and composite I/O automata.
Part II of this thesis describes, both formally and with examples, the constraints on these def-
initions, the composability requirements for the components of a composite automaton, and the
transformation a definition of a composite automaton into a definition of an equivalent primitive
automaton.

Thesis Supervisor: Nancy A. Lynch
Title: NEC Professor of Software Science and Engineering

3

4

Acknowledgments

I use the “editorial we” throughout this dissertation not just to maintain formality, but also to

acknowledge the years of work by the nearly two dozen people who have been involved in the

IOA project. I collaborated with members of the project team at almost every step of the design,

implementation, and testing of the IOA compiler and composer. I would like to thank them all for

creating such a stimulating and pleasant environment in which to work.

When I joined the Theory of Distributed Systems group (TDS) in the Fall of 1997, the IOA

project was already under way. Nancy Lynch and Steve Garland had drafted the IOA language and

Steve had built the first version of the IOA parser. In our very first discussions, Nancy suggested

that IOA might be used to build distributed systems.

Within a few months, Anna Chefter developed the first designs for the IOA simulator and the

composer. Mandana Vaziri built a prototype IOA-to-Promela translation tool to connect the IOA

toolset to the Spin model checker. Mandana also worked with Steve to develop the formal semantics

for the IOA language. Nancy and I worked out the basic design of the IOA compiler at this time.

From the beginning, it was clear that resolving nondeterminism would be a big challenge in

compiling the language. The same challenge faced Antonio Ramırez-Robredo as he extended Anna’s

design for the IOA simulator to handle pairs of automata. While I helped Mandana to develop the

NAD transformation to eliminate nondeterminism from automata, Antonio took a different tack.

He designed and implemented the first version of the NDR language for annotating automata with

schedules. Antonio’s elegant implementation of the simulator set the pattern that all other IOA

tools, including the compiler, follow.

In the Spring of 1999 — at the end of his sophomore year, Michael Tsai joined the IOA project.

Over the next three years, his dedication, his unfailing eye for design, and his prodigious capacity to

assimilate, organize, and generate code advanced the the IOA compiler and the whole IOA project

immeasurably. By the time Michael graduated, he had coded nearly the entire compiler. It is

humbling to note just how long it took me to “finish it up” and hard to imagine how the compiler

would have been built without him. It was a genuine pleasure to work with Michael.

The following year, Toh Ne Win took on the impressive task of learning the code bases for two

separate projects — IOA and Daikon. He mastered both and worked with Mike Ernst to use each

tool to improve the other. Together, Michael Tsai and Toh answered nearly every question I ever

had about the toolkit code and suggested — and usually implemented — multiple solutions to every

design challenge I raised.

Quickly, the size of the IOA project team more than doubled. Andrej Bogdanov connected

IOA to the Larch Prover. Stan Funiak built the prototype IOA to TLA translator to support model

checking. Atish Dev Nigam worked with Michael Tsai to support user customization of the compiler.

Holly Reimers wrote the IL unparser that let backend tools regenerate IOA source code. The trio of

5

Laura Dean, Christine Karlovich, and Ezra Rosen began using the tools to implement and analyze

classic distributed algorithms. Chris Luhrs took to analyzing graph algorithms and exercising the

connection between IOA and Larch. I would like to thank everyone for making the summer of 2000

the memorable, challenging, collaborative, and truly fun experience it was.

In the fall of 2000, Laura took over work on the IOA simulator and worked with Toh to connect

it to Daikon. In 2001, Dilsun Kırlı Kaynar became the fourth staff member on the project and the

fifth person to take responsibility for the IOA simulator when she began her post-doc with TDS that

fall. In turn, Edward Solovey extended the simulator to work with composite automata. Christine

Robson contributed a tool to translate IOA for use with Uppaal.

When Steve and I began to build the composer tool in the winter of 2001 based on notations

and mechanisms we had worked out with Nancy and Mandana, we thought the project would take

a couple of weeks. We had no idea our design would turn out to be as complicated as it is or that

the design process would stretch out to more than a year and a half. In that design process, Steve

demonstrated endless patience, a tireless eye for detail, and expert craftsmanship. He carefully

untangled the morass of variables, quantifiers, and predicates and he encouraged me to find the

path through. We published the resulting design as MIT LCS Technical Report 959 [118]. That

TR forms Part II of this dissertation. Throughout the composer design process, Dilsun provided a

frequent sounding board. She suggested numerous and substantial clarifications in presentation.

In the fall of 2002, I began collaborating with Peter Musial on the implementation of the com-

poser. Unfortunately, at that time, the design for the composer was only half baked. None the

less, Peter took up the cause, volunteering to commute from UConn for weekly meetings. Many

improvements to the design and implementation of the composer are due to Peter.

In the Spring of 2004, my attention was divided between writing the bulk of this document,

finishing the composer, and finishing the compiler. Once again, I received the benefit of a wonderful

collaboration. In this case, the newest member of the IOA project team, Panayiotis Mavrommatis,

stepped in to dissect and extend the very innermost and tangled parts of the compiler that had been

collecting dust for years. He was able to lay out the design choices so that even I could understand

them. He proceeded to be the first to get the compiler up and running. When Panayiotis went home

to Cyprus for the summer, we began a new fruitful collaboration with Chryssis Georgiou at the

University of Cyprus. Panayiotis and Chryssis undertook a program of experimentation with the

compiler that laid the ground work for the experimental evaluation that appears in this dissertation.

I would like to thank Nancy and Steve for years of guidance, support, and — not least —

confidence. I learned much from trying to follow their sterling examples of scholarship. I want to

thank Michael Ernst for always asking the hard questions and gamely attempting the futile task to

injecting structure into my work habits. Thanks go to Martin Rinard for his help in setting the

parameters of this project during his Advanced Compilers seminar way back in the Fall of 1998.

6

I would also like to thank all the members of TDS not involved with IOA for creating a wonderful

atmosphere in which to work. Thank you Rui Fan, Seth Gilbert, Roger Khazan, Carl Livadas,

Victor Luchangco, Sayan Mitra, Tina Nolte, Roberto de Prisco, Paul Attie, Idit Keidar, and Alex

Shvartsman. I especially thank Joanne Talbot Hanley for years of making things happen and for all

the pistachios.

I would like to thank those who provided the little daily distractions that smoothed my way

through life at MIT. Chris Peikert, David Liben-Nowell, Grant Wang, and the rest of the LCS New

York Times Crossword Puzzle Team made many lunch times disappear. Jonathan Kelner provided

endless entertainment as we discussed the moral superiority of our respective professional baseball

teams. Thank you Victor for hours of entertaining argument — whatever the topic.

I would like to thank the MIT Writing Center and, in particular, its director/miracle worker

Steve Strang. I cannot even contemplate how my dissertation would have been written without your

patient support. Thank you Mark Greenberg for being a steady reality check. Finally, I thank my

friends and family for years of support, caring, and understanding.

This dissertation brought to you by the letters M, I, and T, by the number 42, and by

• Acer Inc., Delta Electronics Inc., HP Corp., NTT Inc., Nokia Research Center, and Philips

Research under the MIT Project Oxygen partnership,

• DARPA through the Office of Naval Research under contract number N66001-99-2-891702,

• DARPA/AFOSR MURI Awards F49620-02-1-0325 and SA2796PO 1-0000243658

• DARPA contracts F19628-95-C-0118 and F33615-01-C-1896,

• Air Force Aerospace Research-OSR Contracts F49620-00-1-0097, F49620-97-1-0337, and FA9550-

04-1-0121,

• NTT Contract MIT9904-12 ,

• Draper Contract DL-H-543107,

• NSF Grants ACI-9876931, CCR-9909114, CCR-9804665, CCR-0326277 and CCR-0121277,

and

• NSF-Texas Engineering Experiment Station grant 64961-CS.

7

8

Contents

List of Figures 17

List of Tables 21

I IOA Compiler 23

1 Introduction 25

1.1 Motivation . 25

1.2 Challenges . 26

1.2.1 Structuring programs for compilation . 27

1.2.2 Connecting programs to system services . 27

1.2.3 Modeling procedure calls . 28

1.2.4 Composing automata . 28

1.2.5 Resolving nondeterminism . 29

1.2.6 Implementing datatypes . 29

1.3 Correctness . 29

1.3.1 Abstract Channel Correctness . 29

1.3.2 Compiler Correctness . 30

1.4 Performance . 31

1.5 Overview . 31

2 IOA Language and Toolkit 33

2.1 Input/Output Automata . 33

2.1.1 Execution of I/O Automata . 33

2.1.2 Proof Techniques . 34

2.1.3 Using I/O automata . 35

2.2 Successes with the I/O Automaton Model . 36

2.3 Related Models . 36

9

2.4 Related Tool-Based Work . 37

2.5 Related I/O Automata-Based Tools . 38

2.5.1 Theorem Provers . 38

2.5.2 Simulators and Code Generators . 39

2.6 IOA Language . 39

2.7 Example: LCR Leader Election . 40

2.8 IOA Toolkit . 43

2.8.1 Checker . 43

2.8.2 Composer . 44

2.8.3 Simulator . 44

2.8.4 Theorem Provers . 44

2.8.5 Model checkers . 45

2.8.6 Invariant discovery tools . 45

2.8.7 IOA Compiler . 45

3 Structuring the Design 47

3.1 Imperative IOA programs . 48

3.2 Node-Channel Form . 49

3.2.1 Abstract Channels . 49

3.3 Handshake Protocols . 50

3.4 Console Interface . 51

3.4.1 Buffer Automata . 52

3.4.2 Interface Generator . 55

3.5 Composition . 57

4 Implementing Abstract Channels with MPI 59

4.1 MPI . 60

4.1.1 Method descriptions . 61

4.1.2 Resource limitations . 62

4.2 MPI Specification Automaton . 63

4.3 MPI Client Specification Automata . 68

4.4 Abstract Channel Specification Automaton . 70

4.5 Mediator Automaton . 71

4.5.1 Send Mediator Automaton . 71

4.5.2 Receive Mediator Automaton . 73

4.6 Composite Channel Automaton . 74

4.7 Channel Correctness Theorem . 74

10

4.7.1 Sequence properties . 77

4.7.2 F is a refinement mapping . 77

4.8 Other network services . 80

5 Resolving Nondeterminism 81

5.1 Scheduling . 81

5.1.1 LCR Schedule . 82

5.1.2 Schedule actions . 84

5.2 Choosing . 85

5.3 Initialization . 85

5.4 Safety . 86

6 Translating IOA into Java 89

6.1 Translating Datatypes . 89

6.2 Translating State . 90

6.3 Translating Automaton Parameters . 91

6.4 Translating Transitions . 92

6.4.1 Translating MPI Transitions . 95

6.4.2 Translating Buffer Transitions . 97

6.5 Translating Schedules . 98

7 Translation Correctness 101

7.1 MacroSystem . 102

7.2 µSystem . 105

7.2.1 Deriving a micro-node from a macro-node . 106

7.3 Compilation Correctness Theorems . 108

7.3.1 Node Correctness Theorem . 108

7.3.2 Global System Correctness Theorem . 109

7.3.3 History variables . 109

7.3.4 µN̂i . 110

7.3.5 Invariants . 113

7.3.6 Refinement Mapping . 122

7.4 Handshake Theorem . 126

8 Experimental Evaluation 131

8.1 Testbed . 132

8.2 LCR Leader Election . 132

8.2.1 Results . 134

11

8.3 Spanning Tree . 136

8.3.1 Results . 139

8.4 Asynchronous Broadcast/Convergecast . 140

8.4.1 Results . 143

8.5 Observations . 147

II IOA Composer 149

9 Introduction 151

10 Illustrative examples 153

11 Definitions for primitive automata 157

11.1 Syntax . 157

11.1.1 Notations and writing conventions . 157

11.1.2 Syntactic elements of primitive IOA programs 159

11.1.3 Parameters . 159

11.1.4 Variables . 160

11.1.5 Predicates . 160

11.1.6 Programs and values . 161

11.2 Aggregate sorts for state and local variables . 162

11.2.1 State variables . 162

11.2.2 Local variables . 162

11.3 Static semantic checks . 164

11.4 Semantic proof obligations . 165

12 Desugaring primitive automata 167

12.1 Desugaring terms used as parameters . 168

12.1.1 Signature . 168

12.1.2 Transition definitions . 169

12.2 Introducing canonical names for parameters . 172

12.2.1 Signature . 172

12.2.2 Transition definitions . 172

12.2.3 Simplifying local variables . 172

12.3 Combining transition definitions . 177

12.4 Combining aggregate sorts and expanding variable references 180

12.5 Restrictions on the form of desugared automaton definitions 183

12.6 Semantic proof obligations, revisited . 183

12

13 Definitions for composite automata 185

13.1 Syntax . 185

13.2 State variables of composite automata . 187

13.2.1 State variables for components with no type parameters 188

13.2.2 Resortings for automata with type parameters 188

13.2.3 State variables for components with type parameters 189

13.3 Static semantic checks . 190

13.4 Semantic proof obligations . 191

14 Expanding component automata 193

14.1 Resorting component automata . 194

14.2 Introducing canonical names for parameters . 197

14.3 Substitutions . 197

14.4 Canonical component automata . 199

15 Expanding composite automata 205

15.1 Expansion assumptions . 205

15.2 Desugaring hidden statements of composite automata 206

15.3 Expanding the signature of composite automata . 207

15.3.1 Subformulas for actions contributed by a component 208

15.3.2 Signature predicates . 208

15.4 Semantic proof obligations, revisited . 209

15.4.1 Hidden actions . 209

15.4.2 Output actions . 210

15.4.3 Internal actions . 210

15.5 Expanding initially predicates of composite automata 211

15.6 Combining local variables of composite automata . 212

15.7 Expanding input transitions . 214

15.7.1 where clause . 214

15.7.2 eff clause . 216

15.7.3 ensuring clause . 216

15.8 Expanding output transitions . 217

15.8.1 Output-only transition contributed by a single unparameterized component . 217

15.8.2 Output-only transition contributed by a single parameterized component . . 218

15.8.3 Output-only transitions contributed by multiple components 219

15.8.4 Output transitions subsuming input transitions (general case) 221

15.9 Expanding internal transitions . 222

13

15.9.1 Internal-only transitions . 223

15.9.2 Internal transitions with hiding (general case) 223

16 Expansion of an example composite automaton 227

16.1 Desugared hidden statement of Sys . 227

16.2 Signature of SysExpanded . 228

16.2.1 Actions per component . 228

16.2.2 Provisional action kinds . 230

16.2.3 Signature predicates . 230

16.3 States and initially predicates of SysExpanded . 231

16.4 Input Transition Definitions of SysExpanded . 231

16.5 Output Transition Definitions of SysExpanded . 233

16.6 Internal Transition Definitions of SysExpanded . 236

17 Renamings, Resortings, and Substitutions 241

17.1 Sort renamings . 241

17.2 Variable renamings . 242

17.3 Operator renamings . 242

17.3.1 Terms and sequences of terms . 242

17.3.2 Values . 242

17.3.3 Statements and programs . 243

17.3.4 Shorthand tuple sort declarations . 243

17.4 Renamings for automata . 243

17.4.1 Automata . 243

17.4.2 Transition definitions . 245

17.4.3 Statements and programs . 245

17.4.4 Values . 245

17.4.5 Terms and sequences of terms . 246

17.5 Substitutions . 246

17.5.1 Terms and sequences of terms . 246

17.5.2 Values . 247

17.5.3 Statements and programs . 247

17.5.4 Transition definitions . 247

17.5.5 Hidden clauses . 248

17.6 Notation . 248

14

18 Conclusions 249

18.1 Summary . 249

18.2 Assessment . 250

18.3 Future Work . 251

18.3.1 IOA Language Extensions . 251

18.3.2 Case studies . 252

18.3.3 Alternative network services . 252

18.3.4 NDR and Schedules . 253

18.3.5 Mutable datatypes . 254

18.3.6 Composition . 254

A Appendix 257

A.1 LCRNode . 257

A.2 TerminatingLCR . 262

A.3 spanNode . 268

A.4 bcastNode . 274

Bibliography 283

15

16

List of Figures

2.1 Reliable FIFO LCRChannel automaton . 41

2.2 Algorithm automaton LCRProcess . 42

2.3 LCR system automaton using FIFO channels . 42

3.1 Auxiliary automata mediate between MPI and node automata. (a) Reliable, FIFO

channel defines the desired behavior. (b) The composition of MPI and the mediator

automata implements the reliable, FIFO channel. 49

3.2 Example augmentations to the environment automaton to perform a handshake pro-

tocol. 51

3.3 Example augmentations to a node automaton to perform a handshake protocol. . . . 51

3.4 Complete IOA specification the LCRProcessInterface buffer automaton 54

3.5 IOA specification for the abbreviated LCRProcessInterface buffer automaton as pro-

duced by the interface generator . 56

3.6 An annotated node automaton composed of a buffer automaton, an algorithm au-

tomaton, and mediator automata is the program input to the IOA compiler. 57

3.7 IOA specification for one node of an LCR system . 58

4.1 Signature, states, and sender-side transitions of MPI System Automaton, MPI 64

4.2 Message delivery and receiver-side transitions of MPI System Automaton, MPI 65

4.3 LSL trait Infinite modeling MPI handles as an infinite collection of unique items. . 65

4.4 LSL trait sStatus defining sendStatus and Request tuples. 65

4.5 LSL trait defining derived variable toSend. 67

4.6 SendClient automaton . 69

4.7 ReceiveClient automaton . 70

4.8 Reliable FIFO channel automaton, AbstractChannel 70

4.9 Send mediator automaton SendMediator . 72

4.10 Receive mediator automaton ReceiveMediator . 73

4.11 Composite automaton CompositeChannel . 75

17

4.12 Schematic of channel refinement mapping F . 76

5.1 NDR schedule block for the LCRNode node automaton 83

5.2 Trait ChoiceMset defining the chooseRandom operator on multisets 84

5.3 NDR initially det block for the LCRNode node automaton 86

7.1 A compiled IOA system consists of a composition of node and MPI automata inter-

acting with the environment. 101

7.2 LCRSystem automaton using MPI channels . 103

7.3 LSL trait Injective specifying an injective function 103

7.4 NDR schedule block for the input thread . 104

7.5 NDR schedule block for the output thread . 104

7.6 A transition definition equivalent to the transition definition of π of the schedule

thread of the macro-node automaton Ni . 105

7.7 Sequence of transitions of µN̂i corresponding to an internal transition of Ni 111

7.8 Sequence of transitions of µN̂i corresponding to an input transition Ni 112

7.9 Schematic of system refinement mapping M. 124

7.10 IOA specification the LCRProcessInterface buffer automaton without handshake pro-

tocol . 127

8.1 Algorithm automaton TerminatingLCRProcess specifies an LCR process where every

node knows when the leader has been announced. 133

8.2 10 Node LCR Histogram . 135

8.3 LCR Measurements . 136

8.4 An excerpt of example run of LCR leader election 137

8.5 Algorithm automaton spanProcess specifies a participating process in an algorithm

that constructs a spanning tree of an arbitrary connected network. 138

8.6 Composite node automaton spanNode specifies one node in the spanning tree system. 139

8.7 A 4 x 5 node wrap-around mesh network . 141

8.8 Typical output of the spanning tree algorithm on a 4 x 5 node wrap-around mesh

network . 142

8.9 Typical spanning tree computed on a 4 x 5 node wrap-around mesh network 142

8.10 Beginning of algorithm automaton bcastProcess specifies a participating process in

an algorithm that constructs a spanning tree and performs repeated broadcasts along

that tree until a distinguished last value is broadcast. 144

18

8.11 Remainder of algorithm automaton bcastProcess specifies a participating process in

an algorithm that constructs a spanning tree and performs repeated broadcasts along

that tree until a distinguished last value is broadcast. 145

8.12 Composite node automaton bcastNode specifies one node in the broadcast system. . 146

8.13 Broadcast runtimes . 147

8.14 Broadcast counts . 148

10.1 Sample automaton Channel . 154

10.2 Sample automaton P . 154

10.3 Sample automaton Watch . 155

10.4 Sample composite automaton Sys . 155

10.5 Auxiliary definition of function between . 155

11.1 General form of a primitive automaton . 158

11.2 Automatically defined types and variables for sample automata 164

12.1 Preliminary form of a desugared primitive automaton 168

12.2 Preliminary desugarings of the sample automata Channel, P, and Watch 171

12.3 First intermediate form of a desugared primitive automaton 173

12.4 First intermediate desugarings of the sample automata Channel, P, and Watch 175

12.5 Second intermediate form of a desugared primitive automaton 178

12.6 Improved intermediate desugaring of the sample automaton Watch 180

12.7 Final form of a desugared primitive automaton . 180

12.8 Sample desugared automata Channel, P, and Watch 182

13.1 General form of a composite automaton . 186

14.1 Sample component automata Channel and Watch, desugared and resorted 195

14.2 General form of the expansion of the automaton for component Ci 200

14.3 Sample instantiated component automaton C . 200

14.4 Sample instantiated component automaton P . 201

14.5 Sample component automaton W . 202

15.1 General form of the signature in the expansion of a composite automaton 208

15.2 General form of the states in the expansion of a composite automaton 213

15.3 General form of an input transition in the expansion of a composite automaton . . . 214

15.4 Expanded output transition, simplest case . 218

15.5 Expanded output transition, parameterized simple case 219

15.6 Expanded output transition contributed by several components 220

19

15.7 General form of an output transition in the expansion of a composite automaton . . 222

15.8 Expanded internal transition without hiding . 223

15.9 General form of an internal transition in the expansion of a composite automaton . . 225

16.1 Expanded signature and states of the sample composite automaton Sys 232

16.2 Form of input transitions of SysExpanded . 234

16.3 Input transition definitions of SysExpanded . 234

16.4 Form of output transitions of SysExpanded . 237

16.5 Output transition definitions of SysExpanded . 238

16.6 Simplified output transition definitions of SysExpanded 239

16.7 Internal transition definitions of SysExpanded . 239

20

List of Tables

6.1 Rewrite rules to desugar assignments. 93

8.1 Measurements of LCR . 134

8.2 Measurements of the spanning tree algorithm . 140

8.3 Measurements of the broadcast algorithm . 146

11.1 Free variables of a primitive automaton . 164

12.1 Free variables of a desugared primitive automaton 170

12.2 Substitutions used in desugaring a primitive automaton 173

13.1 Free variables of a composite automaton . 186

14.1 Mappings of sorts by resortings in the composite automaton Sys 194

14.2 Mappings of variables by resortings in the composite automaton Sys 195

14.3 Mappings of operators by resortings in the composite automaton Sys 196

14.4 Substitutions used in canonicalizing component automata 198

14.5 Substitutions used to derive sample component automaton C 201

14.6 Substitutions used to derive sample component automaton P 202

14.7 Substitutions used to derive sample component automaton W 202

14.8 Stages in expanding components Ci of a composite automaton D. 203

16.1 Component predicates of the sample composite automaton Sys 228

16.2 Canonical variables used to expand the sample composite automaton Sys 229

16.3 Simplified predicates defining contributions to the signature of Sys 229

16.4 Provisional where predicates for the signature of Sys 230

16.5 Nontrivial predicates used in expanding input transition definitions of Sys 234

16.6 Nontrivial predicates used in expanding output transition definitions of Sys 235

21

22

Part I

IOA Compiler

23

24

Chapter 1

Introduction

Computer /nm./: a device designed to speed and automate

errors.

— Anonymous

1.1 Motivation

Distributed systems are increasingly prevalent and increasingly complicated. Complex and inter-

connected distributed services are being rolled out daily in areas as diverse as view-oriented group

communication, mobile IP routing, computer-supported cooperative work (CSCW), and transporta-

tion control systems. Many such systems are useful tools for the public as well as objects of study for

computer scientists. Unfortunately, the concurrent nature of these systems intertwined with their

scale and complexity make building and reasoning about them notoriously difficult. Concurrency is

inherent in any computation distributed over a collection of computing elements. That concurrency

can result in subtle interactions among those components that cause a distributed system to behave

in ways unintended by its designers. The state of the art for building reliable distributed systems is

to cycle through phases of designing, implementing, and extensively testing the system. However,

the best efforts of system builders have failed to eliminate key logical errors and ambiguities in

prominent, widely deployed systems [5, 39, 54, 55, 58].

At the same time researchers have developed a variety of formal models for distributed com-

putation [84, 85, 59, 90, 72]. Formal methods and modeling can greatly aid system builders in

understanding, analyzing, and designing distributed systems. In a mathematical and state-machine-

based approach, one describes systems in a structured way, viewing them (orthogonally) as parallel

compositions of interacting components, and as sequences of descriptions at different levels of ab-

25

straction. These formalisms have been used to successfully model and verify a wide variety of

distributed systems and algorithms and to express and prove many impossibility results. Many of

the modeling and verification techniques based on state machines are highly stylized. Recurring

patterns of successful proofs using simple formal models have led a variety of researchers to explore

using formal languages and automated tools, such as automated proof assistants, model checkers,

simulators, and even compilers, to work with these models [45, 2, 106, 27, 35, 123]. Until now, it

has not been possible to apply these tools to the same formal expression of an algorithm both to

prove its correctness and to build a distributed implementation of it.

In this dissertation, we describe a method to produce verified running code for distributed

systems. We present a strategy for compiling formal models of distributed algorithms into Java

programs running on a collection of networked workstations. Furthermore, we prove that, under

precisely stated conditions, the compilation method preserves the safety properties of the program

in the running system. We model distributed systems as I/O automata. I/O automata provide a

simple mathematical basis and a rich set of proof techniques for formally modeling, understanding,

and verifying distributed systems. We express I/O automata using the IOA language. IOA is a

formal language for describing I/O automata that serves both as a formal specification language

and as a programming language [43].

The IOA compiler we present in this dissertation forms part of the IOA toolkit. The IOA toolkit

supports algorithm design, development, testing, and formal verification using automated tools. The

toolkit connects I/O automata together with both lightweight (syntax checkers, simulators, model

checkers) and heavyweight (theorem provers) tools. The IOA toolkit enables programmers to write

their specifications at a high level of abstraction, use tools to validate the specification, successively

refine the specification to a low-level design, and then automatically translate the design into code

that runs on a collection of workstations communicating via standard networking protocols. A

major contribution of this work is that the compiler overcomes the existing disconnect between

correctness claims for formal specifications and actual system implementations by allowing the same

IOA program to be both verified with automated tools and compiled into a running distributed

system.

1.2 Challenges

The design and implementation of the IOA compiler required overcoming a number of key challenges.

Many of these challenges arise from the differences between characteristics of specifications that are

easiest to prove correct and characteristics of programs that are easiest to run. In this section, we

introduce these challenges and our approaches to addressing them.

26

1.2.1 Structuring programs for compilation

The first major challenge our work addresses is how to create a system with the correct externally-

visible behavior of the system without using any synchronization between processes running on

different machines. We achieve this goal by matching the formal specification of the distributed

system to the target architecture of running systems. That is, we restrict the form of the IOA

programs admissible for compilation. We require the programmer rather than the compiler to

decide on the distribution of computation. Specifically, we require the programs submitted for

compilation to be structured in a node-channel form that reflects the message-passing architecture

of the collection of networked workstations that is the target of the compiler. Had we been compiling

to a shared-memory system, we would have required the IOA programs to be written in that style.

(IOA itself is flexible enough to describe systems architected as completely centralized designs,

shared memory implementations, or message passing arrangements.) Compilation then proceeds on

a node-by-node basis. That is, the code for each kind of node is compiled separately. In fact, each

node in the system may run entirely specialized code. By requiring the programmer to match the

system design to the target language, hardware, and system services before attempting to compile

the program, we are able to generate verifiably correct code without any synchronization between

processes running on different machines.

1.2.2 Connecting programs to system services

Of course, IOA systems do not run in isolation. IOA programs use external services such as com-

munication networks and console inputs. The IOA compiler generates only the specialized code

necessary to implement an algorithm at each node in the system. At runtime, each node connects

to the external system services it uses. In our prototype the compilation target is a system in which

each host runs a Java interpreter and communicates via a small subset of the Message Passing In-

terface (MPI)) [41, 4]. A second major challenge our work addresses is to create both correctness

proofs about algorithms that connect to such services and to produce correct code that uses such

external, preexisting services.

Our approach to external system services is to bring them into the formal model by creating

automata that make explicit all our assumptions both about the interfaces to those service and about

all the externally visible behaviors of those services. For example, we introduce an automaton that

models a subset of MPI in Chapter 4. IOA programmers use these models to prove the correctness

of systems dependent on the external services. Distributed system designers can produce conditional

proofs of correctness for an entire system even though nodes communicate via MPI.

The correctness of the systems accessing other external system services can be verified by follow-

ing the same general approach. We can model an external service by writing an IOA specification.

27

Subsequently, proofs of correctness about programs that use the service must consider the entire

system including the modeled service. Such proofs are conditioned on the assumption that the

external service behaves as described in our model.

However, requiring the programmer to write code specifically to model the particulars of proce-

dure calls to specific external services is more restrictive than necessary. Writing programs at such

a low level complicates system designs unnecessarily and, thus, makes verifying the correctness of

systems harder. We avoid this complexity by specifying abstract services designers want to use (e.g.,

point-to-point, reliable, FIFO channels) and then implementing these abstract services by combining

our model of the external service with auxiliary mediator automata. We then verify that this design

implements the desired abstract service.

Such a proof does involve just the sort of details about low-level interactions with the external

service we wish to avoid. However this proof need only be performed once to verify the compiler

design. Programmers may then assume the existence of the simpler abstract service in any proofs

about their programs.

Thus, our strategy for verifying access to an external service is a four step process. First model

the external service as an IOA automaton. Second, identify the desired abstract service programmers

would like to use and specify that abstract service as an IOA automaton. Third, write mediator

automata such that the composition of the mediator automata and the external service automaton

implements the abstract service automaton. Fourth, prove that implementation relationship.

1.2.3 Modeling procedure calls

The above design for connecting to system services raises new challenges. One particularly tricky

aspect of such proofs is modeling the interfaces to services correctly. IOA itself has no notion of pro-

cedure call per se. There are two reasons to avoid procedure calls in a specification language. First,

procedure call stacks complicate the state of programs and, therefore, proofs of correctness about

them. Second, when one considers procedure calls as the interface between interacting components

in a concurrent setting, the procedure call and the procedure return should often be considered to

be two separately visible events across the interface.

The Java interface to an external service is defined in terms of method invocations (procedure

calls). In our models of these services, we carefully treat method invocations and method returns as

distinct behaviors of the external service. When procedure calls may block, we describe handshake

protocols to model such blocking.

1.2.4 Composing automata

The auxiliary mediator automata created to implement abstract system services must be combined

with the source automaton prior to compilation. We compose these automata to form a single au-

28

tomaton that describes all the computation local to a single node in the system. (Composition across

nodes is performed as part of proofs concerning the behavior of an entire distributed system but not

as part of compiling such a system.) We have designed and implemented a tool to compose automata

automatically. Part II of this dissertation precisely defines syntactic manipulations that transform

an automaton that is described as a combination of component automata into a single equivalent

primitive automaton. As part of this definition we have defined a desugared core IOA language and

shown syntactic transformations to produce desugared automata from arbitrary primitive automata.

1.2.5 Resolving nondeterminism

The IOA language is inherently nondeterministic. Translating programs written in IOA into an

imperative language like Java requires resolving all nondeterministic choices. This process of resolv-

ing choices is called scheduling an automaton. Developing a method to schedule automata was the

largest conceptual challenge in the initial design of an IOA compiler. In general, it is computationally

infeasible to schedule IOA programs automatically. Instead, we augment IOA with nondeterminism

resolution (NDR) constructs that allow programmers to schedule automata directly and safely.

1.2.6 Implementing datatypes

Datatypes used in IOA programs are described formally by axiomatic descriptions in first-order logic.

While such specifications provide sound bases for proofs, it is not easy to translate them automati-

cally into an imperative language such as Java. However, the IOA framework focuses on correctness

of the concurrent, interactive aspects of programs rather than of the sequential aspects. There-

fore we are not especially concerned with establishing the correctness of datatype implementations.

(Standard techniques of sequential program verification may be applied to attempt such correctness

proofs.) Therefore, each IOA datatype is implemented by a hand-coded Java class. A library of

such classes for the standard IOA datatypes is included in the compiler. Each IOA datatype and

operator is matched with its Java implementation class using a datatype registry written by Michael

Tsai and Toh Ne Win, extending an original design by Antonio Ramırez-Robredo [119, 121, 102].

1.3 Correctness

1.3.1 Abstract Channel Correctness

As suggested above, even though IOA programs use MPI as the network service, we allow program-

mers to assume the existence of point-to-point, reliable, FIFO channels when designing distributed

systems. We are able to provide programmers this convenience by following our four step strategy

for connecting to external services. First, we model MPI as an IOA automaton. Second, we specify

29

the desired semantics of a point-to-point, reliable, FIFO channel as an IOA automaton. Third,

we define mediator automata and compose them with our MPI model. Fourth, we prove that this

composite channel definition implements the desired abstract channel automaton.

1.3.2 Compiler Correctness

Since the goal of building the IOA compiler is to bridge the gap between formal models and running

systems, we need to ensure that the compilation process maintains the semantics of the source IOA

program in the emitted target code. We prove that under precisely stated conditions the compilation

method preserves the safety properties of the source IOA program in the target Java code.

To construct this proof we model the emitted Java code as another IOA automaton. As with any

useful model, our model of the emitted Java code abstracts away irrelevant detail while modeling key

characteristics. In the case of the emitted Java code the key characteristics we model are concerned

with multithreading, the granularity of atomic steps, and control flow. Our model of Java programs

is multithreaded, and threads may share variables and may synchronize using locks. Our IOA

automaton model of Java programs can take arbitrarily small “micro-steps” that may be interleaved

across threads and nodes.

We model the compilation process as a syntactic transformation on IOA automata. Abstractly,

a source IOA automaton is “compiled” by mapping it into a micro-step automaton in a precisely

defined way. We show the correctness of the compilation strategy by proving that any micro-step

automaton resulting from such a transformation maintains all the safety properties of the source

automaton from which it was generated. We construct this proof by demonstrating a refinement

mapping from a target automaton to the source automaton from which it was compiled.

This proof is based on the assumptions that our model of network behavior is accurate, that our

hand-coded datatype library correctly implements its semantic specification, and that the NDR an-

notations of the source automaton produce valid values. Moreover, we assume a technical restriction

that the source automaton is designed so that its safety properties hold even when inputs to any

node in the distributed system are delayed. Our current model of network behavior does not allow

for failures.

This result is best viewed as a correctness condition for the compiler. Consider a source automa-

ton and the micro-step automaton our precisely described syntactic transformation generates from

it. The IOA compiler is correct if that the micro-step automaton accurately models the Java code

emitted by the compilation of the source automaton.

30

1.4 Performance

We have performed three case studies to evaluate our implementation of the IOA compiler. For each,

we have written an IOA automaton to implement a distributed algorithm from the literature. The

three algorithms we have used are LCR leader election, computation of a spanning tree, and repeated

broadcast/convergecast over a computed spanning tree. Even with an incomplete prototype of the

compiler, an MIT undergraduate working at the University of Cyprus has been able to translate the

latter two algorithms from the literature into running code in a matter of 4–6 hours [88].

We have compiled these algorithms and measured their performance. Our experimental testbed

consists of a collection of ten networked workstations. In our limited experience, we have not

observed any scaling overhead from the compilation process. For example, the runtime of LCR

expands linearly with the number of participating nodes, just as expected. On the other hand, we

observed that the performance of our current implementation degrades as the size of the state of the

automaton increases. For example, the runtime of the broadcast algorithm expanded quadratically

with the number of messages sent. We suggest a solution for this problem.

1.5 Overview

Part I of this dissertation proceeds as follows. Chapter 2 introduces the input/output automaton

model, the IOA language, and the IOA toolkit, and places this work in the context of related tools-

based approaches to formal methods. Chapter 3 describes the form an IOA program must have

to be admissible for compilation. Chapter 4 describes the MPI communication service used by

compiled IOA programs, details the semantics we assume about that service, and shows formally

how to achieve an abstract channel interface with simple semantics using that more complex service.

The chapter also presents an argument for the correctness of our abstract channel implementation.

Chapter 5 discusses annotations a programmer adds to an IOA program to resolve its inherent

nondeterminism. Chapter 6 describes the translation process. Chapter 7 presents an argument for

the correctness of the compilation method. Chapter 8 presents our experimental evaluation of the

compiler. Part II describing the design of the composer encompasses Chapters 9– 17. Chapter 18

summarizes both parts of this dissertation, assesses its impact, and suggests directions for future

work.

31

32

Chapter 2

IOA Language and Toolkit

If a language doesn’t affect the way you think about pro-

gramming, it’s not worth knowing.

— Alan J. Perlis [99]

2.1 Input/Output Automata

I/O automata provide a simple mathematical basis for understanding distributed systems [84, 85].

I/O automata model the behavior of systems of interacting components. Complex systems are

decomposed into simpler pieces whose structure can be understood using levels of abstraction and,

orthogonally, parallel composition.

An I/O automaton is a labeled state transition system. It consists of a (possibly infinite) set

of states (including a nonempty subset of start states); a set of actions (classified as input, output,

or internal); and a transition relation, consisting of a set of (state, action, state) triples (transitions

specifying the effects of the automaton’s actions).1 An action π is enabled in state s if there is some

triple (s, π, s′) in the transition relation of the automaton. Input actions are required to be enabled

in all states. We call the internal and output actions the locally-controlled actions.

2.1.1 Execution of I/O Automata

The operation of an I/O automaton is described by its executions, which are alternating sequences

of states and actions. The externally visible behavior occurring in executions constitutes its traces

(sequences of input and output actions). The idea is that actions describe atomic steps. While two

(or many) actions may be enabled in a given state, the automaton performs only one transition at
1We omit discussion of tasks, which are sets of non-input actions.

33

a time. If a second action remains enabled in the state of the automaton after the first transition, it

may then occur. Thus, even though both actions were simultaneously enabled, one will be ordered

before the other in any single execution of the automaton.

I/O automata admit a parallel composition operator, which allows an output action of one

automaton to be performed together with input actions in other automata; this operator respects

the trace semantics. The result of applying the composition operator to a collection of compatible

automata is a new automaton semantically equivalent to the original collection. The execution of a

composition of interacting automata is also described with a global sequence of actions. That is, the

execution of the composition of a collection of automata is a single alternating sequence of states

and actions. Thus, the execution of a concurrent system is described sequentially. Furthermore,

even though the enabling of an action is determined only by examining the state of its automaton

and even though the effect of that action is localized to the state of that single automaton, the

scheduling of the action is performed globally over the whole collection.

The I/O automaton model is inherently nondeterministic. In any given state of an automaton

(or collection of automata), one, none, or many (possible infinitely many) actions may be enabled.

As a result, there may be many valid executions of an automaton.

2.1.2 Proof Techniques

The I/O automaton model supports a rich set of proof techniques. Invariant assertion techniques

are used to prove that properties of automata are true in all reachable states. (These date back at

least to Owicki and Gries [97].)

One automaton is said to implement another if all of its traces are also traces of the other au-

tomaton. Pairs of automata can be related using various forms of simulation relations. A simulation

relation is a mapping between the states of two automata that is maintained in all reachable states

while preserving the external behavior of the automata. To prove a relation is a simulation relation,

one demonstrates a correspondence between states and a step correspondence between the two au-

tomata, that is, one shows that for every step (state transition) of the implementation automaton

there is an equivalent (possibly empty) sequence of steps that the specification automaton can take

that will maintain the simulation relation [69, 83, 29]. Formally, a binary relation f over the states

of two automata A and B, is a simulation relation if

1. for all states s0 in the start states of A there is a start u0 of in the start states of B such that

(s0, u0) ∈ f and

2. if s is a reachable state of A, u is a reachable state of B, (s, u) ∈ f , and (s, π, s′) is a transition

of A, then there is an execution fragment α of B starting with u and ending with some u′ such

that (s′, u′) ∈ f and α has the same trace as π.

34

Demonstrating a simulation relation between two automata shows that one automaton implements

the other. If the simulation relation is a function, we say it is a refinement mapping. A relation h

between the states of two automata A and B is a history relation from A to B if h is a simulation

relation from A to B and h−1 is a refinement from B to A. A succinct explanation of the model

and many of its proof techniques appears in Chapter 8 of [81]. Simulation and history relations are

thoroughly discussed in [83].

2.1.3 Using I/O automata

To use I/O automata, one typically begins by describing a distributed system as a global, high-level

application or service. If possible, one uses a single, centralized I/O automaton to capture the most

general description of the externally discernible behavior of the system. For example, a bank can be

described as a set of accounts with owners and balances into which deposits can be made and from

which withdrawals can be taken. To be as general as possible, one uses nondeterministic choices

whenever possible. Then one describess key properties of the system using invariants. For example,

one might assert that no balance may ever be negative and that the total amount of funds in the

bank is always equal to the total deposits made minus the total withdrawls made.

A process of successive refinement then follows to describe the system as made up of lower-level

services. These lower-level automata may be simpler to understand (individually), a more realistic

depiction of a real system, or a model of an existing system we wish to use. Two orthogonal methods

of refinement apply. First, levels of abstraction may be used to define interfaces between low-level

services and high-level applications. So, a bank may depend on a secure, low-level, wire transfer

service to move money around. A distributed bank branches application can be described on top

of that wire transfer service. Second, one can apply parallel decomposition to describe a service or

application as a collection of components. Thus, the wire transfer service may be made up of a

collection of computing nodes and communication networks. In either case, the result is a set of

lower-level I/O automata that are intended to implement the previously specified high-level service.

Having refined the high-level, global system specification into a low-level distributed system

description, one wishes to prove that the low-level description implements the high-level specification.

Doing so shows that all behaviors of the low-level system could be interpreted as valid behaviors

of the specification. So, for example, no combination of accepted deposits and withdrawals at any

set of branches can ever cause a balance to become negative. To perform this proof, one applies

the composition operator to the various pieces of the low-level, distributed system specification. To

complete the proof, one then demonstrates a simulation relation between the resulting automaton

and the high-level, global system specification.

35

2.2 Successes with the I/O Automaton Model

I/O automata have been used to successfully model and verify a wide variety of distributed systems

and algorithms and to express and prove several impossibility results. Examples include [81, 82, 57,

13, 21, 39, 40, 26, 110, 111]. The model was developed for reasoning about theoretical distributed

algorithms but has since been applied to many practical services. For example, I/O automata have

been applied to distributed shared memory [39, 37, 38], group communication [40, 26, 32, 58], and

standard networking [111, 110, 112]. The resulting expositions and proofs have resulted from a

structured, rigorous approach that has resolved ambiguities and uncovered errors. Logical errors

have been found in algorithms underlying Orca [5] and Ensemble [54, 55] while unexpected behavior

was found in T/TCP [14].

2.3 Related Models

These experiences applying the model highlight several key features useful for this style of work.

The external behavior of automata are based on simple linear traces. Composition is based on syn-

chronized external actions. Levels of abstraction are easily described with successive levels related

by inclusion of trace sets. However, the I/O automaton model is just one of a variety of math-

ematical models developed for specifying and verifying distributed systems. A number of models

describe systems as automata performing transitions with preconditions and effects (i.e., guarded

commands). The effects can be described operationally (by an imperative program) or axiomatically

(by predicates that relate pre-states to post-states). I/O automata can be described by either or

both methods as needed.

Lamport’s TLA [71] describes the effects of transitions using the latter assertional style. TLA

describes automata as constraints on the universe of all possible outcomes and composition of au-

tomata simply as the conjunction of such constraints. Thus, there is no clear analogy to traces as

descriptions of external behavior. While Chandy and Misra’s UNITY language [17] and Manna and

Pnueli’s language SPL [86] are operational in style, their automata combine via shared variables

rather than shared actions. Thus, neither model uses sets of traces as its notion of external behav-

ior. All three of these languages have been used to prove both safety and liveness properties using

temporal logic.

Process algebras also use automata models. CSP [59] and CCS [90] compose by synchronizing

external actions. However, the process algebra proof style is quite different from that used with I/O

automata. Concurrent systems are built from single-step processes using algebraic expressions and

operators. Proofs consist of the application of a rich set of inference rules to algebraic expressions

denoting processes and tend to emphasize the equivalence of expressions.

A variety of other methods have been used for formally specifying distributed systems. For

36

example, see work by Harel [53], Meseguer [89], and Ostroff [96]. Estelle [62] exemplifies “Formal

Description Techniques (FDT).” FDTs are high-level, highly-expressive programming languages with

formal semantics. Estelle’s semantics are based on a guarded command style automaton model [31].

While the semantics are carefully defined, proofs are not generally done with these systems, possibly

due to the complications of the expressive semantics.

2.4 Related Tool-Based Work

Many of the modeling and verification techniques based on state machines are highly stylized. The

properties researchers choose to identify and the structure of the proofs they use to verify these

properties follow simple, common patterns. This success in combining simple, formal models with

simple, recurring patterns of proofs has led a variety of researchers to explore using automated

tools to work with these models. These computerized assistants have relieved researchers of some

of the burden of rote and repetitive tasks associated with these models and the associated proofs.

These tools range from verification-oriented tools such as automated proof assistants and model

checkers to more design-oriented tools such as simulators and even compilers. They have been used

to increase the level of detail and reusability in the produced proofs, to find errors in existing designs,

to explore design spaces, and to connect specifications with produced code. However, no system has

yet combined all these techniques for a single model.

A number of tools have been based on the CSP model [59]. The semantics of the Occam parallel

computation language is defined in CSP [1, 2]. While there are a number of Occam compilers

that target the Transputer architecture we have found no evidence of verification tools for Occam

programs.

Formal Systems, Ltd., has developed a machine-readable language for CSP that is accepted by

a number of tools. The FDR model checker allows the checking of a wide range of general safety

and liveness properties of CSP models [106]. The ProBE tool enables the user to “browse” a CSP

process by following events that lead from one state of the process to another. The user controls the

resolution of non-determinism and the choice of actions.

Cleaveland et al. have developed a series of tools based on the CCS process algebra [90]. The

Concurrency Workbench [28] and its successor the Concurrency Factory [27] are toolkits for the

analysis of finite-state concurrent systems specified as CCS expressions. They include support for

verification, simulation, and compilation. A model checking tool supports verifying bisimulations.

A compilation tool translates specifications into Facile code.

Lamport developed TLA+[72] as a formal language for describing TLA automata in a modular

fashion. With Engberg and Grønning, Lamport developed the TLP [35] theorem prover based on the

Larch Prover. Yu and Manolios collaborated with Lamport to develop the TLC model checker [123]

37

for TLA automata specified in a subset of TLA+. TLC has been used to find errors in the cache

coherence protocol for a Compaq multiprocessor. Lamport has no desire to generate code from

TLA+ [73]. Kalvala has formulated TLA for Isabelle [64].

Bjørner et al. have developed the Stanford Prover (STeP) for verifying SPL automata [10, 9].

STeP combines model checking with deductive methods to allow the verification of a broad class of

systems, including programs with infinite data domains. We do not know of any STeP work on code

generation.

2.5 Related I/O Automata-Based Tools

2.5.1 Theorem Provers

A number of researchers have revisited proofs of algorithms previously described in the distributed

systems literature using automated theorem proving assistants such as the Larch Prover, PVS, and

Isabelle [44, 108, 98].

At MIT, researchers have encoded I/O automata theory in the Larch Shared Language (LSL)

for use by the Larch Prover (LP). Søgaard-Andersen et al. developed the method and applied

it to connection management protocol examples [113]. Söylemez used Larch to verify the timing

properties of MMT automata [115]. Luchangco et al. extended the method to timed I/O automata

and applied it to mutual exclusion and leader election algorithms [80, 79]. Probably the most

complicated LSL-based proof done in this style was accomplished by Petrov et al. in verifying

the Bounded Concurrent Timestamp algorithm of Dolev and Shavit [100]. In all these proofs, the

researchers specified the algorithms of interest as I/O automata. The researchers then encoded each

automaton and the relevant invariants and simulation relations in LSL for input to LP.

Müller, Nipkow, and Slind have encoded I/O automata theory using temporal logic for use with

the Isabelle theorem prover [95, 92, 91]. Müller has used the system to derive and verify many

theorems about I/O automata including standard proof methods. Müller has connected the system

to two model checkers, translating I/O automata embedded in Isabelle into inputs for the the STeP

and µcke model checkers [8, 6, 7]. He uses abstractions from finite to infinite automata to use model

checkers to prove general properties. The model checker is used to verify the properties of the finite

state automata while the theorem prover is used to verify the abstraction. Each automaton must

be hand encoded directly in the Isabelle logic.

Vaandrager et al. have encoded I/O automata theory for the PVS theorem prover [56, 34]. As

with previous efforts, the authors hand encoded individual automata in the input logic of the prover.

Archer and Heitmeyer also encoded I/O automata theory for PVS [3, 104]. They used PVS’s sup-

port for user-defined strategies to create a special-purpose interface to PVS. The tool TAME (Timed

Automata Modeling Environment) provides an interface to the prover PVS to simplify specifying

38

and proving properties of automata models (including both timed and untimed I/O automata).

TAME aims to allow a software developer who has basic knowledge of standard logic, and can do

hand proofs, to use PVS to represent and to prove properties about an automaton model without

first becoming a PVS expert. In addition, TAME produces mechanical proof transcripts that largely

correspond to the structure of Lamport-style hand proofs [74, 70].

2.5.2 Simulators and Code Generators

Goldman’s Spectrum System introduced a formally-defined, purely operational programming lan-

guage for describing I/O automata [47, 49]. He was able to execute this language in a single machine

simulator. He did not connect the language to any other tools. However, he suggested a strategy

for distributed simulation using expensive global synchronizations. More recently, Goldman’s Pro-

grammers’ Playground also provides a communication library with formal semantics expressed in

terms of I/O automata [50].

Cheiner and Shvartsman experimented with methods for generating code from I/O automaton

descriptions [23, 24, 25]. They selected a particular distributed algorithm from the literature (the

Eventually Serializable Data Service of Luchangco et al. [37]) and generated by hand an executable,

distributed implementation in C++ communicating via the Message Passing Interface (MPI [41]).

They describe a generalized method for generating code for I/O automata described by operational

pseudocode. Unfortunately, the general implementation strategy described uses costly reservation-

based synchronization methods to avoid deadlock and a probabilistic, exponential back-off to avoid

livelock in the reservation system itself. For certain automata, they are able to optimize this reser-

vation system. Their methods do not rely on a formal language to describe I/O automata and have

no direct connection to any verification support.

2.6 IOA Language

The history of success using I/O automata to analyze and verify complex distributed systems and

the various efforts exploring tool-based verification methods clearly indicates the importance of

the techniques being developed. In the previous modeling work, I/O automata are described us-

ing pseudocode. The use of pseudocode simplifies and clarifies a näıve application of the strictly

mathematical set notation used to define the I/O automaton model by introducing programming

style notations. For example, states are represented by state variables rather than just by members

of an unstructured set; state transitions are described in precondition-effect style, rather than as

state-action-state triples.

To promote wider application of the I/O automata-based techniques and to support the appli-

cation of automated verification tools to I/O automata, Garland and Lynch introduced the IOA

39

language [43]. IOA is a formal language for describing I/O automata and their properties. IOA

serves as both a formal specification language and a programming language. I/O automata de-

scribed in IOA may be considered either specifications or programs. In either case, IOA yields

precise, direct descriptions of I/O automata constructs. As in the pseudocode style that inspired the

language, states in IOA are represented by the values of variables. IOA transitions are described in

precondition-effect (or guarded-command) style. The precondition is a predicate on the state of the

automaton and the parameters of the transition that must hold whenever the transition executes.

The effects clause specifies the result of executing the transition.

Since the language is intended to serve both as a specification language and programming lan-

guage, it supports both axiomatic and operational descriptions of programming constructs. Thus

state changes can be described through imperative programming constructs like variable assign-

ments and simple, bounded loops or by declarative predicate assertions restricting the relation of

the post-state to the pre-state.

The language also directly reflects the nondeterministic nature of the I/O automaton model.

Rather than add a few constructs for concurrency and interaction onto a basically sequential lan-

guage, IOA is concurrent from the ground up. One or many transitions may be enabled at any

time. However, only one is executed at a time. The selection of which enabled action to execute

is the source of implicit nondeterminism in the language. The choose operator provides explicit

nondeterminism in selecting values from (possibly infinite) sets. These two types of nondeterminism

are derived directly from the underlying model. The first reflects the fact that many actions may be

enabled in any state. The second reflects the fact that a state-action pair (s, π) may not uniquely

determine the following state s′ in a transition relation.

2.7 Example: LCR Leader Election

We illustrate IOA by describing the Le Lann-Chang-Roberts (LCR) leader election algorithm as a

composition of process and channel automata [75, 18].

In this algorithm, a finite set of processes arranged in a ring elect a leader by communicating

asynchronously. The algorithm works as follows. Each process sends its name to its right neighbor.

When a process receives a name, it compares it to its own. If the received name is greater than its

own, the process transmits the received name to the right; otherwise the process discards it. If a

process receives its own name, that name must have traveled all the way around the ring, and the

process can declare itself the leader.

Figure 2.1 shows a LCRChannel automaton describing communication channels by which processes

can send messages.2 This automaton represents a reliable communication channel, which neither

2Nothing about this channel definition is specific to the LCR example. We qualify the name only to distinguish
the example from other channel automata introduced in Chapters 4 and 10.

40

automaton LCRChannel(i, j: Int)

signature
input SEND(m: Int, const i, const j)

output RECEIVE(m: Int, const i, const j)

states
messages : Seq[Int] := {}

transit ions
input SEND(m, i, j)

e f f messages := messages ` m

output RECEIVE(m, i, j)

pre messages 6= {} ∧ m = head(messages)

e f f messages := tail(messages)

Figure 2.1: Reliable FIFO LCRChannel automaton

loses nor reorders messages in transit. The automaton is parameterized by the values, i and j,

which represent the indices of processes that use the channel for communication. The signature

consists of input actions, send(m, i, j), and output actions, receive(m, i, j), one for each value of

m. The keyword const in the signature indicates that i and j are terms (not variable declarations)

whose values are fixed by the values of the automaton’s parameters. The state of the automaton

LCRChannel consists of a buffer, which is a sequence of messages (i.e., an element of type Seq[Int])

initialized to the empty sequence {}. The operators on sequences used are: {} (the empty sequence),

` (append), head (the first element of the sequence), and tail (the rest of the sequence). The input

action SEND(m, i, j) appends m to buffer. The output action RECEIVE(m, i, j) is enabled when

buffer is not empty and has the message m at its head. The effect of this action is to remove the

head element from buffer.

Figure 2.2 describes a participating LCR process, which is parameterized by the name of the

process and the number of processes participating in the election. The type declaration on the first

two lines of Figure 2.2 declares Status to be an enumeration of the values idle, voting, elected,

and announced. The automaton LCRProcess has two state variables: pending is a multiset of integers

and status has type Status. Initially, pending is set to contain the name of the process i, and

status is set to idle. The input action vote sets status to voting to indicate that an election

has begun. The input action receive(m, const mod(i-1, ringSize), const i), may result in three

different transitions depending on how the message m received from the LCRProcess automaton to

the left of automaton i compares with the name of automaton i. These transitions are described in

three separate transition definitions; they could just as well have been described in a single definition

using a conditional statement. The value of the first parameter of receive is constrained by where

clauses in the first two transition definitions and is fixed in the third. The parameter j in each of

these transition definitions is constrained to equal i−1 mod ringSize by the action signature. The

41

type Status = enumeration of idle, voting , elected , announced

automaton LCRProcess(i, ringSize , name: Int)

signature
input vote(const i)

input RECEIVE(m: Int, const mod(i-1, ringSize), const i)

output SEND(m: Int, const i, const mod(i+1, ringSize))

output leader(const i)

states
pending : Mset[Int] := {name},

status : Status := idle

transit ions
input vote(i)

e f f status := voting

input RECEIVE(m, j, i) where m > name

e f f pending := insert(m, pending)

input RECEIVE(m, j, i) where m < name

input RECEIVE(name, j, i)

e f f status := elected

output SEND(m, i, j)

pre status 6= idle ∧ m ∈ pending

e f f pending := delete(m, pending)

output leader(i)

pre status = elected

e f f status := announced

Figure 2.2: Algorithm automaton LCRProcess

automaton has two kinds of output actions: send(m, i, mod(i+1,ringSize)), which sends a message

in pending to the LCRProcess automaton to the right, and leader(i), which announces successful

election.

automaton LCR

components
P[i: Int]: LCRProcess(i, 10)

where 0 ≤ i ∧ i < 10;

C[i: Int]: LCRChannel(i, mod(i+1, 10))

where 0 ≤ i ∧ i < 10

Figure 2.3: LCR system automaton using FIFO channels

The full LCR leader election algorithm is described in Figure 2.3 as a composition of a set

of ten process automata connected in a ring by reliable communication channels. The keyword

components introduces a list of named components: one LCRProcess automaton, P[i], and one

LCRChannel automaton, C[i] for each value of i as constrained by the where predicate. The com-

ponent C[i] is obtained by instantiating the parameters i and j with the values i and i + 1

mod 10, so that channel C[i] connects process P[i] to its right neighbor. The output actions

send(m, i, mod(i+1, 10)) of P[i] are identified with the input actions send(m, i, mod(i+1, 10))

of C[i], and the input actions receive(m, mod(i+1, 10), i) of P[i] are identified with the output

42

actions receive(m, mod(i-1,10), i) of C[mod(i-1,10)], which is LCRChannel(mod(i-1,10), i). Since

all input actions of the channel and process subautomata are identified with output actions of other

subautomata, the composite automaton contains only output actions.

2.8 IOA Toolkit

The IOA language was created as the first step in building an integrated software development envi-

ronment for distributed systems [45, 46]. The IOA language enables designers to specify automata,

their properties, and their relations precisely while spanning many levels of refinement. This envi-

ronment is intended to support algorithm design, development, testing, and formal verification. The

environment, the IOA toolkit, connects with both lightweight (syntax checkers, simulators, model

checkers) and heavyweight (theorem provers) verification tools. IOA provides a common basis to

allow a designer (or design team) to apply any or all of these tools to a single design. Since IOA

is a formal language with rigorous, mathematically-based (as opposed to linguistically-based) se-

mantics, the toolkit can automatically translate between the IOA description of an I/O automaton

and the equivalent “native” language description for each tool. We hope that the IOA toolkit will

encourage distributed system designers to use a variety of formal methods in the design, analysis,

and verification of their systems. The toolkit will lower the barriers between disciplines such as

model checking and theorem proving and make both types of tools more accessible to distributed

system developers. The IOA toolkit is designed to allow developers to explore a design space, refine

from high-level conception to low-level implementation, and define and verify system properties —

all within a common framework.

The toolkit is divided into a common front-end for inputting IOA programs and a variety of

back-end tools. The front-end consists of the parser, static semantic checker, and the composer.

Tools that can be connected at the back-end include an IOA simulator, theorem provers, model

checkers, and a compiler.

2.8.1 Checker

The first module to which any IOA program is submitted is the parser and static semantic checker

(or simply the checker). In addition to the obvious functions, the checker produces an intermediate

representation suitable for use by other tools. This S-expression-based intermediate language (IL)

has a simpler parse tree than the more readable IOA source language [102]. As the checker acts as

a front-end to just about all other elements of the toolkit, the IL provides a convenient interchange

language within the IOA toolkit. A checker prototype has been implemented. The IL representation

is semantically equivalent to the source representation. In the future, the checker will be able to emit

proof obligations that the language specification requires to be true but cannot be easily checked.

43

These obligations can form the basis of further verification work with other tools.

2.8.2 Composer

The composition tool (composer) converts the description of a composite automaton (a collection

of other automata) into primitive form by explicitly representing its actions, states, transitions,

and tasks. The IOA language includes a components statement, which defines an automaton to

be the composition of referenced automata. The composer expands the composition statement

by instantiating and combining the referenced automata as described by the logical composition

operation on the model. In the resulting description, the name of a state variable is distinguished

by the names of the components from which it arises. The input to the composer must be a

compatible collection of automata; for example, the component automata should have no common

output actions. Note that composition is a semantically “neutral” operation. That is, the I/O

automata described by the input program using the components statement is equivalent to that

described by the output primitive program. Part II of this dissertation describes the design and

implementation of the composer tool that has been integrated as part of the checker.

2.8.3 Simulator

The simulator [65, 22, 102, 30, 121, 119, 114] performs sample executions of an IOA program, running

them on a single machine. The user can help select the executions that are run. IOA programs may

describe primitive or composite automata. The simulator checks that proposed invariants are indeed

true in all states reached during the course of the simulation. A novel aspect of the simulator is

its ability to perform paired simulations. In this mode, two automata — a specification and a

purported implementation — are run simultaneously. The simulator verifies that a proposed step

correspondence maintains the given simulation relation between the two automata (again, only in

the states reached during the run).

2.8.4 Theorem Provers

Initially, the IOA toolkit connected to the Larch Prover (LP) [44].3 Theorem provers can be used

to prove validity properties for IOA programs, facts about the datatypes manipulated by programs,

invariants of automata, and (forward and backward) simulation relations between automata. In the

current implementation, the checker translates IOA descriptions of automata into axioms that can

be used by the theorem prover. When a validity condition for an automaton is too hard to establish

by static checking, the checker can formulate this condition as a theorem that must be proved. It

can also formulate sets of lemmas that imply that asserted invariants and simulation relations are

3Independent of this toolkit project, Devillers has used the IOA language specification [43] to build a tool that
translates IOA into input for PVS [33].

44

indeed invariants and simulation relations. Users can interact with a theorem prover to prove that

the lemmas follow as consequences of the axioms. In some cases, the theorem prover can prove a

lemma automatically, but usually the user must interact with the prover to suggest proof strategies

and other useful information.

2.8.5 Model checkers

Model checkers provide an approach to validation that is complementary to theorem proving and

to simulation. They work completely automatically, and can be used to validate all executions of a

finite-state system with a sufficiently small number of states. The IOA toolkit is designed to utilize

existing model checkers. The first model checking prototype interface was targeted to Spin [60]. A

model checker can be used as a validator of invariants and possible simulation relations provided by

the user.

Uppaal is a tool that assists in the development of timed systems, giving users simulation and

verification capacities to guarantee timing properties in computer programs [76]. TIOA is under

development as extension to IOA for describing timed automata [66, 67]. The TIOA-to-UPPAAL

translator allows the simulation of IOA and TIOA programs in UPPAAL’s easy-to-use interface,

and the checking of their properties with UPPAAL’s model checker [105].

2.8.6 Invariant discovery tools

Daikon is a tool that examines executions of programs in order to suggest possible invariants of the

program [36]. The IOA simulator has been instrumented to produce traces suitable for Daikon to

examine [30]. Ne Win et al. investigated the use of the automatically discovered invariants to help

increase the automation of theorem proving [121, 122].

2.8.7 IOA Compiler

All of the above tools work entirely within formal frameworks. These tools allow designers to

perform a variety of design, specification, and verification tasks. Even with all this technology

and these tools, however, the task of the distributed system builder remains outside the model.

The builder must translate the designers’ requirements (now formally described) into a standard

imperative programming language. In essence, the system builder must start over and recode the

whole project. As a result, a disconnect exists between the specification and the actual running

code. Part of the goal in designing the IOA language and toolkit is to bridge this gap. The main

contribution of this dissertation is a tool that bridges that gap, an IOA compiler.

The IOA compiler translates a restricted subset of IOA programs into Java. The resulting

code runs on a collection of workstations communicating using standard networking protocols. The

45

remainder of this dissertation describes the design and implementation of the IOA compiler and

argues that the compiler bridges the gap between specifications with formal proofs of correctness

and running code by preserving the safety properties of IOA specifications in the generated Java

code.

46

Chapter 3

Structuring the Design

Wherever there is modularity there is the potential for mis-

understanding: Hiding information implies a need to check

communication.

— Alan J. Perlis [99]

IOA can describe systems architected in just about any configuration a system designer can

dream up, including completely centralized designs, shared memory implementations, or message

passing arrangements. However, the IOA compiler targets only message passing systems. The goal

is to create a running system consisting of the compiled code and the existing MPI service that

faithfully emulates the original distributed algorithm written in IOA. According to the semantics

of IOA, the individual actions of the algorithm, everywhere in the system, are atomic and execute

sequentially. In the running system, each IOA atomic action is expanded into a series of smaller

steps corresponding to Java operations. The steps corresponding to different atomic actions may

execute in an interleaved fashion, or concurrently. The IOA compiler must ensure that the effect as

seen by external users of the algorithm is “as if” the high-level actions happened atomically.

One approach to preserving the externally visible behavior of the system is to ensure atomicity

by synchronizing among processes running on different machines, thus reducing the possible sources

of concurrency. This approach to implementing I/O automata (by hand coding) was taken, for

example, by Cheiner and Shvartsman [23, 25, 24]. Such an approach has the advantage that it

is very general. The implemented automata do not need to be structured in the same way as

the hardware on which they run. However, such global synchronization is expensive. Before an

automaton at one node can execute an external action, it must coordinate with the automata at one

or more other nodes. This coordination requires extra messages and blocking the execution of the

47

automaton until synchronization is complete.

A major challenge in our work is to achieve the appearance of globally-atomic IOA steps without

any synchronization between processes running on different machines. Rather than attempt a gen-

eralized approach, we require the programmer to match the system design to the target language,

hardware, and system services before attempting to compile. The initial target environment for the

IOA compiler is a group of networked workstations.

Each host runs a Java interpreter with a console interface and communicates with other hosts via

(a subset of) the Message Passing Interface (MPI) [41, 4]. (By “console” we mean any local source of

input to the automaton. In particular, we call any input that Java treats as a data stream — other

than the MPI connection — the console.) We are able to preserve the externally visible behavior

of the system without synchronization overhead because we require the programmer to explicitly

model the various sources of concurrency in the system: the multiple machines in the system, the

communication channels, and the console interface to the environment.

These requirements can be divided into two categories: restrictions on the form of the IOA

system description and requirements on the semantics of the system — that is, syntactic restrictions

and proof obligations. The syntactic restrictions define which elements and structures of the IOA

language may be used to describe a system admissible for compilation. Admissible programs use only

imperative IOA constructs and are composed in “node-channel form” using mediator and interface

automata. We discuss these requirements below in Sections 3.1, 3.2, and 3.5. In addition, admissible

programs must be “scheduled” as discussed in Chapter 5.

Proof obligations are criteria an IOA program must meet if the system is to behave as the

programmer expects. A proof of correctness for the system design should include these additional

constraints in the specification of correct behavior of the system. In particular, an IOA system

submitted for compilation must be input-delay insensitive. That is, the program must behave

correctly (as defined by the programmer) even if its inputs from the local console are delayed. This

is a technical constraint that most interesting distributed algorithms can be altered to meet. We

discuss the console interface to IOA programs in Sections 3.3 and 3.4.

3.1 Imperative IOA programs

As mentioned in Section 2.6, IOA supports both operational and axiomatic descriptions of program-

ming constructs. The prototype IOA compiler translates only imperative IOA constructs. Therefore,

IOA programs submitted for compilation cannot include certain IOA language constructs. The au-

tomaton state declaration cannot include initially clauses which can assert arbitrary predicates

on the initial values of state variables. Effects clauses cannot include ensuring clauses that relate

pre-states to post-states declaratively. Throughout the program, predicates must be quantifier free.

48

Automaton
Algorithm

RecvMediatorMPISendMediator

Outgoing FIFO Channel

(b)(a)

Outgoing FIFO
ChannelAutomaton

Algorithm

Figure 3.1: Auxiliary automata mediate between MPI and node automata. (a) Reliable, FIFO
channel defines the desired behavior. (b) The composition of MPI and the mediator automata
implements the reliable, FIFO channel.

Currently, the compiler handles only restricted forms of loops that explicitly specify the set of values

over which to iterate.

Later versions of the compiler may support annotations of the IOA program to provide witnesses

for certain classes of existentially quantified predicates and iterators for certain finite types of loop

or universally quantified variables. (These annotations would be an extension to the NDR language

discussed in Chapter 5.)

3.2 Node-Channel Form

We require that systems submitted to the IOA compiler be described in node-channel form. Specifi-

cally, the source IOA specification consists of a collection of N algorithm automata connected by up

to N2 channels. Each algorithm automaton describes the computation performed at one node in the

system design. As in the LCR example, differently parameterized instances of the same algorithm

automaton may be run at different nodes.

3.2.1 Abstract Channels

While code generated by the IOA compiler must interface with MPI, the intricacies of interfacing with

the MPI system are somewhat distracting to the distributed system designer. So, for convenience,

we specify a simpler abstract channel interface that allows programmers to design their systems

assuming the existence of reliable, one-way FIFO channels similar to those specified in Figure 3.1.

In this simple interface, the RECEIVE input action connects with incoming channels and the SEND

output actions connects with outgoing channels. We divide the external actions of an algorithm

automaton into two categories. The SEND and RECEIVE actions are the network actions. Console

actions are all the other external actions.

The actual compiled code must still interface with MPI. Therefore, we define auxiliary IOA

automata to mediate between MPI and the network actions of the algorithm automaton so as

to implement a FIFO channel. The ReceiveMediator automaton mediates between the algorithm

automaton and an incoming channel, while SendMediator handles messages to outgoing channels.

49

Each of the N node programs is connected to up to 2N mediator automata (one for each of its

channels). Figure 3.1 depicts the relationship of the algorithm automaton and an abstract outgoing

channel automaton and how mediator automata are composed with MPI to create that channel.

Chapter 4 details the precise abstract channel interface available to IOA programs and shows how

combinations of mediator automata and MPI provide that interface by connecting to the network

actions. The console actions are discussed below.

3.3 Handshake Protocols

The I/O automaton model requires that input actions are always enabled. However, Java programs

are not input enabled. Usually, a Java program receives input only when the program asks for it by

invoking a method. We model this behavior in IOA by a simple handshake protocol. An automaton

signals its readiness to receive input from its environment by executing an output action. Thereafter,

the environment may respond by a single invocation of an input action of the automaton. (That

invocation is an output action from the viewpoint of the environment. For clarity, we stick to the

viewpoint of the automaton.) The environment may not invoke a second input until it receives a

second output signal. This pairing of output and input actions models the call and return of a Java

method.

To be faithful to the Java execution model, after the output signal (method call) all other activity

in the automaton must stop until the expected input (method return) occurs. We could model this

stoppage by disabling all locally controlled actions of the automaton. As we show in Chapter 7, it

suffices for our purposes simply not to schedule any actions in this interval. In addition, every input

action to the automaton must be controlled by a similar handshake protocol.

Given any two interacting automata, it is simple to augment the interface between them with

a formal handshake protocol. Let A be an automaton and Env be its environment automaton. We

want to augment the two automata to require that Env generate inputs to A only after A signals it is

ready to receive them.

We augment the state of the environment automaton Env with an additional boolean variable

enabled and an input action inReady. Initially, enabled is false. The inReady input action sets

enabled to true. We strengthen the precondition of each output action to require enabled to be

true and extend its effect to assign false to enabled. Thus, in any valid execution of Env, any two

output actions must be separated by an inReady input action. These augmentations are shown in

Figure 3.2.

Similarly, we augment the state of the node automaton A that connects to the environment

automaton with an additional boolean variable signalled and an output action inReady. Initially,

signalled is false. The precondition of the inReady output requires signalled to be false while the

50

automaton Env

signature
output pi

input inReady

...

states
enabled : Bool := false,

...

transit ions
input inReady

e f f enabled := true

output pi

pre enabled;

...

e f f enabled := false;

...

Figure 3.2: Example augmentations to the environment automaton to perform a handshake protocol.

effect merely toggles signalled to true. We extend the effects of each input action to set signalled

to false. If some other local processing must be performed before the node automaton is ready for

input, that assignment can instead appear in some other transition in the automaton. However, that

additional processing must be purely local. No output can be generated before the flag is toggled.

Thus, in any valid execution of A, any two instances of the inReady output action must be separated

by an input action. These augmentations are outlined in Figure 3.3.

automaton A

signature
input pi

output inReady

...

states
signalled : Bool := false,

...

transit ions
output inReady

pre ¬signalled
e f f signalled := true

input pi

e f f signalled := false;

...

Figure 3.3: Example augmentations to a node automaton to perform a handshake protocol.

3.4 Console Interface

We want to provide the IOA programmer with the convenience of the simplest possible interface

to the console but we do not want to force the programmer to model the intricacies of the Java

I/O interface. Instead, we allow the programmer to specify an arbitrary interface to the console for

51

that node. That is, the console actions of a program may include any input or output actions with

(almost) any parameters.1

As we describe in Section 6.4.2, the IOA compiler uses S-expressions to describe arbitrary IOA

actions and datatypes externally. One approach to modeling the console interface would be to

specify a series of detailed, interacting automata that read and parse individual characters, whole

lines, well-formed S-expressions, etc. Instead, we choose to model the console at a higher level

of abstraction. We consider the reading and parsing of an IOA action and its parameter values to

happen in a single step. We fold all those low-level steps into a single handshake between the console

and the automaton.

As mentioned, simple handshake protocols can bring the execution of an automaton to a halt

while the automaton waits for input. Similarly, simple approaches to I/O in Java programs can

bring the program to a halt while it blocks on a method call. Two standard techniques for avoiding

such stoppages are the use of nonblocking calls and multithreading. Nonblocking calls limit the time

the program stops by returning “quickly”. The data returned by such calls might not be substantive

input to the program. Often, the returned value just indicates that no substantive data was ready

at the time. Repeated invocations of nonblocking calls (called polling) can be interleaved with other

work. Multithreading permits part of the program to continue executing concurrently while another

part blocks until substantive data is available.

In the IOA compiler, we use both these techniques. We use nonblocking MPI calls to implement

the abstract channel interface as described in Chapter 4. We use both multithreading and polling

to implement the console interface.

The program emitted by the IOA compiler has three threads. The main thread performs the

work of the program as submitted to the compiler. An input thread waits for input from the console,

parses it, and then copies the invocation into an internal buffer. The main thread must poll this

internal buffer to see if input has arrived. An output thread waits for output from the program,

generates an S-expression representation, and then sends that to the console.

3.4.1 Buffer Automata

One consequence of this design is that console inputs might not be handled immediately upon arrival.

Therefore, we require that the IOA system submitted for compilation be designed so that its safety

properties hold even when console inputs to any node in the system are delayed. Specifically,

the programmer must write IOA programs so that the algorithm is correct even when each node

automaton is composed with the particular kind of buffer automaton we introduce in this section.

1There is a technical constraint that a console action include at least the node identifier among its parameters. That
parameter prevents like-named input actions from collapsing into a single action when considering the composition
of the entire system as we do in Section 7.1. In like-named output actions, the identifier prevents compositional
incompatibility across node automata.

52

Informally, we say such a system is input-delay insensitive. By “correct”, we mean that the entire

system of nodes and channels must exhibit only behaviors the programmer wishes to allow. The

strongest notion of input-delay insensitivity would be that the system exhibits no new externally

visible behaviors when each node automaton is composed with its buffer automaton.

Even though the Java implementation is generic, we specify the correctness condition for each

node automaton with a buffer automaton specific to the console interface of that algorithm automa-

ton. The buffer automaton for the LCRProcess algorithm automaton is shown in Figure 3.4.

The signature of each buffer automaton mimics the console actions of its corresponding algorithm

automaton. That is, for each console action pi of the algorithm automaton, the buffer automaton

has a corresponding action pi of the same kind with the same parameters. In addition, the buffer

automaton implements the handshake protocol for inputs from the environment described above.

The buffer automaton has state variable signalled and a signaling output action inReady. This

action models the single Java method call used to initiate all console input to the automaton. The

input is differentiated into individual IOA action invocations by parsing the S-expression received.

The buffer automaton implements the handshake protocol for outputs to the environment too.

In this case the roles of “node” and “environment” are reversed. Thus, the buffer automaton also

has a state variable enabled and a signaling input action outReady models the return from the sole

Java method call used to initiate all console output from the automaton. (The name is changed

from inReady to avoid conflict.) Since some local processing must occur before the automaton is

ready to accept new input, falsifies the signalled flag in the internal appendInvocation action rather

in an input action.

In the case of the LCRProcess algorithm automaton, there are two console actions: the input

action vote and the output action leader. Therefore, the LCRProcessInterface buffer automaton has

inputs vote and outReady and outputs leader and inReady.

Each buffer automaton defines the specific IOA sorts used to represent the input and output

invocations. Each invocation is represented as a tuple of an action label and a sequence of param-

eters. That tuple sort is called IOA_Invocation. Action labels in such tuples are collected into an

enumeration sort named IOA_Action. Parameters are represented by a sort IOA_Parameter that is the

union of all sorts that may appear as a parameter of any console interface action of the algorithm

automaton.

The LCRProcessInterface buffer automaton defines IOA_Action to be the enumeration of vote and

leader. Since both actions have only one parameter and that parameter is an integer in both cases,

the union IOA_Parameter has only one possible tag: Int.

The effect of the buffer input action is to construct an IOA_Invocation that represents the algo-

rithm input action and to toggle the signalled and valid flags. The latter flag is true when a new

invocation has arrived but has not yet been inserted into the buffer. This action abstracts away the

53

type IOA_Invocation = tuple of action : IOA_Action , params : Seq[IOA_Parameter]

type IOA_Parameter = union of Int: Int

type IOA_Action = enumeration of leader , vote

automaton LCRProcessInterface(i: Int, ringSize : Int, name: Int)

signature
input

vote(I0: Int) where I0 = i,

leader(I5: Int) where I5 = i,

outReady(I0: Int) where I0 = i

output
leader(I5: Int) where I5 = i,

vote(I0: Int) where I0 = i,

inReady(I0: Int) where I0 = i

internal
appendInvocation(I0: Int) where I0 = i

states
valid : Bool := false,

signalled := false,

enabled := false,

invocation : IOA_Invocation,

stdin : LSeqIn[IOA_Invocation]:= {},

stdout : LSeqOut[IOA_Invocation]:= {}

transit ions
output inReady

pre ¬signalled
e f f signalled := true

input vote(I0)

e f f invocation := [vote , {} ` Int(I0)];

valid := true;

internal appendInvocation(I0)

pre valid

e f f stdin := stdin ` invocation;

valid := false;

signalled := false;

output vote(I0)

pre stdin 6= {} ∧
((((head(stdin). action) = vote) ∧
(len(head(stdin). params)) = 1) ∧
(tag(head(stdin). params [0])) = Int) ∧
(head(stdin). params [0]. Int) = I0

e f f stdin := tail(stdin)

input leader(I5)

e f f stdout := stdout ` [leader , ({}) ` Int(I5)]

output leader(I5)

pre enabled ∧
stdout 6= {} ∧
(((head(stdout). action) = leader) ∧
(len(head(stdout). params)) = 1) ∧
(tag(head(stdout). params [0])) = Int) ∧
(head(stdout). params [0]. Int) = I0

e f f stdout := tail(stdout);

enabled := false

input outReady

e f f enabled := true

Figure 3.4: Complete IOA specification the LCRProcessInterface buffer automaton

54

Java I/O interface and S-expression parsing.

Once an input invocation has been received (i.e., valid is true), the internal appendInvocation

action may append the invocation to the stdin buffer and reset valid to false. As we show in

Section 7.2, this append step must be in a step separate from the input action in order to model

locking stdin correctly.

The effect of the buffer output action is to dequeue an IOA_Invocation from the stdout buffer.

Note that all invocations come in through the stdin queue and go out through the stdout queue.

Therefore an output action pi is only enabled when an IOA_Invocation for a pi action is at the

head of the stdout queue. For example, the output action leader is only enabled when stdout is

not empty, the IOA_Invocation at the head of the queue has an action field specifying leader and a

params field of one element, whose tag is Int and whose value is the value to be output.

Finally, for every console action pi of the algorithm automaton, the buffer automaton has a second

action pi with the kind (input or output) inverted. These actions permit the buffer automaton to

inserted between the algorithm automaton and any environment with which it might be composed,

as illustrated in Figure 3.6. These inverted actions dequeue invocations from the stdin buffer or

enqueue invocations onto the stdout buffer. The preconditions for the output action that dequeues

invocations from stdin mirror those for the output action that dequeues invocations from stdout.

For example, the output action vote is only enabled when stdin is not empty, the IOA_Invocation at

the head of the queue has an action field specifying vote and a params field of one element, whose

tag is Int and whose value is the value to be output.

Technically, such a buffer automaton is not a valid IOA program because it has overlapping, like-

named input and output actions. (See Section 11.4.) One way to get around this technical constraint

would be to rename the console actions of the algorithm automaton and the corresponding inverted

actions of the buffer automaton to some fresh name. We ignore this issue because, as explained

below, the actual external interface of the buffer automaton is only conceptual.

Essentially, the buffer automaton has two flows through it. Every input action constructs a

representation of itself. That representation is stored in a buffer (either stdin or stdout) for some

time. When the invocation is at the head of its queue it is output by the appropriate output

action. These two flows are almost entirely symmetrical (ignoring the extra stutter step of the

append action). The real difference between them is external to the buffer automaton itself. The

difference arises from which end of each flow is connected to the algorithm automaton and which

end is connected to the console.

3.4.2 Interface Generator

As mentioned above, the compiler implements a multithreaded translation of IOA programs. As we

describe in Section 6.4.2, the input thread and output threads are treated as special cases. In fact,

55

the implementation of these I/O threads is independent of the algorithm being compiled. The above

description of buffer automata is simply our model of (or correctness condition for) the behavior of

the I/O threads.

Actually, buffer automata as described above include more than the behavior of the I/O threads.

That is, not all the actions we describe are implemented by the I/O threads. In particular, the

“inverted’ actions are implemented by the main thread. Notice this means that access to the stdin

and stdout queues is shared across threads. Thus, items enqueued onto stdin by the input thread

are dequeued from it by the main thread. Similarly, items enqueued onto stdout by the main thread

are dequeued by the output thread. Only those flipped actions are needed for compilation.

type Status = enumeration of idle, voting , elected , announced

type IOA_Invocation = tuple of
action : IOA_Action , params : Seq[IOA_Parameter]

type IOA_Parameter = union of Int: Int

type IOA_Action = enumeration of RECEIVE , SEND, leader , vote

automaton LCRProcessInterface(i: Int, ringSize : Int, name: Int)

signature
input
leader(I5: Int) where I5 = i

output
vote(I0: Int) where I0 = i

states
stdin : LSeqIn[IOA_Invocation]:= {},

stdout : LSeqOut[IOA_Invocation]:= {}

transit ions
output

vote(I0)

pre stdin 6= {} ∧
((((head(stdin). action) = vote) ∧ (len(head(stdin). params)) =
1) ∧ (tag(head(stdin). params [0])) = Int) ∧
(head(stdin). params [0]. Int) = I0

e f f stdin := tail(stdin)

input
leader(I5)

e f f stdout := stdout ` [leader , ({}) ` Int(I5)]

Figure 3.5: IOA specification for the abbreviated LCRProcessInterface buffer automaton as produced
by the interface generator

The interface generator tool implemented by Michael Tsai can be used to automatically produce

from an algorithm automaton the part of its buffer automaton that is needed for compilation [119].

While the complete buffer automaton LCRProcessInterface is shown in Figure 3.5, the automaton

actually produced by the interface generator is shown in Figure 3.5. The role of the special sorts

LSeqIn and LSeqOut in code generation is also explained in Section 6.4.2. Semantically, they are iden-

tical to the standard IOA sort Seq. Note, the transitions with duplicate names are omitted from this

version of the buffer automaton, avoiding the technical problem mentioned above. The Status type

definition appearing in the figure is copied by the interface generator from the LCRProcess automa-

ton. It is not needed. Similarly, the inclusion of SEND and RECEIVE in the IOA_Action enumeration is

56

an artifact of the current implementation.

3.5 Composition

C
on

so
le SendMediator MPI

RecvMediator MPIRecvMediator MPI

SendMediator MPI

Algorithm
AutomatonAutomaton

Buffer

Node Automaton

Figure 3.6: An annotated node automaton composed of a buffer automaton, an algorithm automaton,
and mediator automata is the program input to the IOA compiler.

The completed design is called the composite node automaton and is described as the composition

of the algorithm automaton provided by the programmer with the mediator automata introduced

above in Section 3.2.1 and the buffer automata produced by the interface generator as described

in Section 3.4.2. The full definition of the mediator automata is given in Section 4.5. A composer

tool [118] expands this composition into a new, equivalent IOA program in primitive form (i.e.,

without any components statements). The design of the composer tool is the subject of Part II of

this dissertation.

The resulting node automaton describes all computation local to one machine. The node automa-

ton communicates with other nodes only via the channel automata. The node automaton (annotated

as described in Chapter 5) is the actual input program to the IOA compiler. The compiler trans-

lates each node automaton into its own Java program suitable to run on the target host. Figure 3.6

depicts the composition that produces a node automaton.

In the node automaton, both the console and network interfaces of the algorithm automaton

are entirely hidden. The console actions are matched with actions from the buffer automaton.

The network actions are matched with actions from the mediator automata. As a result, the entire

external interface of the algorithm automaton as designed by the programmer has been encapsulated

inside standard actions provided by the compiler or associated libraries and tools. This fact allows us

to handle these known quantities as special cases during compilation while providing precise formal

semantics for verifying algorithm automata.

For the LCR example, the composite node automaton is shown in Figure 3.7. In that figure,

the composite node LCRNode is the result of composing one instance of the LCRProcess algorithm

automaton with one instance of the LCRProcessInterface buffer automaton and MPIsize instances

each of the ReceiveMediator and SendMediator interface automata. The resulting composite node

program is parameterized by the node identifier MPIrank, the number of nodes in the ring MPIsize,

57

axioms Infinite(Handle)

automaton LCRNode(MPIrank , MPIsize , name: Int)

components
P: LCRProcess(MPIrank , MPIsize , name);

RM[j: Int]: ReceiveMediator(Int, Int, j, MPIrank)

where j = mod(MPIrank -1, MPIsize);

SM[j: Int]: SendMediator(Int, Int, MPIrank , j)

where j = mod(MPIrank +1, MPIsize);

I: LCRProcessInterface(MPIrank , MPIsize , name)

hidden SEND(m, i, j), RECEIVE(m, j, i), vote(i), leader(i)

Figure 3.7: IOA specification for one node of an LCR system

and the name of the node. The primitive form of the LCRNode automaton output by the composer

tool (the node automaton for the LCR system) is shown in Appendix A.1.

58

Chapter 4

Implementing Abstract Channels

with MPI

It is easier to change the specification to fit the program

than vice-versa.

— Alan J. Perlis [99]

In an ideal world, designing distributed systems that behave both correctly and efficiently would

be easy. In reality, one of these goals is often achieved at the expense of the other. For example, a

correct design is often most easily achieved by limiting the concurrency in and, hence, the efficiency of

a system. As we described in Chapter 3, our approach to balancing these goals is to give programmers

the appearance of globally-atomic IOA steps while not using any global synchronization. The cost of

this approach is that we require the programmer to match the system design to the target computing

environment. For the communication service portion of a system design, our target environment is

the Message Passing Interface (MPI). Thus, the code generated by the IOA compiler must interface

with MPI.

In other words, the running system must link to MPI libraries. The behavior of these libraries

is described in the message-passing interface standard [41]. The Java interface we use to access

the MPI libraries is described in Baker et al. [4]. We summarize the relevant features of MPI in

Section 4.1. In Section 4.2 we make all our assumptions about the behavior of these libraries explicit

by modeling MPI as an IOA program MPI. In Section 4.3 we make explicit the requirements for an

clients of the MPI libraries by defining the SendClient and ReceiveClient automata. Any program

connecting to the MPI libraries (e.g., a node automaton) must adhere to one (or both) of these

specifications.

59

Although our approach requires the system designer to structure a system in node-channel form,

further requiring the programmer to write code specifically to interact with the MPI libraries is more

restrictive than necessary. Such a requirement overshoots the balance we aim to achieve. It would

require programmers to complicate system designs unnecessarily and, thus, it would make achieving

correct systems harder. Instead, we allow programmers to target a simpler channel interface and

semantics. We precisely define these simpler abstract channels by specifying the AbstractChannel

automaton in Section 4.4.

We are able to achieve the semantics of these abstract channels while connecting to MPI by

interposing auxiliary automata to mediate between MPI and the algorithm automaton. The mediator

automata must fulfill three goals. First, they must interact correctly with the MPI automaton. That

is, the network external actions must correspond to the appropriate external actions of the SendClient

or ReceiveClient automata. Second, the mediator automata must provide the programmer the

desired abstract channel interface. That is, the rest of the external actions must correspond to the

appropriate external actions of the AbstractChannel automaton. Third, the mediator automata must

do the right things. That is, the appropriate combination of the mediator automata and MPI must

act like the AbstractChannel automaton. We define the two mediator automata used in our design

and show they have the appropriate interfaces in Section 4.5.

We make the notion of “appropriate combination” of automata precise in Section 4.6 by defin-

ing a composite automaton CompositeChannel with components based on MPI, SendMediator, and

ReceiveMediator. In Section 4.7 we prove CompositeChannel “does the right thing” by demonstrating

a simulation relation from CompositeChannel to AbstractChannel, thus showing that the set of traces

of the former is a subset of the set of traces of the latter. Section 4.8 suggests how one might connect

the IOA compiler to network services other than MPI.

4.1 MPI

The Message Passing Interface (MPI) is a communication service designed for programming ma-

chine clusters and parallel computers. MPI provides many communication modes and capabilities.

Communication can be blocking or nonblocking. Messages can be sent point-to-point, be broadcast,

or be multicast. For the simple point-to-point abstract channels in our design, it suffices to use only

a few of the many available MPI calls.

To avoid any global synchronization, we use communication primitives that require only local

computation and assume asynchronous channels. In particular, MPI models the behavior of the MPI

system in response to four basic calls used to send and receive messages: Isend, test, receive, and

Iprobe. We use a handful of additional calls during system initialization and tear-down. However,

since the IOA model of computation is static and does not include these phases, these additional

60

calls are not included in any automata or proofs.

We use the MPI asynchronous send communication mode (and associated Isend primitive)

because such calls are nonblocking. That is, the calls do not depend on any action by another MPI

client. In other words, nonblocking calls to MPI are guaranteed to return in finite time even if no

other MPI client makes progress.

Although nonblocking communication has desirable properties, the nonblocking communication

interface is more complicated than that for blocking communication. In particular, the sending

process must coordinate with the MPI communication system to manage the shared memory space

used to buffer outgoing messages. Since communication may take an arbitrary amount of time

but nonblocking calls must return immediately, an arbitrarily large amount of memory may be

necessary to buffer pending messages. MPI requires the sending process to provide the buffer for

each message. (This sensible policy pushes the resource requirements back on the process generating

the messages.) MPI uses the buffer for as long as necessary before releasing it back to the sending

process. Coordinating the allocation and release of message buffers to and from MPI requires using

two calls: Isend to allocate the buffer (and send the message contained in it) and test to poll for

the release of the buffer from MPI back to the sending process.

MPI uses requests to identify communication operations (e.g., sending a message) and match

the shared resources (e.g., message buffer) used with the operations across multiple calls. Memory

managed (only) by MPI is not directly accessible to the user, and objects stored there are said

to be opaque. Opaque objects are referenced via handles (i.e., pointers) passed between MPI and

applications. Handles may be compared and copied (assigned) but not otherwise manipulated. MPI

provides a “null handle” constant for each object type. Comparisons to this constant are used to

test for the validity of the handle.

4.1.1 Method descriptions

Four basic methods are sufficient to constitute a simple, nonblocking, send-receive interface to the

MPI communication system: Isend, test, receive, and Iprobe.1 The interaction of clients and the

MPI system can be described informally as follows.

Isend initiates the delivery of a message from one MPI process to another. It allocates a commu-

nication request within the MPI communication system and associates it with a handle. The request

(as named by its handle) can later be used to test for completion of the Isend. Invoking Isend

indicates that the system may start copying data out of the message buffer. The sending process is

required not to access any part of the buffer after an Isend operation is called until the Isend is

complete. Completion is an event internal to the communication subsystem. The occurrence of this

1The prefix of I (for immediate) indicates that a method is nonblocking. Don’t ask me why it’s test and not Itest.

61

event can be detected with inquiries (e.g., test). When an Isend operation is complete the sender

is free to update the locations in the send buffer (the send operation itself leaves the content of the

send buffer unchanged). Completion does not indicate that the message has been received; rather,

the message may have been buffered by the communication subsystem.

receive retrieves a message from the communication system. receive is blocking: it returns only

after the message buffer contains the newly received message. The return of a receive operation

indicates the receiver is now free to access the received message. It does not indicate that the

matching Isend operation has completed (but indicates, of course, that the Isend was initiated).

test returns true if the operation associated with its Request argument is complete.2 In such a

case, the associated request object is deallocated by the method. In addition, the client may now

reuse or deallocate the associated message buffer. Otherwise, test returns false. An invocation of

test with a null or inactive request argument is allowed. An inactive handle is a handle that does

not name an existing request object. In such a case, the operation returns true.

Iprobe returns with its flag argument true if there is a message ready to be received.

We use several additional MPI methods during initialization and finalization. These calls are

each used only once or twice and do not appear in our steady state model of the communication

service. The methods are init, finalize, Barrier, Rank, Size, Get processor name. Each node

must invoke the init method before invoking any other MPI method. Once the finalize method

has been invoked, no other MPI method may be invoked. All pending communication must be

complete for finalize is invoked. The Barrier method does not return until every node in the

system has invoked a Barrier call. The Rank method returns an integer distinct from the rank

returned at any other node. The Size method returns the total number of nodes in the system. The

Get processor name returns a string naming the host on which the node is running.

4.1.2 Resource limitations

The MPI specification states that every pending communication operation consumes finite resources

and thus may fail. Unfortunately, this blanket statement does not help to identify what resources

are consumed or how much is available. Frankly, the specification could not say much more because

these costs are obviously implementation dependent.

In some situations a lack of buffer space leads to deadlock situations. In fact, we have verified

that in our testbed Isend will block after about 512 operations if no matching receive operations

2Note, the Request argument is actually a handle that names a request object internal to MPI.

62

are initiated.3 Some types of resource dependency may be deduced. For example, while Isend

avoids requiring the communication service to allocate buffer space for message storage, clearly the

communication system must expend some amount of resources storing the characteristics of each

message. This cost is likely to be constant per uncompleted Isend. Currently our model allows an

infinite number of uncompleted Isends. Clearly any real implementation will limit this number.

4.2 MPI Specification Automaton

Although MPI is implemented as a monolithic communication substrate, we model MPI as a collec-

tion of n2 point-to-point channels connecting n client computation nodes (including self-loops). The

MPI automaton shown in Figures 4.1 and 4.2 specifies one asynchronous one-way channel between

two client nodes. The sending node uses the Isend and test actions to invoke MPI; the receiving

node uses Iprobe and receive. The automaton specifies the behavior of MPI upon receiving these

inputs. Section 4.3 details our assumptions about client behavior.

The MPI automaton explicitly details our assumptions about the behavior or the system in re-

sponse to the four MPI methods our design invokes. For example, MPI outputs a resp_* action only

in response to the corresponding input action. That is, methods do not return unless they have

been invoked. Furthermore, Isend, test, and Iprobe do not block. Thus, resp_Isend, resp_test,

and resp_Isend actions are guaranteed to become enabled in a finite number of steps after their

corresponding call input actions even if no other inputs to MPI occur in the execution.

Sorts Our MPI specification automaton uses several additions to the built-in IOA sorts. First, we

introduce the Handle sort to model MPI handles (see Figure 4.3). The Handle sort is an infinites col-

lection of unique items. The only operations allowed on handle are handle generation and (implicitly

defined) equality checking. Second, our specification defines several shorthand sorts (tuples and enu-

merations) for tracking the current state of the system. Sorts rCall and sCall enumerate the possible

method invocations by sending and receiving process, respectively. A receiveStatus or sendStatus

tuple encapsulates the status of the MPI system handling one of those method invocations. The

Request tuple associates message content with a unique handle for naming and status information

about completion and delivery. These latter two sorts are defined in an LSL trait parameterized by

the Msg sort (see Figure 4.4).

The MPI automaton is parameterized by the sort Msg specifying the messages it transports, the

sort Node specifying the nodes it connects, and the identifiers for the nodes at its endpoints (the

sender i and the receiver j).

3Chapter 8 describes our experimental testbed.

63

axioms Infinite(Handle)

axioms sStatus for sStatus[__]

axioms sStatus for Request[__]

type rCall = enumeration of idle, receive , Iprobe

type sCall = enumeration of idle, Isend, test

type rStatus = tuple of call: rCall

automaton MPI(Msg, Node:Type, i, j:Node)

signature
input Isend(m: Msg, const i, const j)

output resp_Isend(handle:Handle , const i, const j)

input test(handle:Handle , const i, const j)

output resp_test(flag:Bool, const i, const j)

internal complete(request:Request[Msg], const i, const j)

internal move(request:Request[Msg], const i, const j)

input receive(const i, const j)

output resp_receive(m: Msg, const i, const j)

input Iprobe(const i, const j)

output resp_Iprobe(flag:Bool, const i, const j)

states
channel : Set[Request[Msg]] := {},

handles : Seq[Handle] := {},

toRecv : Seq[Msg] := {},

sendStatus : sStatus[Msg] := choose,
receiveStatus : rStatus := [idle]

i n i t i a l l y sendStatus.call = idle

transit ions
input Isend(m, i, j)

e f f sendStatus.call := Isend;

sendStatus.msg := m

output resp_Isend(handle , i, j)

pre sendStatus.call = Isend;

∀ r:Request[Msg] (r ∈ channel ⇒ r.handle 6= handle)

e f f sendStatus.call := idle;

handles := handles ` handle;

channel := insert ([sendStatus.msg,handle,false,false], channel)

input test(handle , i, j)

e f f sendStatus.call := test;

sendStatus.handle := handle

output resp_test(flag, i, j; loca l request:Request[Msg])

pre sendStatus.call = test;

request.handle = sendStatus.handle;

request ∈ channel ⇒ flag = request.complete;

¬(request ∈ channel) ⇒ flag = true

e f f sendStatus.call := idle;

i f request.complete then channel := delete(request , channel) f i

Figure 4.1: Signature, states, and sender-side transitions of MPI System Automaton, MPI

64

internal move(request , i, j)

pre request ∈ channel;

request.sent = false;

request.handle = head(handles)

e f f toRecv := toRecv ` request.msg;

handles := tail(handles);

channel :=
insert ([request.msg, request.handle , false , true],

delete(request , channel))

internal complete(request , i, j)

pre request ∈ channel;

request.sent = true;

request.complete = false

e f f channel :=
insert ([request.msg, request.handle , true, true],

delete(request , channel))

input receive(i,j)

e f f receiveStatus.call := receive

output resp_receive(m, i, j)

pre receiveStatus.call = receive;

head(toRecv) = m

e f f toRecv := tail(toRecv);

receiveStatus.call := idle

input Iprobe(i, j)

e f f receiveStatus.call := Iprobe

output resp_Iprobe(flag, i, j)

pre receiveStatus.call = Iprobe;

toRecv 6= {} ⇒ flag = true;

toRecv = {} ⇒ flag = false;

e f f receiveStatus.call := idle

Figure 4.2: Message delivery and receiver-side transitions of MPI System Automaton, MPI

Infinite(T): tra i t
introduces

null: → T

next: T → T

asserts sort T generated freely by null, next

Figure 4.3: LSL trait Infinite modeling MPI handles as an infinite collection of unique items.

sStatus(Msg): tra i t
sStatus[Msg] tuple of call: sCall, msg: Msg, handle : Handle

Request[Msg] tuple of msg: Msg, handle : Handle , complete : Bool, sent: Bool

Figure 4.4: LSL trait sStatus defining sendStatus and Request tuples.

65

Signature The automaton signature consists of ten action labels. Eight external actions model

the call and return points for the four MPI methods. In the discussion below and in the figures, we

distinguish between the four “sender” actions Isend, resp_Isend, test, and resp_test and the four

“receiver” actions Isend, resp_Isend, receive, and resp_receive. The two internal actions complete

and move model message delivery. We need two actions because a message may be delivered to the

receiver before it is complete. (This dichotomy makes more sense in the context of more complex

MPI communication patterns such as multicasts.) For compatibility of composition each action is

parameterized by the channel endpoints i and j.

States The model uses two distinct data structures to maintain information about the contents

of individual messages and information about the ordering of messages. The sequence handles

maintains the order of messages while the (unordered) set channel collects all other information

about the messages in transit including their content and status. Each message en route is associated

with a Request tuple that associates the message content with a unique handle (for naming) and

status information (completion, delivery). These message tuples are stored in the channel. The

handles sequence simply orders the handles, thus connecting the message order to the other status

information and message content. Messages are deleted from channel only upon a successful test

on the message handle.

A separate sequence of messages toRecv is maintained. This decouples completion of Isends

from receives. Messages are moved atomically from channel to toRecv (in the order specified by

handles).

The sendStatus and receiveStatus tuples indicate the current method invocation(s) to which

MPI is currently responding. The values of these variables include the name of the method as well

as its arguments, if any. The well-formedness requirement on the client indicates that at most one

receiver-method and one sender-method can be active. (See Section 4.3 for client requirements.)

Initially, channel, handles, and toRecv are empty and both sendStatus and receiveStatus indicate

no invocations is in progress. The fields of sendStatus other than sCall may initially contain any

value.

Derived Variable In addition to the state variables shown in MPI, it is convenient to define an

auxiliary variable that is derived from the variables shown in the automaton. In our model, the

channel set collects all the information about messages in transit except their order. The messages

are kept unordered because Isend operations may complete in any order. However, in defining and

proving the simulation relation in Section 4.7 it is also useful to describe the messages in the channel

as a sequence ordered according to the handles with which they are associated.

Currently, there is no syntax defined in IOA for introducing derived variables for use in a simu-

lation proof. As a(n ugly) workaround, we define toSend in the auxiliary LSL trait toSend shown in

66

Figure 4.5. Ideally, there should be notation for introducing derived variables at the beginning of a

simulation relation (e.g., a “let” construct) where identifiers associated with the related automata

(e.g., MPI and channel) are in scope. For now, we use a trait which duplicates some of the existing

identifiers in order to define new ones.

In that trait, the includes clause references other LSL traits whose operators and axioms are

required in this one. The introduces clauses defines four unary operators (__.toSend, __.channel,

__.handles, and reachable) on the state of an MPI automaton. The first three operators are equivalent

to state variables of the automaton. While the first is actually new, the latter two are introduced

only to work around the fact that they are not automatically in scope. (Sections 11.2 and 13.2

define the correspondence between states and state variables and tuples and selection operators.)

The fourth operator is a predicate asserting a state of MPI is reachable. See [11] and [12] for a

framework for defining the semantics of such a predicate for an IOA automaton.

The asserts clause defines the semantics of toSend. In any state of MPI, we define the derived

variable toSend as the sequence of messages consisting of the messages in channel and ordered by

handles.

Using the toSend sequence, we can characterize the messages transported by MPI as follows. The

sequence formed by the catenation of toSend and toRecv contains the messages, in order, that have

been sent but not yet received while channel contains messages sent but not successfully tested.

toSend(Msg, Node): tra i t
includes Sequence(Msg), sStatus(Msg), Set(Request[Msg]), Sequence(Handle)

introduces
__.toSend : _States[MPIAut , Msg, Node] → Seq[Msg]

__.channel : _States[MPIAut , Msg, Node] → Set[Request[Msg]]

__.handles : _States[MPIAut , Msg, Node] → Seq[Handle]

reachable : _States[MPIAut , Msg, Node] → Bool

asserts with s: _States[MPIAut , Msg, Node], i: Int, r: Request[Msg]

reachable(s) ∧ r ∈ s.channel ⇔
∃ i:Int (r.msg = s.toSend[i] ∧ r.handle = s.handles[i])

Figure 4.5: LSL trait defining derived variable toSend.

Sender Transitions

Isend(m:Msg, i, j:Int) Initiate an Isend. The client promises not to access the (not modeled)

memory in which m is stored until the send completes. Assign information about the call to

sendStatus.

resp_Isend(handle: Infinite, i, j:Int) Isend has returned. Insert the message in channel and

handles. Return a new handle to the client. The handle names this Isend method invocation

so the client can later ask about its completion. Reset sendStatus.

67

test(handle: Infinite, i, j:Int) Test for completion of an Isend. Assign information about the

call to sendStatus.

resp_test(true, i, j:Int) test has returned. Return true if the handle points to no current re-

quest or to a completed request in the channel. In the latter case, delete the request. Reset

sendStatus.

resp_test(false, i, j:Int) test has returned. Return false if the handle points to an incomplete

request in the channel. Reset sendStatus.

Message Delivery Transitions

move(request: Request, i, j:Int) Internal action to deliver message from channel to toRecv (in the

order specified by handles). Atomically move a message from channel to toRecv. Replace the

corresponding unsent request in channel with an otherwise identical sent one.

complete(request: Request, i, j:Int) Complete sender communication request. Any sent, incom-

plete request in channel may be replaced by an otherwise identical complete request. A com-

pleted Isend has the (not modeled) property that the user may reuse the memory that stores

the sent message.

Receiver Transitions

receive(i, j:Int) Receive next available message. Assign information about the method invocation

to receiveStatus.

resp_receive(m:Msg, i, j:Int) receive has returned. Remove first message on toRecv and return

it. Reset receiveStatus.

Iprobe(i, j:Int) Probe for message availability. Assign information about the method invocation

to receiveStatus.

resp_Iprobe(flag:Bool, i, j:Int) Iprobe has been invoked. Return true if and only if toRecv is

not empty. Reset receiveStatus.

4.3 MPI Client Specification Automata

Any MPI client process that invokes a method on the MPI library will block until the method re-

turns. (Therefore, we only use methods that are guaranteed to return “quickly”; see Section 4.1.)

That blocking behavior is modeled as a handshake protocol similar to the one described in Sec-

tion 3.3. We formalize that protocol by defining the MPI client specification automata shown in

68

Figures 4.6 and 4.7. The MPI automaton correctly models the behavior of MPI only if each client

program composed with it implements the SendClient or ReceiveClient specifications.

Pairs of matching call and return actions model method invocation. From the client’s point of

view, a call action is an output that models the call point in the program. The corresponding return

action is an input that models the return point. (Of course, from the point of view of MPI the input

and output labels are reversed.) For example, the call action Isend represents the initiation of an

Isend method. The return action resp_Isend represents the return from MPI of that method. To

implement either specification, a client must not generate an output initiating a new MPI method

invocation until MPI responds to any previous invocations with the appropriate resp_* input action.

Formally, we define a sender trace of an automaton to be the projection of a trace that includes

only the four sender actions of the SendClient automaton. Similarly, a receiver trace of an automa-

ton is the projection of a trace that includes only the four receiver actions of the ReceiveClient

automaton. In every sender or receiver trace of a valid client automaton no two call actions occur

consecutively. That is, a client never invokes an MPI method while an existing invocation is in

progress.

There are corresponding invariants for the MPI automaton. In every sender or receiver trace of

MPI, every return action is immediately preceded by the corresponding call action. That is, from

the sender’s point of view, MPI is passively waiting to be called and never generates an input to

the client (output from MPI) unless the client asked for it (by executing a call action). Note these

invariants do allow that a trace of MPI may arbitrarily interleave valid sender and receiver traces.

axioms Infinite(Handle)

automaton SendClient(M,Node:Type, i,j:Node)

signature
output Isend(m: M, const i, const j)

input resp_Isend(handle:Handle , const i, const j)

output test(handle:Handle , const i, const j)

input resp_test(flag:Bool, const i, const j)

states
idle : Bool := true

transit ions
output Isend(m,i,j)

pre idle = true

e f f idle := false

input resp_Isend(handle,i,j)

e f f idle := true

output test(handle,i,j)

pre idle = true

e f f idle := false

input resp_test(flag,i,j)

e f f idle := true

Figure 4.6: SendClient automaton

69

automaton ReceiveClient(M,Node:Type, i, j:Node)

signature
output Iprobe(const i, const j)

input resp_Iprobe(flag:Bool, const i, const j)

output receive(const i, const j)

input resp_receive(m: M, const i, const j)

states
idle : Bool := true

transit ions
output Iprobe(i,j)

pre idle = true

e f f idle := false

input resp_Iprobe(flag, i,j)

e f f idle := true

output receive(i,j)

pre idle = true

e f f idle := false

input resp_receive(m,i,j)

e f f idle := true

Figure 4.7: ReceiveClient automaton

4.4 Abstract Channel Specification Automaton

automaton AbstractChannel(Msg, Node:Type, i, j:Node)

signature
input SEND(m:Msg, const i, const j)

output RECEIVE(m:Msg, const i, const j)

states
messages : Seq[Msg] := {}

transit ions
input SEND(m, i, j)

e f f messages := messages ` m

output RECEIVE(m, i, j)

pre messages 6= {} ∧ m = head(messages)

e f f messages := tail(messages)

Figure 4.8: Reliable FIFO channel automaton, AbstractChannel

We wish to give IOA programmers the simplest possible abstract channel interface to which to

connect algorithm automata and about which to reason. Therefore, we specify a one-way, point-to-

point, reliable, FIFO channel as our abstraction for a communication service. Figure 4.8 details the

AbstractChannel automaton that specifies this service. This automaton delivers messages of sort Msg

from node i to node j. Notice that the LCRChannel automaton introduced in Section 2.6 is a just a

specialization of the AbstractChannel automaton in which the Msg type parameter is instantiated as

70

Int.

The automaton is intentionally simple. The SEND action appends input messages to the queue.

The RECEIVE action removes messages from the queue and outputs them in the order sent. Messages

are not lost, created, duplicated, or reordered. The action names are capitalized to distinguish

them from the MPI actions and to emphasize to programmers that the action names are reserved

for special handling by the Interface Generator. The Interface Generator recognizes actions with

these labels as the network actions of an algorithm automaton when producing buffer automata as

described in Section 3.4.

4.5 Mediator Automaton

We are able to provide an IOA program the appearance of interfacing with the AbstractChannel au-

tomaton when, in fact, the program actually connects to MPI by interposing auxiliary IOA automata

to mediate between MPI and the algorithm automaton. The signature of a mediator automaton

must be a combination of the actions of a client automaton (to connect to MPI) and the actions of the

abstract channel automaton (to connect to the algorithm automaton). In particular, the signature

of the SendMediator automaton consists of all the actions of SendClient plus the SEND action from

AbstractChannel. The signature of ReceiveMediator consists of all the actions of ReceiveClient plus

the RECEIVE action from AbstractChannel.

4.5.1 Send Mediator Automaton

States The state of a SendMediator automaton consists of a status variable that contains one

element of the enumeration Isend, test, or idle, two queues of messages toSend and sent, and a

sequence of handles handles.

Messages from the user are stored in the toSend sequence. Messages are transferred from the

toSend queue to the sent queue upon initiation of an Isend. Messages remain in the sent queue until

the SendMediator automaton receives a true response from a test, indicating that MPI has taken

responsibility for storing the message content. The handles sequence stores the handles associated

with messages stored in the sent sequence.

Transitions The SEND transition stores an input message m in the toSend queue. Whenever status

indicates the automaton is idle and toSend is not empty, an Isend transition may execute which

outputs the message at the head of toSend, moves that message from toSend to sent, and sets status

to indicate that an Isend invocation is in progress. The resp_Isend input transition resets status to

idle and appends the input handle to the handles sequence.

A test transition may execute whenever status indicates the automaton is idle and handles is

71

type sCall = enumeration of idle, Isend, test

automaton SendMediator(Msg, Node:Type, i, j:Node)

assumes Infinite(Handle)

signature
input SEND(m:Msg, const i, const j)

output Isend(m: Msg, const i, const j)

input resp_Isend(handle:Handle , const i, const j)

output test(handle:Handle , const i, const j)

input resp_test(flag:Bool, const i, const j)

states
status : sCall := idle,

toSend : Seq[Msg] := {},

sent: Seq[Msg] := {},

handles : Seq[Handle] := {}

transit ions
input SEND(m, i, j)

e f f toSend := toSend ` m

output Isend(m,i,j)

pre head(toSend) = m;

status = idle

e f f toSend := tail(toSend);

sent := sent ` m;

status := Isend

input resp_Isend(handle , i, j)

e f f handles := handles ` handle;

status := idle

output test(handle , i, j)

pre status = idle;

handle = head(handles)

e f f status := test

input resp_test(flag, i, j)

e f f i f flag then
handles := tail(handles);

sent := tail(sent)

f i ;
status := idle

Figure 4.9: Send mediator automaton SendMediator

72

not empty. The transition outputs the handle at the head of handle and sets status to indicate

that a test invocation is in progress. The resp_test input transition resets status to idle and,

conditional on the truth of the flag input, removes the first handle and message from handles and

sent, respectively. A true response to a test invocation indicates that MPI has taken responsibility

for storing the message content.4

4.5.2 Receive Mediator Automaton

type rCall = enumeration of idle, receive , Iprobe

automaton ReceiveMediator(Msg, Node:Type, i, j:Node)

assumes Infinite(Handle)

signature
output RECEIVE(m:Msg, const i, const j)

output Iprobe(const i, const j)

input resp_Iprobe(flag:Bool, const i, const j)

output receive(const i, const j)

input resp_receive(m: Msg, const i, const j)

states
status : rCall := idle,

toRecv : Seq[Msg] := {},

ready : Bool := false

transit ions
output RECEIVE(m, i, j)

pre m = head(toRecv)

e f f toRecv := tail(toRecv)

output Iprobe(i, j)

pre status = idle;

ready = false

e f f status := Iprobe

input resp_Iprobe(flag, i, j)

e f f ready := flag;

status := idle

output receive(i, j)

pre ready = true;

status = idle

e f f status := receive

input resp_receive(m, i, j)

e f f toRecv := toRecv ` m;

ready := false;

status := idle

Figure 4.10: Receive mediator automaton ReceiveMediator

4sent models the idea that the sender may not reuse the send buffer until a successful test has been performed.
Moving the message from one queue to another seems to violate the spirit the restriction but it makes the proof a
little easier to write. In the future, we may develop a more rigorous treatment of the memory shared between MPI
and the client.

73

States The state of a ReceiveMediator automaton consists of a status variable that contains

elements of the enumeration receive, Isend, or idle, a queue of messages toRecv, and a boolean

indicator ready. The ready flag indicates that MPI has a message ready for immediate (nonblocking)

receipt. Messages received from the channel are stored in the toRecv sequence. A message remains

in toRecv until the ReceiveMediator automaton outputs it.

Transitions The RECEIVE transition removes the first message in the toRecv sequence. Whenever

status indicates the automaton is idle and ready is false, an Isend transition may execute which

sets status to indicate that an Isend invocation is in progress. The resp_Isend input transition

resets status to idle and ready to the value of the input flag.

A receive transition may execute whenever status indicates the automaton is idle and ready

is true. The transition sets status to indicate that a receive invocation is in progress. The

resp_receive input transition resets status to idle and ready to false and appends the input

message m to the sequence toRecv.

4.6 Composite Channel Automaton

The CompositeChannel automaton shown in Figure 4.11 combines our model of the MPI communi-

cation service with mediator automata to precisely define our model of the actual communication

service provided to algorithm automata by the IOA compiler. The CompositeChannel automaton is

the composition of SendMediator, ReceiveMediator, and MPI where all three are parameterized by the

message type Msg, node type Node, and channel endpoints i and j. Notice that the endpoints of the

ReceiveMediator automaton are reversed from those of the MPI automaton. All transitions except

SEND(m, i, j) and RECEIVE(m, j, i) are hidden so that the external signature of CompositeChannel

is the same as that of AbstractChannel. The simulation relation in that figure is the subject of the

next section.

4.7 Channel Correctness Theorem

We claim the use of mediator automata allows programmers to design their systems assuming the

existence of reliable, one-way FIFO channels. We now justify that claim by proving Theorem 4.1.

Theorem 4.1 The set of traces of CompositeChannel is a subset of the set of traces of AbstractChannel.

Theorem 4.1 asserts that CompositeChannel implements AbstractChannel. In other words, the

former will never exhibit any externally observable behavior that could not also be exhibited by

the latter. Thus, there is no way for an algorithm automaton to determine if it is connected

to an AbstractChannel automaton as in Figure 3.1(a) or to a CompositeChannel automaton as in

74

axioms Infinite(Handle)

automaton CompositeChannel(Msg, Node:Type, i, j:Node)

assumes toSend(Msg, Node)

components
M: MPI(Msg, Node, i, j);

S: SendMediator(Msg, Node, i, j);

R: ReceiveMediator(Msg, Node, j, i)

hidden
Isend(m, i, j), resp_Isend(handle , i, j),

test(handle , i, j), resp_test(flag, i, j),

receive(j, i), resp_receive(m, j, i),

Iprobe(j, i), resp_Iprobe(flag, j, i)

forward simulation from AbstractChannel to CompositeChannel:

i f CompositeChannel.S.status = Isend then
AbstractChannel.messages =

CompositeChannel.R.toRecv ‖
CompositeChannel.M.toRecv ‖
(CompositeChannel.M.toSend ` CompositeChannel.M.sendStatus.msg) ‖
CompositeChannel.S.toSend

else
AbstractChannel.messages =

CompositeChannel.R.toRecv ‖
CompositeChannel.M.toRecv ‖
CompositeChannel.M.toSend ‖
CompositeChannel.S.toSend

proof
for input SEND(m:Msg, i:Int, j:Int) do
f i r e input SEND(m, i, j)

od
for output RECEIVE(m:Msg, i:Int, j:Int) do

f i r e output RECEIVE(m, i, j)

od
for internal Isend(m: Msg, i:Int, j:Int) ignore
for internal resp_Isend(handle:Handle , i:Int, j:Int) ignore
for internal test(handle:Handle , i:Int, j:Int) ignore
for internal resp_test(flag:Bool, i:Int, j:Int) ignore
for internal complete(request:Request , i:Int, j:Int) ignore
for internal move(request:Request , i:Int, j:Int) ignore
for internal receive(i:Int, j:Int) ignore
for internal resp_receive(m: Msg, i:Int, j:Int) ignore
for internal Iprobe(i:Int, j:Int) ignore
for internal resp_Iprobe(flag:Bool, i:Int, j:Int) ignore

Figure 4.11: Composite automaton CompositeChannel

75

cc’

ac’

cc0

ac0

States of
CompositeChannel

States of
AbstractChannel

cc

ac

π

α

F FF

Figure 4.12: Schematic of channel refinement mapping F . F is a refinement mapping from
CompositeChannel to AbstractChannel if (1) for any initial state cc0 of CompositeChannel, ac0 = F(cc0)
is an initial state of AbstractChannel, and (2) for any reachable states cc and ac = F(cc) of
CompositeChannel and AbstractChannel, respectively, and for any transition π of CompositeChannel

enabled in state cc and resulting in state cc′, there is a sequence of transitions α of AbstractChannel
that results in state ac′ = F(cc′) where α has the same trace as π.

Figure 3.1(b). The theorem is proved by demonstrating a refinement F that maps the states of

CompositeChannel to the states of AbstractChannel.

To be a refinement mapping, F is required to satisfy the following two conditions: (1) for any

initial state cc0 of CompositeChannel, ac0 = F(cc0) is an initial state of AbstractChannel, and (2) for

any reachable states cc and ac = F(cc) of CompositeChannel and AbstractChannel, respectively, and

for any transition π of CompositeChannel enabled in state cc and resulting in state cc′, there is is

(possibly empty) sequence of transitions α of AbstractChannel that results in state ac′ = F(cc′)

where α has the same trace as π. Figure 4.12 depicts the requirements schematically.

The forward simulation clause in Figure 4.11 asserts the existence of just such a refinement

mapping. That clause defines a refinement mapping F from CompositeChannel to AbstractChannel.

Since messages is the only state variable of AbstractChannel, determining the value of that sequence

determines a state of AbstractChannel. The mapping is defined by two cases. Between Isend invo-

cations, the messages sequence in the AbstractChannel automaton will be the same as the catenation

of the ReceiveMediator toRecv sequence, the MPI toRecv sequence, the derived toSend sequence, and

the SendMediator toSend sequence (‖ is the catenation operator). When the SendMediator status

variable indicates an Isend invocation is in progress, the message stored in the sendStatus tuple is

included between the last two sequences.

The proof block in Figure 4.11 defines a step correspondence between the CompositeChannel

automaton and the AbstractChannel automaton that maintains F . That is, for every parameterized

transition of CompositeChannel the proof block specifies the sequence of transitions AbstractChannel

76

can take so that the refinement mapping continues to hold. Only two of the sequences are nonempty.

Those sequences (for the SEND and RECEIVE transitions) consist of the single actions of the same name

in the specification automaton AbstractChannel. It remains to be proved that, for each transition

of CompositeChannel and corresponding sequence of AbstractChannel specified in the proof block, F

maps the resulting state of CompositeChannel to the resulting state of AbstractChannel and that the

corresponding actions (if any) are enabled.

4.7.1 Sequence properties

The following facts about sequence partition and catenation will be referred to in the proof below.

Claim 4.2 For any sequence A, any partition X ‖ Y of A such that X = {} only if A = {}, and

any element e,

1. A ` e = X ‖ (Y ` e)

2. tail(A) = tail(X) ‖ Y ,

3. head(A) = head(X),

4. A = X ‖ head(Y) ‖ tail(Y)

4.7.2 F is a refinement mapping

The proof that F is a refinement mapping from CompositeChannel to AbstractChannel proceeds by

proving two lemmas. Lemma 4.3 asserts the initial state correspondence holds. Lemma 4.4 asserts

a step correspondence maintains the state correspondence.

Lemma 4.3 If cc is in the set of initial states of CompositeChannel then F(cc) is in the set of initial

states of AbstractChannel.

Proof: Let cc0 be the unique initial state of CompositeChannel and ac0 the unique initial state of

AbstractChannel. In ac0 messages is empty. In state cc0, S.sCall = idle and S.toSend = M.toSend

= M.toRecv = R.toRecv = {}. Thus, F(cc0).messages = {} since it is just the catenation of empty

sequences. Thus F(cc0) = ac0, as needed.

Lemma 4.4 Let cc be a reachable state of CompositeChannel, ac = F(cc) be a reachable state

of AbstractChannel, and π be a transition of CompositeChannel resulting in state cc′. There is an

enabled sequence of transitions α of AbstractChannel that results in state ac′ = F(cc′) such that

trace(α) = trace(π).

77

Proof: We prove Lemma 4.4 by case analysis of the transitions π of CompositeChannel and the

corresponding transition sequences α of AbstractChannel as defined in the proof block of Figure 4.11.

Let ac = F(cc) and ac′ = F(cc′).

π = α =SEND(m, i, j) Since SEND is an input action, trace(π) = trace(α) = π, as needed. The

result of π is that cc′.S.toSend = cc.S.toSend ` m while all other state variables in cc′ are

unchanged from cc. Since ac = F(cc), cc.S.toSend is a suffix of ac.messages (in both cases of

F). Thus, we apply Claim 4.2.1 by letting A be ac.messages, Y be cc.S.toSend, and e be m to

conclude that appending m to cc.S.toSend is equivalent to appending m to ac.messages. Thus,

ac′.messages = ac.messages ` m which is exactly the state produced by α from state ac, as

needed. Finally, since SEND is an input action, α is enabled ac, as needed.

π = α =RECEIVE(m, i, j) Since RECEIVE is an output action, trace(π) = trace(α) = π, as needed.

The result of π is that cc′.R.toRecv = tail(cc.R.toRecv) while all other state variables in cc′ are

as in cc. Since ac = F(cc), cc.R.toRecv is a prefix of ac.messages (in both cases of F). We

apply Claim 4.2.2 by letting A be ac.messages and Y be cc.R.toRecv to conclude that tailing

cc.R.toRecv is equivalent to tailing ac.messages. Thus, ac′.messages = tail(ac.messages) which

is exactly the state produced by α from state ac, as needed.

It remains to show that α is enabled in state ac. That is, we must show that the precondition

for RECEIVE is true in ac. Thus, it is sufficient to show that m = head(ac.messages). Since π

is enabled in cc, it follows that m = head(cc.R.toRecv). We apply Claim 4.2.3 by letting Y be

ac.messages and X be cc.R.toRecv to conclude that m = head(ac.messages), as needed.

π = Isend(m, i, j), α = {} Since Isend is hidden, trace(π) is empty, as needed. Since π is enabled,

cc.S.status = idle. A result of π is that cc′.S.sCall = Isend. Since S.sCall changes from idle

to Isend, ac = F(cc) is defined by the else case of the state correspondence while ac′ =

F(cc′) is covered by the first case. Since ac = F(cc), cc.S.toSend is a suffix of ac.messages.

Furthermore, cc′.S.toSend = tail(cc.S.toSend), and cc′.M.sendStatus.msg = m. Since π is enabled,

m = head(cc.S.toSend). We apply Claim 4.2.4 by letting A be ac.messages and Y be cc.S.toSend

to conclude that moving the first message in cc.S.toSend to the end of cc.M.toSend does not

change ac.messages. Since cc′.M.sendStatus.msg is appended to the end of cc′.M.toSend in the

Isend case, ac′.messages = ac.messages, as needed.

π = resp_Isend(handle, i, j), α = {} Since resp_Isend is hidden, trace(π) is empty, as needed.

Since π is enabled, cc.S.status = Isend. A result of π is that cc′.S.status = idle. Since S.sCall

changes from Isend to idle, ac = F(cc) is defined by the first case of the state correspondence

while ac′ = F(cc′) is covered by the else case. Since π is enabled, handle = Request.handle.

Thus, another result of π is that cc′.M.handles = cc’.M.handles ` Request.handle. Furthermore,

78

cc′.M.channel contains a new request pairing handle with cc.M.sendStatus.msg. Thus, by the

definition of toSend, cc′.M.toSend = cc.M.toSend ` cc.M.sendStatus.msg. However, appending

cc.M.sendStatus.msg to cc.M.toSend is exactly the difference between the Isend and else cases of

the state correspondence. Thus, ac.messages = ac′.messages, as needed.

π = test(handle, i, j), α = {} Since test is hidden, trace(π) is empty, as needed. Since π is

enabled, cc.S.status = idle. A result of π is that cc′.S.status = test. Thus, the same case

of F applies to both cc and cc′. Since π does not modify any queues mentioned in the state

relation, F(cc) = F(cc′) and ac.messages = ac′.messages, as needed.

π = resp_test(flag, i, j), α = {} Since resp_test’ is hidden, trace(π) is empty, as needed. Since

π is enabled, cc.S.status = test. A result of π is that cc′.S.status = idle. Thus, the same

case of F applies to both cc and cc′. Since π does not modify any queues mentioned in the

state correspondence, F(cc) = F(cc′) and ac.messages = ac′.messages, as needed.

π =move(request, i, j), α = {} Since move is internal, trace(π) is empty, as needed. Since π does

not effect cc.S.status, the same case of F applies to both cc and cc′. Since π is enabled,

Request.handle = head(cc.M.handles) and Request.handle ∈ cc.M.channel. Therefore, by the

definition of toSend, Request.msg = head(cc.M.toSend). Since cc′.M.handles = tail(cc.M.handles)

and no requests are deleted from cc.M.channel in this transition, cc′.M.toSend = tail(cc.M.toSend).

Furthermore, cc′.M.toRecv = cc.M.toRecv ` Request.msg. We apply Claim 4.2.4 by letting A be

ac.messages and X be the prefix of ac.messages up to and including cc.M.toSend and Y be

the suffix of ac.messages starting at cc.M.toSend to conclude that moving the first message in

cc.M.toSend to the end of cc.M.toRecv does not change ac.messages. Since that move is exactly

the difference between cc and cc′, ac.messages = ac′.messages, as needed.

Note, since cc.M.toSend is not empty and the suffix changes only by the deletion its first element,

the case of F that applies is irrelevant.

π =complete(request, i, j), α = {} Since complete is internal, trace(π) is empty, as needed. Since

π does not effect cc.S.status, the same case of F applies to both cc and cc′. The result of

π is to replace one incomplete request in cc.M.channel with an otherwise identical complete

one. The definition of toSend, and, thus the definition of F is not sensitive to the substitution.

Therefore, ac.messages = ac′.messages, as needed.

π =receive(i, j), α = {} Since receive is hidden, trace(π) is empty, as needed. Since π does not

effect cc.S.status, the same case of F applies to both cc and cc′. Since π does not modify any

queues mentioned in the state relation, F(cc) = F(cc′) and ac.messages = ac′.messages, as

needed.

79

π =resp_receive(m,i, j), α = {} Since resp_receive is hidden, trace(π) is empty, as needed. Since

π does not effect cc.S.status, the same case of F applies to both cc and cc′. Since π is

enabled, head(cc.M.toRecv) = m. A result of π is that cc′.M.toRecv = tail(cc.M.toRecv). We

apply Claim 4.2.4, by letting A be ac.messages and Y be cc.M.toRecv to conclude that moving

the first message in cc.M.toRecv to the end of cc.R.toRecv does not change ac.messages. Since

that move is exactly the difference between cc and cc′, ac.messages = ac′.messages, as needed.

π =Iprobe(i, j), α = {} Since Isend is hidden, trace(π) is empty, as needed. Since π does not

affect cc.S.status, the same case of F applies to both cc and cc′. Since π does not modify any

queues mentioned in the state relation, F(cc) = F(cc′) and ac.messages = ac′.messages, as

needed.

π =resp_Iprobe(flag,i, j), α = {} Since resp_Isend is hidden, trace(π) is empty, as needed. Since

π does not affect cc.S.status, the same case of F applies to both cc and cc′. Since π does

not modify any queues mentioned in the state relation, F(cc) = F(cc′) and ac.messages =

ac′.messages, as needed.

4.8 Other network services

The particular choice to use MPI and provide a reliable FIFO channel service to IOA programmers

is orthogonal to the basic design of the IOA compiler. The approach we use with MPI could be used

to either connect compiled programs to a different network service (e.g., TCP [101], JMS [117], or

RMI [116]) or to change the target abstract channel interface or semantics (e.g.,, a lossy or broadcast

channel). To do so, we would follow the same four step process. First model the network service

as an IOA automaton. Second, specify the desired abstract channel as an IOA automaton. Third,

write mediator automata such that the composition of the mediator automata and the external

service automaton implements the abstract channel automaton. Fourth, prove that implementation

relationship. In addition, as explained in Chapter 6, the compiler treats MPI transitions as special

cases when emitting Java, so these special cases would also have to be updated to account for the

interface to the new service.

80

Chapter 5

Resolving Nondeterminism

“Would you tell me, please, which way I ought to go from

here?” “That depends a good deal on where you want to

get to,” said the Cat. “I don’t much care where–” said

Alice. “Then it doesn’t matter which way you go,” said

the Cat.

— Lewis Carroll [16]

The IOA language is inherently nondeterministic. An automaton may start in any of a set

of states. In any state an automaton reaches during execution, many actions may be enabled

and, for any enabled action, several following states may result. Developing a method to resolve

nondeterminism was the largest conceptual hurdle in the initial design of an IOA compiler to translate

programs written in precondition-effect style IOA code into an imperative language like Java. The

process of resolving nondeterminism in an IOA program is called scheduling the program. Before

we can compile an IOA specification of a distributed system, we must resolve both the implicit

nondeterminism inherent in any IOA program and any explicit nondeterminism introduced by the

programmer in choose statements. Our approach to both parts of scheduling is the same: we let

the programmer do it.

5.1 Scheduling

While any IOA program has only a finite set of transition definitions, they may be parameterized

by variables of infinite types (e.g., integers). Picking a transition to execute includes picking both a

transition definition and the values of its parameters. It is possible and, in fact, common that the set

of enabled actions in any state is infinite. It is also possible for this set to be undecidable because,

81

transition preconditions may be arbitrary predicates in first-order logic. Thus, there is no simple

search method for finding an enabled action. Even if all transition preconditions are decidable, the

general problem of determining, for a given state of a given automaton, whether or not there exists a

tuple of a transition definition and a set of parameter values that will enable that transition in that

state may require enumerating all tuples of transition definitions and parameters. Since common

parameter sorts (e.g., Int or Seq[Nat]) are countably infinite, this problem is recursively enumerable.

One might imagine that by restricting the class of automata accepted for compilation one could

practically employ a solution based on exhaustive search to solve the scheduling problem. However,

it is not obvious how to formulate such restrictions without also radically restricting the expressive

power of the language. In any case, the human-based scheduling solution has the additional advan-

tage of relieving the compiler designer of the burden of finding a good schedule, i.e., one that makes

actual progress rather than merely executing any enabled action.

Therefore, before compilation, we require that the programmer write a schedule. A schedule is a

function of the state of the local node that picks the next action to execute at that node. In format,

a schedule is written at the IOA level in an auxiliary nondeterminism resolution language (NDR)

consisting of imperative programming constructs similar to those used in IOA effects clauses. An

NDR schedule block encapsulates all the scheduling information for an automaton. In addition,

to common control structures such as assignments, conditionals, and loops, NDR supports a fire

statement. The NDR fire statement causes a transition to run and selects the values of its parame-

ters. Schedules may reference, but not modify, automaton state variables. However, schedules may

declare and modify additional variables local to the schedule. The NDR language was designed and

implemented by Antonio Ramı́rez-Robredo and modified by Laura Dean to describes schedules for

automata interpreted by the IOA simulator [102, 30]. Michael Tsai extended and reimplemented

the language for use by the IOA compiler [119].

5.1.1 LCR Schedule

Figure 5.1 shows an NDR schedule block that can be used to schedule the LCRNode automaton.

The schedule is essentially round robin in nature; it tries each transition definition in turn. The

schedule loops continuously until the automaton announces itself leader.1 The fire statement for

each transition and its guard are derived (by hand) from the transitions precondition and where

clauses. In most cases, the derivation includes the substitution of MPIrank for the parameter naming

this node and mod(MPIrank ± 1, MPIsize) for its right/left neighbor. Other values are filled in as

needed.

1This version of the LCR algorithm only terminates at the leader. Termination at every node can be achieved
using an extra communication round in which the leader sends a message around the ring announcing its status. In
that version, node schedules terminate after the announcement message has been forwarded and the sending of the
forwarding message successfully tested. We use such a modified verion of LCR for experiments in Chapter 8.

82

schedule
do

while P.status 6= announced do
i f P.status = elected then f i r e output leader(MPIrank) f i ;
i f len(I.stdin) > 0

∧ head(I.stdin). action = vote

∧ len(head(I.stdin). params) = 1

∧ tag(head(I.stdin). params [0]) = Int

∧ head(I.stdin). params [0]. Int = MPIrank then
f i r e internal vote(MPIrank)

f i ;
i f P.status 6= idle ∧ size(P.pending) 6= 0 then

f i r e internal SEND(chooseRandom(P.pending), MPIrank,

mod(MPIrank + 1, MPIsize))

f i ;
i f SM[mod(MPIrank + 1, MPIsize)]. status = idle ∧

SM[mod(MPIrank + 1, MPIsize)]. toSend 6= {} then
f i r e output Isend(head(SM[mod(MPIrank + 1, MPIsize)]. toSend),

MPIrank , mod(MPIrank + 1, MPIsize))

f i ;
i f SM[mod(MPIrank + 1, MPIsize)]. status = idle ∧

SM[mod(MPIrank + 1, MPIsize)]. handles 6= {} then
f i r e output test(head(SM[mod(MPIrank + 1, MPIsize)]. handles),

MPIrank , mod(MPIrank + 1, MPIsize))

f i ;
i f RM[mod(MPIrank - 1, MPIsize)]. status = idle ∧

RM[mod(MPIrank - 1, MPIsize)]. ready = false then
f i r e output Iprobe(MPIrank , mod(MPIrank - 1, MPIsize))

f i ;
i f RM[mod(MPIrank - 1, MPIsize)]. status = idle ∧

RM[mod(MPIrank - 1, MPIsize)]. ready = true then
f i r e output receive(MPIrank , mod(MPIrank - 1, MPIsize))

f i ;
i f RM[mod(MPIrank - 1, MPIsize)]. toRecv 6= {} then

f i r e internal RECEIVE(head(RM[mod(MPIrank - 1, MPIsize)]. toRecv),

mod(MPIrank - 1, MPIsize), MPIrank)

f i
od

od

Figure 5.1: NDR schedule block for the LCRNode node automaton

83

The parameters to the fire statements select values that we know will satisfy the transition

precondition. For example, the guard to the fire statement for the Isend transition requires that

the SendMediator for the channel to the node’s right hand neighbor is idle and that some message

is waiting to be sent. The fire statement specifies that the message parameter m is the head of

the toSend sequence for that right hand SendMediator as required by the precondition. The nodes

parameter N12 and N13 are bound to MPIrank and mod(MPIrank + 1, MPIsize), respectively, as required

by the action where clause.

ChoiceMset(E): tra i t
% A set with a choose operator specified to be random

includes Multiset(E)

introduces
chooseRandom : Mset[E] → E

rest: Mset[E] → Mset[E]

isEmpty : Mset[E] → Bool

asserts with e, e1: E, s: Mset[E]

s 6= {} ⇒ chooseRandom(s) ∈ s;

s 6= {} ⇒ rest(s) = delete(chooseRandom(s), s);

s 6= {} ⇒ s = insert(chooseRandom(s), rest(s));

isEmpty(s) ⇔ s = {}

Figure 5.2: Trait ChoiceMset defining the chooseRandom operator on multisets

The trait ChoiceMset shown in Figure 5.2 introduces and defines the chooseRandom operator used

in the schedule. The operator is used to produce an arbitrary (but not actually random) message

in the pending multiset to SEND.2 In the scheduled node automaton submitted for compilation, the

trait is referenced using the statement axioms ChoiceMset(Int).

5.1.2 Schedule actions

Adding an NDR schedule to an IOA program is equivalent to applying a strong form of the next-

action determinism (NAD) transformation of IOA programs described by Vaziri et al. [120]. An

I/O automaton is next-action deterministic if there is at most one enabled action in all reachable

states. The NAD transformation produces such an automaton by adding a nondeterministic internal

schedule action to an automaton. Adding an NDR schedule is similar but adds a schedule action

with a deterministic and computable effect.

Conceptually, the NDR schedule adds new variables, modifies each transition to use the new

variables, and adds a special schedule action. The new state variables consist of a program counter

(PC), additional variables to represent transition parameters, a special schedule history variable,

and whatever variables the programmer uses in the NDR schedule program. Each locally-controlled

action is modified in two ways. First, the precondition is strengthened so that the action is enabled

2All LSL operators are total functions. Thus, despite its name, the chooseRandom operator always returns (and
the rest operator always omits) the same element of a given set. The trait does not specify which element of the set
is returned (or omitted).

84

only if the PC names the action and the transition parameters equal the corresponding new pa-

rameter state variables. Second, at the end of the effects the PC is assigned to point to the special

schedule action.

The added schedule action has no parameters. The precondition of the schedule requires the

PC to name the schedule action. The effect of the schedule is to compute and assign new values to

the PC, the new parameters state variables, the PC history variable, and the programmer provided

schedule variables. These new values are computed as a function of the augmented state. The

schedule history variable allows the schedule to maintain state between executions. This allows

the next invocation of the schedule to begin execution at the point immediately following the last

executed fire statement.

5.2 Choosing

As mentioned in Section 2.6, in addition to the implicit scheduling nondeterminism in IOA, the

choose statement introduces explicit nondeterminism. When a choose statement is executed, an

IOA program selects an arbitrary value from a specified set. For example, the statement
num := choose n:Int where 0 ≤ n ∧ n < 3

assigns either 0, 1, or 2 to num. As with finding parameterized transitions to schedule, finding values

to satisfy the where predicates of choose statements is, in general, hard. So, again, we require the

IOA programmer to resolve the nondeterminism before compilation. In this case, the programmer

annotates the choose statement with a determinator block written in the NDR language. The NDR

yield statement specifies the value to resolve a nondeterministic choice. Determinator blocks may

reference, but not modify, automaton state variables. For the above example, a determinator block

might be
num := choose n:Int where 0 ≤ n ∧ n < 3

det do yield 1; yield 2; yield 2 od

This determinator block will assign 1 to num the first time this assignment executes and 2 the next

two times. Further executions of the statement will repeat this cycle of three values. Using the NDR

program, 0 is never assigned to num. Notice that determinator blocks implicitly have state. Like

CLU iterators [78], a determinator block remembers the last yield statement executed. Thus, each

determinator block also adds a PC variable to the automaton.

5.3 Initialization

The execution of an I/O automaton may start in any of a set of states. In an IOA program, there

are two ways to denote its start states. First, each state variable may be assigned an initial value.

That initial value may be a simple term or an explicit choice. In the latter case, the choice must

85

be annotated with a choice det block to select the initial value before code generation. Second,

the initial values of state variables may be collectively constrained by an initially clause. As with

preconditions, an initially clause may be an arbitrary predicate in first order logic. Thus, there is

no simple search method for finding an assignment of values to state variables to satisfy an initially

clause.

The original design for the IOA compiler required that an IOA program submitted for compilation

not have an initially clause. However, that requirement was dropped after development of the

specification for the expansion of the states of composite automata that constitutes Part II of this

thesis. In that part, we specify that an expanded automaton contains an initially clause whenever

a component automaton has non-type parameters (even if the component itself has no initially

clause).

Therefore, in the current design, we allow initially clauses in automata submitted for compila-

tion but we require the IOA programmer to annotate the initially predicate with a determinator

block. However, unlike NDR programs for automaton schedules and det blocks for resolving choices,

initially det blocks may assign values directly to state variables. (In fact, such assignments are the

only way for the det block to set the initial state variable values.)

det do
P := [{ name }, idle];

RM := update(empty, mod(MPIrank -1, MPIsize), [idle , {}, false]);

SM := update(empty, mod(MPIrank +1, MPIsize), [idle , {}, {}, {}]);

I := [{}, {}]

od

Figure 5.3: NDR initially det block for the LCRNode node automaton

The NDR initially det block for the LCR node automaton is shown in Figure 5.3. The block con-

sists of four assignments; one to each of tuples derived from each component. The assignments result

in a state that satisfies the initially clause in for the expanded automaton shown in Appendix A.1.

5.4 Safety

It is important to note that schedules and determinator blocks do not change the semantics of IOA

programs but rather just annotate them with mechanisms to resolve nondeterminism. Furthermore,

a schedule or determinator block is allowed to examine only the state of the single automaton that

it annotates.

The programmer writes an IOA program and can then prove formally that it performs only safe

behaviors. NDR annotations are responsible only for resolving nondeterminism. The role of an NDR

block is to produce a value (or set of values) that satisfies some known predicates. An NDR schedule

must produce a transition together with its parameters that satisfies the conjunction of the action

86

and transition where clauses and the transition precondition. Choice determinator blocks must

produce a value that satisfies the choose where clause. Determinator blocks for initially clauses

must produce values such that all state variables satisfy the clause.

To ensure the automaton only executes safe schedules, these conditions can be checked after the

value is produced. In fact, the IOA compiler generates code to check at runtime that transition

values and parameters do, in fact, satisfy the precondition and where clauses. Generating a check

for the other cases would be analogous.

Unfortunately, we cannot verify arbitrary predicates. When where clauses and preconditions

include universal quantifiers (particularly over infinite types) there is no easy way to emit code

to verify them. Therefore, only predicates that do not contain quantifiers are currently checked.

However, as described in Section 15.5, the initially clause generated during the expansion of a

composite automaton includes universal quantifiers. Therefore, no check is currently generated

for det blocks for initially clauses. Finally, while NDR schedules can be checked using the IOA

simulator, there is currently no support in the toolkit for translating NDR constructs for use in

mechanically checked proofs.

87

88

Chapter 6

Translating IOA into Java

Once you understand how to write a program get someone

else to write it.

— Alan J. Perlis [99]

The IOA compiler is applied to each node automaton individually to produce a single Java

class named for the source node automaton. The generated class subclasses a generic automaton

class in our standard compiler libraries. These standard libraries also include support for console

interactions, MPI initialization, automaton parameter initialization, and implementations for the

standard IOA datatypes. At run time, the node automaton subclass must be linked with those

standard libraries, an MPI library, and any additional implementation classes for special datatypes

provided by the programmer. The automaton class is organized around a main loop derived from

the NDR schedule annotation to the IOA program. Two other threads process input and output

actions, placing them in the appropriate buffers as they arrive.

Below we discuss the elements of the generated automaton subclass. Section 6.1 discusses the

translation of IOA sorts and operators into Java. Section 6.2 discusses the state variables of the

generated program and how they are initialized. Section 6.3 discusses initialization of automaton

parameters. Section 6.4 discusses how the compiler translates the parts of a transition into Java

constructs including the special cases of MPI and buffer transitions. Section 6.5 discusses the

translation of the main loop and the initialization det block.

6.1 Translating Datatypes

IOA has been designed to work closely with the Larch Shared Language (LSL) [52, 51]. All datatypes

used in IOA programs are described formally in LSL. These specifications give axiomatic descriptions

89

of each datatype and its operators in first-order logic. While such specifications provide sound bases

for proofs, it is not easy to translate them automatically into an imperative language such as Java.

In our prototype compiler, we require the programmer to write datatype implementation classes

by hand. Each datatype (e.g., Bool, Int, or Mset[__]) is implemented as a Java class. Each operator

(e.g., __>__: Int, Int → Bool or size: Mset[__] → Int) is implemented as a method by some

datatype implementation. Since operators often have more than one type in their signature, it is not

obvious with which datatype to associate an operator. The IOA compiler relies on guidance from the

datatype implementor to match IOA operators and datatypes to the corresponding Java methods

and classes. This guidance is provided in the form of a registration class associated with each

datatype implementation class. The registration class tells the IOA compiler which implementation

class is associated with each datatype and operator. The mapping between datatypes and operators

and implementation classes and methods is maintained in a datatype registry [119, 121].

The IOA toolkit includes a standard library of implementation classes for the standard language

datatype. These include simple datatypes such as naturals, integers, and booleans, compound

datatypes such as arrays, maps, sets, and sequences, and shorthand types such as enumerations,

tuples, and unions. Programmers are free to extend the compiler with new datatypes or replace

the standard implementations with their own. (Instructions are provided in [119] for how to do

so.) For example, the compiler can be configured to replace the standard implementation class for

Int based on the bounded type java.lang.Integer with one based on the (nearly) unbounded type

java.math.BigInteger. The programmer specifies at compile time which datatypes to load, and

the datatype registry is initialized appropriately [94].

Since the IOA framework focuses on correctness of the concurrent, interactive aspects of programs

rather than of the sequential aspects, we do not address the problem of establishing the correctness of

this sequential code (other than by conventional testing and code inspection). Standard techniques

of sequential program verification (based, for example, on Hoare logic) may be applied to attempt

such correctness proofs.

6.2 Translating State

Each state variable of the IOA program is translated into a member variable of the generated Java

automaton class. The classes implementing the types of these variables must either be included

in the standard datatype library or provided by the programmer. If the IOA variable is assigned

a particular initial value, that value is translated like any other IOA term into a Java value and

assigned to that value before any transitions are run. If no initial value is specified in the IOA

program then the initial value is, implicitly, an unconstrained choose value. That is, the variable

may be arbitrarily initialized to any value of the correct datatype.

90

Therefore, implementation classes for simple sorts are required to have a method to construct

some instance of that datatype. The emitted code calls that construction method at runtime to

initialize member variables of that sort.

If the datatype is a constructed sort such as Array[Int, Bool], the process is slightly more

complicated. Currently, every constructed sort is implemented by a single implementation class in

the standard datatype library. For example, every IOA Array, without regard to its subsorts (i.e.,

to its sort parameters), is implemented by the single class ioa.runtime.adt.ArraySort. (This

is not required by the datatype registry design. It is possible to register different implementation

classes for arrays containing or indexed by different types.) Furthermore, a constructed sort usually

contains some instances of its subsorts. For example, an Array[Int, Bool] must contain a boolean

value in every entry while an Array[Int, Mset[Nat]] must contain a multi-set of naturals. Even

when no instance of a subtype needs to be constructed (say, for an empty set), it may be necessary

to know from which subsorts a particular sort was constructed in order to make an instance of the

appropriate datatype.

Therefore, the code emitted to initialize a member variable of a constructed sort must contain all

the information necessary to construct instances of the implementation classes of the subsorts. At

runtime, the constructed type traverses this information (called a Parameterization) to recursively

construct all the needed instances of the the implementation classes of the subsorts. Tsai’s thesis

details the construction and use of Parameterizations [119].

6.3 Translating Automaton Parameters

If the source automaton is parameterized, additional member variables are generated to represent

those parameters. The values of automaton parameters are determined only at runtime. For most

parameters, the initial value is read from a per-node input file. Thus, the end user can specify

distinct values for each node in the system.

Two parameters are handled as special cases. If the automaton has a parameter named MPIrank

whose sort is implemented by a class that implements the ioa.runtime.adt.MPINode interface,

then the IOA compiler not only generates a member variable for that parameter, it also generates

code that initializes the variable with the value returned by the MPI.COMM WORLD.Rank

method call after initialization of the MPI communications system. (This interface requires that a

class be able to construct an instance from a positive Java int and to return the value from which an

instance was constructed.) Both ioa.runtime.adt.IntSort and ioa.runtime.adt.NatSort (the

standard implementation classes for the built-in IOA sorts Int and Nat, respectively) implement this

interface. The rank of an MPI process is unique within the system. Similarly, if the automaton

has a parameter named MPIsize then the corresponding member variable is initialized to contain

91

the number of nodes in the system as returned by the MPI.COMM WORLD.Size method.

The values of the parameters do not change after initialization because no statement in the source

automaton can assign to automaton parameters.

6.4 Translating Transitions

An IOA transition definition consists of a list of parameters, a where clause, a precondition, and

effects. The where clause restricts the values of the parameters. The precondition is a predicate

on automaton state variables and the transition parameters that specifies when the transition is

enabled. The effects specify how state variables change.

The transition where clause and precondition are translated into Java boolean expressions. These

expressions are evaluated at run time after a schedule specifies the transition to fire. If the precon-

dition or action or transition where clauses evaluates to false, the transition is not executed and a

runtime exception is thrown. If they all evaluate to true, the effects clause is executed.

The effects clause is translated to a Java method. The basic control structures of IOA have

direct analogues in Java. Thus, IOA assignments, conditionals, and loops are translated into Java

assignments, conditionals, and loops. (Technically, any IOA loop can be implemented by a Java loop

but the reverse is not true.) IOA conditionals are exactly analogous to their Java counterparts in

syntax and semantics. So the translation of conditionals is completely straightforward. We discuss

the remaining control structures below.

Translating Assignments In most cases, an assignment statement consists of a variable on the

left hand side (LHS) and some term on the right hand side (RHS). Translating such assignments

to Java is completely straightforward. (IOA choose statements are compiled by translating their

associated NDR determinator blocks. While not included in the current prototype, the translation

should also include runtime checks that the value produced satisfies the choose predicate.) However,

the LHS may consist of a term more complicated than a simple variable reference if the top level

operator in the term is one of three special cases.

Usually, the meaning of IOA syntax denoting an operator is independent of the context in which it

appears. The only three exceptions to that rule are the syntactic structures denoting array indexing,

map indexing, and tuple selection. In these cases, the syntax appearing on the LHS of an assignment

indicates a location in which to store a new value, an lvalue. The same syntax appearing anywhere

else indicates the current value stored in that element of the array or map or in that field of the

tuple. Semantically, identical syntax indicates different operators.

If A is an array indexed by sorts I1, I2, . . . and storing elements of sort E, and i1, i2, . . . are

terms of sort I1, I2, . . . , respectively, then the syntax A[i1, i2, ...] appearing anywhere but the

LHS of an assignment indicates the application of the array reference operator __[__,__,...] :

92

assignment form rewritten as

A[i1, i2, ...] := RHS A := assign(A, i1, i2, ..., RHS)

M[i1, i2, ...] := RHS M := update(M, i1, i2, ..., RHS)

T.f := RHS T := set_f(T, RHS)

Table 6.1: Rewrite rules to desugar assignments to arrays, maps, and tuples.

Array[I1, I2, ..., E] → E to A, i1, i2, However if the same syntax appears on the LHS of an

assignment such as
A[i1, i2 , ...] := e

where e is a term of sort E, then the operator is interpreted as the array assignment operator with

signature assign : Array[I1, I2, ..., E], I1, I2, ..., E → Array[I1, I2, ..., E]. Thus, the

assignment statement is semantically equivalent to:
A := assign(A[i1, i2 , ...], e).

Similar interpretations apply to Map and tuple lvalues. For a Map M, the brackets in the syn-

tax M[i1, i2, ...] usually denotes the map reference operator; but on the LHS of an assign-

ment, the brackets are interpreted as the operator update : Map[I1, I2, ..., E], I1, I2, ..., E →

Map[I1, I2, ..., E].

For a tuple t with field f of sort F, the dot in the syntax t.f usually denotes the tuple field

reference operator get_f: T → E; but on the LHS of an assignment, the dot operator is interpreted

as set_f: T, E → T.

In the code generator, these correspondences are applied as rewrite rules. Each of the former

forms are rewritten as assignments of the latter form before translation. That is, the syntax allowing

operators on the LHS of an assignment are treated as syntactic sugar for the longer forms. The

rewrite rules are summarized in Table 6.1.

The matter is slightly complicated by the fact that such lvalues may be nested. We have already

seen such nested assignments in the expanded version of LCRNode. For example, the first statement

of the effect of the SEND transition is the assignment:
SM[mod(MPIrank + 1, MPIsize)]. toSend :=

(SM[mod(MPIrank + 1, MPIsize)]. toSend) ` m;

(see Appendix A.1). Recall that SM is a Map from Int to _States[SendMediator, Int, Int] and that

the latter is a tuple.

Thus, we must apply the third and then the second rewrite rules from Table 6.1 to convert the

assignment to
SM[mod(MPIrank + 1, MPIsize)] :=

set_toSend(SM[mod(MPIrank + 1, MPIsize)],

(SM[mod(MPIrank + 1, MPIsize)]. toSend) ` m);

and then to
SM := update(SM,

93

mod(MPIrank + 1, MPIsize),

set_toSend(SM[mod(MPIrank + 1, MPIsize)],

(SM[mod(MPIrank + 1, MPIsize)]. toSend) ` m));

for proper translation to Java.

Translating Loops Loops may be defined in IOA using two different syntactic forms:
for v:T in s:Set[T] do ... od;

for v:T where P(v):Bool do ... od

The semantics of the first form are that the statements in the do ... od block are executed size(s)

times with the variable v taking on a distinct value in the set s on each iteration.1 The semantics

of the second form are similar but the set of values v may take on are defined implicitly. The set

consists of all values of v that satisfy the predicate P. (Here the notation P(v) is used to denote an

arbitrary IOA term in which v may appear.)

Loops of the first form are supported when the implementation class for the IOA Set construc-

tor implements the ioa.runtime.adt.Enumerable interface. Such classes can produce iterators

over the elements in the Set. The implementation class for Set in the standard datatype library

implements the interface.

Since the loop where clause may be an arbitrary predicate, implementing loops of the second

form would be analogous to solving the scheduling problem discussed in Chapter 5. Currently,

the IOA compiler cannot translate loops of the second form. In the future, such loops might be

translated with the help of an additional NDR loop scheduling block.

Translating det blocks Each determinator block translates into a Java method named resolve-

ChooseN (where N is a unique identifier for the block). In addition, the compiler generates an

instance variable choosePCN . When a choose value is required to complete an assignment the

corresponding method resolveChoose is invoked to generate that value.

As designed and implemented by Tsai [119] (based on the simulation of NDR constructs by

Ramırez-Robredo [102]), the body of the resolution method is a Java switch statement on the

choosePC N variable inside an infinite while loop. Primitive statements (assignments, condition-

als, loops, and yields) translate into a case or set of cases in the switch. The last statement of each

block sets the program counter to the number of the next statement to execute. In the body of

these cases, assignments and terms are translated just like those appearing in an IOA eff clause.

Conditional and loop control structures are flattened into sequences of cases.

In essence, the “NDR program is translated to a Java implementation of machine code” where

each “NDR statement is assigned an address, and a program counter variable keeps track of the

current execution point in the NDR program.” [119] The method returns when a yield statement

1IOA requires that the result of executing the loop for any ordering of values in s must always be the same.

94

is executed. The PC value however, is maintained so that the next time the det block executes, it

picks up where it left off, implementing the required CLU-iterator-like semantics.

6.4.1 Translating MPI Transitions

As described in Chapter 4, the IOA interface to MPI is specified as a set of four pairs of transition

definitions. The definition of these transitions is fixed by the mediator automata sendMediator (see

Figure 4.9) and recvMediator (see Figure 4.10). These pairs of transitions are designed to mirror

the corresponding four Java calls used to invoke MPI (Isend, test, Iprobe, and receive). While

the IOA transitions contain all the necessary information to model the MPI method invocations,

the IOA code does not translate directly using the standard mechanisms.

Instead, the compiler recognizes these four pairs of transition definitions and treats them as

special cases. Ordinarily, the compiler generates one Java method for each IOA transition. When

translating MPI transitions, the compiler generates a single method for each pair of transitions. The

relevant appropriate MPI method invocation is sandwiched between the translations of the effects

of the output and input transition in each pair.

When invoked at run time, the resulting method does all the work of the output effect, performs

the MPI call, and then does the work of the input effect. Since the design uses only MPI calls that

will not block, the effect as a whole will not block. (The receive output transition that is translated

into a receive method invocation is enabled only after confirming, using Iprobe, that a message is

available. Therefore, as used, the receive method invocation will not block.) As a result, the input

half of the pair (the resp_* transition) does not need to be scheduled. The input half is executed

automatically (without returning to the schedule loop) when the MPI call returns.

Recognizing MPI transitions To recognize these transitions, the IOA compiler uses three cri-

teria: the names and kinds of the transitions and the pattern of the sorts of their parameters.

Recognizing the sorts of the parameters is not entirely straightforward as the Msg and Node sorts

are themselves type parameters to the mediator automata. Thus, the names of the sorts actually

used cannot be known until the mediator automata are composed with the algorithm and buffer

automata to form the node automaton. The compiler, therefore, cannot use the names of the sorts

when identifying the transitions.

First, messages may be of any sort, so the Msg sort is treated as a “don’t care”. The first

parameter to Isend or to resp_receive may be anything. Second, rather than require the Node

sort to have a particular name, the compiler verifies the implementation class for the sorts in the

parameter positions where the Node sort is expected. In particular, that implementation class must

implement the Java interface ioa.runtime.adt.MPINode.

95

Manipulating parameters In the usual case, transition parameters are translated directly into

method actuals in the Java code. The values of these method actuals are set at runtime by the

translated fire statements in the schedule. For MPI transitions, this scheme works for the four

output transitions (i.e., Isend, test, Isend, and receive) but not for the four resp_* transitions.

The parameters of the output transitions contain the necessary information to generate the MPI

method invocation. Not all the MPI method actual parameters are represented in the model because

our implementation holds some of the parameters constant. The parameters of the four MPI input

transitions are either duplicates of the output transition parameters or represent the return value of

the associated MPI Java method invocation. However, the MPI return value is not available to the

schedule writer.

For instance, the Isend method requires the message (any java.lang.Object) to be sent and an

identifier for the destination (an int) as actual parameters and returns a handle (an mpi.Request

object). In the SendMediator code, the actual parameters of the Java invocation of Isend are specified

by the parameters to the Isend transition. The message is specified by the first parameter and the

destination is specified by the third parameter to Isend. The return value of the Java invocation is

a handle, which corresponds to the first parameter to resp_Isend.

To treat the return value appropriately in the generated Java code, the compiler relies on the

exact form of those transitions. The compiler inserts the MPI call just at the place where the MPI

return value is actually needed. For example, the call to Isend occurs in the translation of the first

assignment in the effect of the resp_Isend transition:

input resp_Isend(handle , i, j)

e f f handles := handles ` handle;

status := idle.

A minor technical complication arises when the composer is used to prepare input for the com-

piler. Above, we said the parameters of the input transitions that do not represent the return value

are “duplicates” of the output transition parameters. However, although the parameters correspond

in the original mediator automaton code (see Figure 4.9, by the time they emerge from the composer

as part of the expanded node automaton the names will likely have changed (see Appendix A.1). In

Figure 4.9, the channel endpoints are named i and j in both transitions. However, in Appendix A.1

(the actual input to the compiler), Isend is parameterized by N12 and N13 while resp_Isend is param-

eterized by N14 and N15. When the compiler pairs up the transitions and matches the sorts it also

maps the parameter names of the input transition to those of the corresponding parameters of the

output transition. (While the transition parameters do not happen to appear in the effects clauses

of the LCR example, the parameters can appear as map indices in algorithms using other network

topologies.)

96

6.4.2 Translating Buffer Transitions

The buffer input and output actions described in Section 3.4 are another special case in our trans-

lation. As described in that section, our design implements complete buffer automata like the one

shown in Figure 3.4 even though the automaton produced by the interface generator and submitted

to the compiler omits several actions. (Compare the previous figure to Figure 3.5). The omitted

actions perform two functions. As described below, some of the actions interact with the external

environment (actual I/O), and the others place invocations in or remove invocations from the stdin

and stdout sequences, respectively.

Action invocation S-expressions The “missing” actions are hard coded into the generic au-

tomaton class in the standard library. Internally, input and output invocations are represented as

IOA_Invocation tuples. Externally, invocations are represented as S-expressions that can be used to

construct or can be constructed from the internal representation of IOA_Invocation tuples.

We require every datatype implementation class to have a static method to construct an instance

of itself from an S-expression. Similarly, every implementation class must have a method to generate

an S-expression representation of itself. (These requirements are enforced because every implemen-

tation class subclasses the abstract class ioa.runtime.adt.ADT.) Therefore, invocations of any

input action of any automaton can be parsed from such S-expressions. Input to the automaton and

output from the automaton are represented by standard Java file I/O. These S-expressions are then

parsed and the internal representations of the appropriate IOA_Invocation generated.

Representing shorthand sorts (enumerations, tuples, and unions) as S-expressions is slightly

tricky because, in the standard datatype library, there is only one class to implement each kind

of shorthand sort. For example, all tuples are implemented by ioa.runtime.adt.TupleSort. The

S-expressions representation of a shorthand value must include the structure of the particular short-

hand sort along with the value.

For example, the input invocation vote(1) that signals node 1 of an LCR system to participate

in an election looks like this:

((ioa.runtime.adt.TupleSort

((action (ioa.runtime.adt.EnumSort(3.0 RECEIVE SEND leader vote)))

(params (ioa.runtime.adt.SeqSort

((ioa.runtime.adt.UnionSort

((ioa.runtime.adt.IntSort 1)

(ioa.runtime.adt.EnumSort(0.0 Int)))))))))

The tuple containing that invocation has two fields: action and params. Note that the names of IOA

sorts (e.g., IOA_Invocation) do not appear in the S-expression. The external representation for IOA

97

datatypes references only the Java implementation classes. The automaton specific information —

the name of the action and the pattern of sorts of its parameters — are buried inside the S-expression.

The action field contains an element of an enumeration (IOA_Action). In this case, the enumeration

of actions includes RECEIVE, SEND, leader, and vote. The particular action represented is element

three of the zero-indexed list (i.e., vote). Similarly, the parameter field consists of a sequence of one

element. That element is a union (IOA_Parameter) containing exactly one type, an integer tagged by

the label Int. The set of tags for the union are represented as an enumeration.

I/O threads As mentioned in Section 3.4, each node automaton is implemented by three Java

threads. The scheduled thread executes those methods emitted by the compiler in the automaton-

specific subclass. Two other threads implement input and output. The stdin thread parses input

invocations and appends such invocations to the stdin sequence. The stdout thread removes invo-

cations from the stdout sequence and outputs S-expression representations for them to the console.

The stdin and stdout sequences are, therefore, shared between the actions translated into the

scheduled thread and the stdin and stdout threads. While other IOA variables are translated into

single Java variables in the emitted subclass, the translation of stdin and stdout is more complicated.

Since the I/O threads are implemented in the generic automaton class, they are independent of

the submitted automaton. In particular, they cannot reference the automaton-specific variable

containing these queues. In fact, in the automaton submitted for compilation, the I/O queues are

not simple stand-alone variables. They are fields in some more complicated tuple. For example, in

the LCRNode automaton shown in Appendix A.1, stdin and stdout are fields of the tuple variable I.

Therefore, the generic class includes two static variables to contain the Java representation of

these sequences. It is actually these static variables that are shared between the threads. In the

main thread, each access to the I/O queues is translated into a sequence of statements. Assignments

to the I/O queues are converted into three assignments that read the canonical variable into the

local copy, modify it locally, and then write it back to the canonical location. References to the I/O

queues must copy the canonical value into the local copy before use. To prevent corruption of these

static variables, the compiler uses the Java synchronized construct to protect queue accesses.

6.5 Translating Schedules

In our translation each IOA transition is translated into a Java method. The result of translating

the NDR schedule of the IOA program is the main loop of the generated Java program. On every

iteration of the schedule loop, the scheduler picks an action to fire. Translation of NDR schedule

programs is nearly identical to the code generation described above for NDR det blocks. The chief

distinction is that no infinite loop is automatically wrapped around the method that implements

the schedule. When the schedule method returns, execution ends.

98

Instead of yield statements, schedule blocks contain fire statements. A fire statement translates

into an invocation of the method generated by the translation of the fired transition.

Translating det blocks for initialization The first method invoked by a schedule method is a

special initialization method. That method is the result of translating the det block associated

with the automaton initially clause, if any. Unlike choice det blocks, but like schedules, the initially

det blocks are not wrapped in a loop. The block executes once and returns to the schedule. Neither

yield nor fire statements appear in these NDR programs.

99

100

Chapter 7

Translation Correctness

Beware of bugs in the above code; I have only proved it

correct, not tried it.

— Donald Knuth [68]

This chapter argues the correctness of our compilation method. We claim the distributed system

created by compiling node automata and running the resulting Java programs linked with MPI and

our datatype libraries faithfully implements the IOA system design submitted for compilation. The

IOA compiler preserves the behavior at the boundary between the system and its environment as

shown schematically in Figure 7.1. We assert that the externally visible behaviors the compiled

system will exhibit are a subset of the externally visible behaviors permitted by the specification.

We make this claim formally by proving Theorem 7.2 in Section 7.3.

For this theorem to apply to the IOA compiler it must be the case that the system submitted for

compilation is structured as described in Chapter 3, the network behaves according to our model

introduced in Chapter 4, the NDR annotations of the system produce valid values as discussed

Node 3

Node 1 MPI Node 2

MPIMPI

System Console 1

Console 3

Console 2

Environment

Figure 7.1: A compiled IOA system consists of a composition of node and MPI automata interacting
with the environment.

101

in Chapter 5, and hand-coded datatype libraries correctly implement their LSL specifications as

mentioned in Chapter 6.

The correctness condition for the compiler is global. We require that the external behavior is

preserved for the system as a whole, not just at individual nodes. That is, we show that the multi-

threaded Java programs running on multiple, concurrently-operating nodes (and not using any global

synchronization) preserves the appearance of the sequential execution model of the global system

I/O automaton. Our proof of correctness, however, proceeds node by node. Theorem 7.1 asserts

that the externally visible behaviors a compiled node will exhibit are a subset of the externally

visible behaviors permitted by its specification. We then use standard pasting lemmas to show the

desired global property as a corollary.

Our approach to showing the correctness of each node is to model the compiled Java code as

itself being an I/O automaton. Our model of the target code is that it is just like the source

code except in that it can take (arbitrarily) small atomic steps and that these micro-steps may be

interleaved across threads and nodes. We then augment this model with history variables to delay

or accelerate the effects of these small steps to point in the execution where the externally visible

action occurs. We define a function mapping the states of the source automaton to the states of the

augmented model of the Java program. We prove the function is a refinement mapping by showing a

step correspondence between our augmented model of the compiled code and the source automaton.

Finally, we use this refinement mapping to conclude that the set of traces of our basic model of the

Java code is a subset of the set of traces of the to the source automaton.

Separately, Section 7.4 cleans up a technical issue with the notion of input-delay insensitivity

introduced in Chapter 3. In that chapter, we required that an IOA system submitted for compilation

must behave correctly (as defined by the programmer) even if each node automaton is composed

with a buffer automaton that delays inputs. Unfortunately, the buffer automaton we defined in that

section alters the interface to the system by adding extra output actions to implement a handshake

protocol. Theorem 7.7 asserts that a simpler buffer automaton that does not implement the hand-

shake protocol is equivalent to the one given in Chapter 3. The simpler buffer automaton does not

alter the interface of the submitted system.

7.1 MacroSystem

A complete distributed system suitable for compilation is described in IOA by the composition of MPI

and the scheduled IOA programs for all the nodes. We refer to the combination of these automata

as the MacroSystem automaton. We refer to the individual node program at each host as Ni. Each Ni

consists of more than the IOA program submitted for compilation. In Section 3.4, we distinguished

between the set of actions that were conceptually part of the buffer automaton and the smaller set

102

automaton LCRSystem(MPIsize : Int)

assumes Injective(Int, Int, Name)

components
N[i, size, name:Int]: LCRNode(i, size, name)

where 0 ≤ i ∧ i ≤ MPIsize ∧
size = MPIsize ∧ name = Name(i);

M[i, j:Int]: MPI(Int, Int, i, j)

where 0 ≤ i ∧ i ≤ MPIsize

∧ 0 ≤ j ∧ j ≤ MPIsize

Figure 7.2: LCRSystem automaton using MPI channels. For the purposes of specifying correct behavior
of the system, the LCRSystem automaton specifies the complete LCRProcessInterface buffer automaton
among its components.

of actions actually emitted by the interface generator. (For example, the complete buffer automaton

for LCR is shown in Figure 3.4 while the emitted version is shown in Figure 3.5.) Each Ni node

automaton in MacroSystem includes the complete buffer automaton among its components.

Injective(S, T, F): tra i t
introduces

F: S → T

asserts with x, y: S

F(x) = F(y) ⇒ x = y

Figure 7.3: LSL trait Injective specifying an injective function

Figure 7.2 shows the definition of the MacroSystem program for the LCR example. The system

specification automaton assumes the existence of an injective function Name from node indices to

node names. The LSL trait Injective introducing the function is shown in Figure 7.3.

Since Theorem 7.1 applies to all node automata submitted to the compiler, we now introduce a

nomenclature to describe their syntactic elements. We also describe our model of NDR schedules in

greater detail. We describe each of the elements of a macro-node automaton in turn below.

Action signature and threads As we alluded to in Section 3.4, we partition the actions of Ni into

three sets or threads. These IOA threads model the three Java threads in the node implementation.

Any action that appears in the scheduled node automaton submitted for compilation is in the main or

schedule thread. Those actions derived from the algorithm automaton, from the mediator automata,

and from the buffer automaton as emitted by the interface generator are part of the main thread.

The actions in Ni derived from the console input actions of the algorithm automaton but omitted

from the emitted buffer automaton make up the stdin thread. The omitted buffer actions derived

from the console output actions of the algorithm automaton make up the stdout thread.

I/O schedules As described in Section 5.1.2, by annotating the program with an NDR schedule

block, the programmer is implicitly adding a special internal schedule action to the automaton. We

model the behavior of the two Java I/O threads by defining similar schedule NDR programs for the

103

IOA I/O threads. The output schedule is extremely simple. Whenever there is an invocation on

the stdout queue, the schedule fires the matching output action to dequeue the invocation. The

input schedule appends invocations onto the stdin queue whenever the appendInvocation method is

enabled and then immediately fires the inReady signaling action. NDR code describing such schedules

is shown in Figures 7.4 and 7.5. Note, input actions are not scheduled but are guaranteed to occur

only after signaling outputs have occurred by the use of handshake protocols.

schedule
do

while true do
i f valid then

f i r e internal appendInvocation(MPIrank)

f i r e output inReady(MPIrank)

f i ;
od

od

Figure 7.4: NDR schedule block for the input thread

schedule
do

while true do
i f stdout 6= {} ∧

(((head(stdout). action) = leader) ∧
(len(head(stdout). params)) = 1) ∧
(tag(head(stdout). params [0])) = Int) ∧
(head(stdout). params [0]. Int) = MPIrank

then
f i r e output leader(MPIrank)

f i ;
od

Figure 7.5: NDR schedule block for the output thread

States The state of each Ni includes three special PC variables, PCsched , PCstdin , PCstdout . We say

that a PC variable controls actions in the thread with which it is associated. The precondition of each

locally-controlled transition π requires that the controlling PC contains the identifier for π. Initially,

PCsched = PCstdin = PCstdout = schedule.

The variables of Ni are also associated with threads. Except for the stdin and stdout queues,

each variable of Ni is accessed and modified only by actions in a single thread. Let STsched be the

set of variables other than PCstdin accessed by only the scheduled thread. Let STstdin and STstdout

be defined analogously. The stdin and stdout queues are shared by the main thread and the I/O

threads and are not included in STsched , STstdin , or STstdout . For notational convenience, we often

treat each of the sets of variables STsched , STstdin , or STstdout as if it were a single variable.

104

Transitions The precondition of each transition definition π in Ni is a predicate preπ which, when

conjoined with the action and transition where clauses of π, defines a set of prestates of π. The set

of prestates of π is the subset of the states Ni in which π is enabled. The effects of each transition

definition π in Ni defines a computable function fπ from states of Ni to states of Ni. The image of

fπ when applied to the prestates of π to is the set of poststates of π. In all the poststates of each

action π other than the special schedule transition the value of the controlling PC is schedule. In

the poststates of the schedule action, the value of the controlling PC is the label of some action π

(including possibly schedule) in the controlling thread.

Figure 7.6 shows a transition equivalent to a non-schedule transition π in the schedule thread of

Ni. It is worth noting that the transition function fπ is the identity with respect to variables not

accessed by the controlling thread of π. If v is some variable or set of variables of Ni and S is a state

of Ni then we use the notation fπ(v) to mean the restriction of fπ to v. That is, fπ(v) is shorthand

for fπ(S).v.

internal π(p1 : P1, p2 : P2, ...) where P

pre PCsched = π;

preπ(STsched , stdin, stdout)

eff

ensuring

ST′sched = fπ(STsched) ∧
stdin′ = fπ(stdin) ∧
stdout′ = fπ(stdout) ∧
PC′sched = schedule

Figure 7.6: A transition definition equivalent to the transition definition of π of the schedule thread
of the macro-node automaton Ni

7.2 µSystem

We model the compiled Java code itself as an IOA program µSystem which takes many small atomic

steps that may be interleaved across threads and nodes. For each transition MacroSystem executes,

µSystem must execute a sequence of transitions to achieve the same effect. We do not specify the

granularity of these micro-steps. Rather, we assert that the micro-steps are atomic with respect

to thread interleaving and node concurrency. Thus, a micro-step might represent a Java statement

or a machine instruction. We define each µSystem automaton such that if a sequence of these

micro-transitions executes without interruption or interleaving, the cumulative effect of the sequence

corresponds to the effect of the corresponding transition of the MacroSystem automaton. In addition,

we include in the definition of the derivation of the µSystem automaton a locking discipline that

105

reflects our use of Java synchronized methods to control the effects of such interleaving. By stating

and proving Theorem 7.1 below, we are asserting that even in the presence of interleaving the node

system behaves correctly.

Like the MacroSystem automaton, the µSystem automaton is composed of the MPI automaton

and IOA automata for each node automaton in the system. However, the IOA node programs in

the µSystem are not the node programs in the MacroSystem. Rather, each node automaton is a

component of the µSystem automaton derived from a corresponding component of the MacroSystem

automaton. This derivation is intended to correspond to the process of compiling a single node

automaton. Essentially, we represent compiling a node specification as breaking up its atomic steps

into many small steps that actually are atomic in the implementation. What makes this division

of steps interesting is that our model of compilation also allows these steps to be interleaved across

threads and to acquire and release locks.

7.2.1 Deriving a micro-node from a macro-node

We now describe the micro-step automaton µNi that models the Java code produced by the IOA

compiler to implement the macro-node automaton Ni. Note, the IOA program µSystem and its

component node automata Ni are only conceptual; no such IOA programs are ever produced. The

method of deriving µNi from Ni described below gives a correctness condition for the relevant char-

acteristics of the IOA compiler. That is, if µNi is an accurate model of the code generated by the

compiler, the compilation process preserves safety properties of the submitted automaton.

Signature For each action π of Ni, µNi has a sequence of actions π1, π2, . . . , πx, . . . πz. If π is an

output action, then πz is an output action. If π is an input action, then π1 is an input action. All

other micro-actions are internal. Thus, the external signature of Ni and µNi are identical. We say

that π is also the name of such a micro-action sequence.

Three technical points are worth noting. First, we assume that every micro-action sequence

contains at least two actions. Second, for notational simplicity, we use z as the index of the last

micro-action of every micro-sequence. Technically, z should be a function z(π) and not a constant.

(Alternatively, we could pad every sequence with no-op micro-actions so that every sequence has

the same length.) Third, the first micro-action of an input sequence and the last micro-action of an

output sequence must be named π rather than π1 or πz in order for the external interface of µNi

to match that of Ni. However, for consistency and simplicity in the discussions below, we always

refer to these actions using the subscripted form. We finesse this issue by defining the trace of such

actions to be π.

106

States For every state variable of Ni, µNi has a directly corresponding state variable. We define

the variable sets µSTsched , µSTstdin , and µSTstdout analogously to STsched , STstdin , and STstdout . In

the micro-step node automaton each micro-program counter (µPCsched , µPCstdin , and µPCstdout) is a

pair. The first element of each µPC is the name of the micro-action sequence being executed in its

thread. The second element of the pair is an index denoting which micro-action in the sequence is

being executed. Finally, each µNi has two special lock variables lockstdin and lockstdout , which we

will discuss below. The lock variables are shared between threads and, therefore, do not appear in

the µST sets.

Transitions For each transition definition π with precondition preπ and effect function fπ of Ni,

µNi has a sequence of transition definitions π1, π2, . . . , πx, . . . , πz. The precondition of each locally-

controlled action πx is a predicate preπ,x. If π is locally-controlled, then the predicate preπ,1 is the

same as preπ except that where preπ requires the controlling PC to name π, preπ,1 requires the

controlling µPC to be the pair [π, 1]. The precondition preπ,x of each other locally-controlled micro-

action requires only that the controlling µPC be the pair [π, x]. The effects of each micro-action πx

defines an effects functions fπ,x.

Let f∗π be the composition of the micro-effects functions fπ,1, fπ,2, . . . , fπ,x, . . . , fπ,z. Let S be

a state in which π is enabled in the macro-node automaton Ni and S′ be state that results from

executing π in S. Let s be a state of the micro-node automaton µNi in which π1 is enabled and s′

be a state that results from executing the sequence of transitions π1, π2, . . . πz in s. Let P (s) be the

projection of s onto S. We require that fπ(S) = P (f∗π(s)). That is, if

• two corresponding automata Ni and µNi begin in corresponding states S and s,

• the execution of transition π in state S results in state S′ = fπ(S), and

• the uninterrupted execution of the sequence of transitions π1, π2, . . . , πz in state s results in

state s′ = f∗π(s),

then the post-state s′ of the last micro-action in the sequence must correspond to the post-state S′

of the macro-action.

In addition to whatever other work it performs, each micro-action — other than the last —

in a sequence increments the index element of its controlling µPC . The last micro-action in each

non-schedule sequence assigns the first element of its controlling µPC to schedule and sets the index

element to one. Similarly, executing a micro-action sequence for a schedule action in a micro-state s

must result in a state where the first element in the controlling µPC equals the PC that results from

applying the macro-schedule action in S = P (s).

Note, while µNi must step sequentially through a sequence of micro-actions in one thread, legal

executions of µNi include those in which the micro-actions of one sequence are interleaved with

107

those of sequences in different threads (either at the same node or at others) or with steps of the MPI

automata. Theorem 7.2, below, argues such interleavings do not alter the externally visible behavior

of the whole system.

Locks We model the synchronized methods described in Section 6.4.2 using two special lock vari-

ables, one each for the shared I/O queues stdin and stdout. In the micro-action sequences derived

from macro-actions that are translated to synchronized blocks (i.e., actions that reference stdin or

stdout), we include a special micro-step to grab a lock on the appropriate queue. In general we do

not specify the granularity of the micro-steps or the micro-effects functions fπ,i. However, we do

require that there are special micro-steps to grab and release locks. That is, locking must be atomic

with respect to thread interleaving. In any such micro-action sequence π, the first micro-action in

the sequence π1 grabs the lock and the last micro-step πz releases it. If another action already has

the lock, the micro-action is a no-op. The controlling µPC remains [π, 1], in effect spinning on the

lock. Note, this spinning blocks only the thread attempting to grab the lock.

Since only internal actions ever grab locks, spinning does not change the trace of the automaton.

In the specification of the buffer automata in Section 3.4, we separate the appendInvocation method

from the console input specifically to make such spinning on a lock internal to the buffer automaton.

Since locks are state variables of the µNi node automata, locks are local, not global.

7.3 Compilation Correctness Theorems

Our proof of correctness for the compiler consists of two theorems: one for compilation of a single

node in the system and one for the whole system. Due to the requirement that systems be described

in node-channel form and our assumptions about the correctness of our channel model, proving global

correctness is simple once node-by-node correctness has been shown. In Sections 7.3.1 and 7.3.2,

we present Theorems 7.1 and 7.2 and show how the latter follows immediately from the former. In

Section 7.3.3, we discuss history variables and their definition in IOA. In Section 7.3.4, we define an

augmented micro-action node automaton µN̂i by adding history variables to µNi. In the Section 7.3.5,

we prove a series of invariants about this augmented automaton. In Section 7.3.6 we demonstrate

a refinement mapping from the augmented micro-action automaton to the macro-action automaton

using the invariants. The proof of Theorem 7.1 concludes in Section 7.3.6 by showing a forward

simulation from µNi to Ni.

7.3.1 Node Correctness Theorem

The theorem for correctness of the node-by node compiler says that the externally visible behaviors

of µNi are a subset of those of Ni. Thus, if µNi correctly models the generated Java code, the

108

NDR annotations of the node produce valid values, and the hand-coded datatype libraries correctly

implement their LSL specifications, then the compiled node will exhibit only behaviors specified by

the system designer in Ni.

Theorem 7.1 (Node Correctness) The set of traces of µNi is a subset of the set of traces of Ni.

We delay the proof of Theorem 7.1 until Section 7.3.6 where we demonstrate a refinement mapping

from the augmented micro-action automaton µN̂i to the macro-node automaton Ni.

7.3.2 Global System Correctness Theorem

The global correctness theorem is a corollary of Theorem 7.1. The theorem for correctness of the

entire compiled system says that the externally visible behaviors of µSystem are a subset of those of

MacroSystem. Thus, if the system submitted for compilation is correctly structured, the MPI system

behaves according to our MPI model, the NDR annotations of the system produce valid values,

the hand-coded datatype libraries correctly implement their LSL specifications, and µNi correctly

models the generated Java code, then the compiled system will exhibit only behaviors specified by

the system designer in MacroSystem.

Theorem 7.2 (Global Correctness) The set of traces of µSystem is a subset of the set of traces

of MacroSystem.

Proof: Theorem 7.2 follows immediately from Theorem 7.1 and Theorem 8.10 of [81]. The latter

“pasting theorem” implies that if the set of traces of each component Ai of one composite automaton

A is a subset of the set of traces of corresponding component Bi of another composite automaton

B, then the set of traces of A is a subset of the set of traces of B.

7.3.3 History variables

Informally, history variables are augmentations to the state of an automaton that are used to record

previous states or actions of the automaton or functions of those values. Formally, history variables

can be defined in terms of history relations. (See Section 2.1.2.) Consider a variable v, a base

automaton B and the augmented automaton A formed by adding v (and references to and manipu-

lations of v) to B. The variable v is a history variable of an augmented automaton whenever there

is a history relation from B to A [83].

In IOA, the following syntactic conditions are sufficient (and much stronger than necessary) to

ensure variables h1, h2, . . . are history variables of an IOA automaton A. Given a base automaton

B with state variables v1, v2, . . . there is a history relation from B to augmented automaton A

whenever the text of A is related to that of B as follows.

109

• A and B have the same signature.

• The state variables of A are v1, v2, . . . , h1, h2,

• A and B have the same initial value terms for v1, v2,

• A and B have the same initially predicate.

• A and B have the same set of transition definitions, each with the same parameters, local

variables, precondition, where clause, and ensuring predicate.

• Each transition definition of A includes the entire text of the corresponding transition of B.

• In any additional text of a transition definition, no vi appears on the left hand side of an

assignment.

To prove these syntactic restrictions are sufficient for h1, h2, . . . are history variables, it is necessary

to show that there is always a forward simulation from B to A whose inverse is a refinement mapping

from A to B. The proof is left as an exercise for the reader.

7.3.4 µN̂i

To help establish the trace inclusion from µNi to Ni, we define automaton µN̂i by augmenting the

state of micro-node program µNi with history variables. In particular, every variable v in both the

state of µNi and of Ni (i.e., all variables except the three µPC s and the two locks) is mirrored by

a history variable v of the same type as v. The value of v is initialized to the initial value v. In

addition, we augment µNi with a three history PC variables, PCsched , PCstdin , and PCstdout of the same

types as and initialized to the same values as PCsched , PCstdin , and PCstdout , respectively.

The history variables are updated only in the last step of a locally-controlled action sequence or

the first step of an input micro-action sequence. In the last micro-action πz of a locally-controlled

sequence all history variables are assigned the values the corresponding state variables have in the

poststate of πz. Thus, the history variables mirror the state of µN̂i after the micro-action. In the

first micro-action π1 of an input sequence the values of all history variables are updated by assigning

them the values that result from applying f∗π to the values of the corresponding state variables in

the prestate of π1. That is, all history variables are assigned the values the regular variables will

have at the end of the input micro-action sequence.

In the steps where history state variables are updated, the history PC variables also updated. In

the last step of a locally-controlled micro-action sequence, the controlling µPC is assigned the value

the first element of the controlling µPC pair has in the poststate of πz. In the first micro-action π1

of an input action sequence, the controlling µPC is assigned the first element of the pair that results

from applying f∗π to the value of the controlling µPC in the prestate of π1. That is, the controlling

110

internal π1(q1 : Q1, q2 : Q2, ...) where Q

pre µPCsched = [π, 1];

preπ,1(µSTsched , stdin, stdout)

eff

ensuring

if lockstdin = idle then

lock′stdin = stdin ∧
µST′sched = fπ,1(µSTsched) ∧
stdin′ = fπ,1(stdin) ∧
µPCsched = [π, 2]

else µPCsched = [π, 1]

fi

. . .

output πz(r1 : R1, r2 : R2, ...) where R

pre µPCsched = [π, z]

eff . . . ;

µST
′
sched := µSTsched ; stdin

′ := stdin; PC
′
sched := schedule

ensuring

lock′stdin = idle ∧
µST′sched = fπ,z(µSTsched) ∧
stdin′ = fπ,z(stdin) ∧
µPC′sched = [schedule, 1]

Figure 7.7: Sequence of transitions of the augmented micro-node automaton µN̂i corresponding to
a transition of the macro-node automaton Ni. The sequence corresponds to an internal transition π
in the schedule thread that references the shared buffer stdin.

111

input φ1(q1 : Q1, q2 : Q2, ...) where Q

eff . . . ;

µST
′
stdin := f∗φ(µSTstdin); PC

′
stdin := schedule

ensuring

µST′stdin = fπ,1(µSTsched) ∧
µPC′stdin = [φ, 2]

. . .

internal φz(r1 : R1, r2 : R2, ...) where R

pre µPCstdin = [φ, z]

eff . . .

ensuring

µST′stdin = fπ,z(µSTstdin) ∧
µPC′stdin = [schedule, 1];

Figure 7.8: Sequence of transitions of the augmented micro-node automaton µN̂i corresponding to an
input transition of the macro-node automaton Ni. The sequence corresponds to an input transition
φ of the stdin thread.

µPC is assigned the first element of the value the controlling µPC pair will have when the sequence

completes.

The invariants we prove in the next section formally justify our claim that assigning history

variables the result of applying f∗π to the micro-action prestate correctly predicts the future values

of variables. Informally, three factors make it possible to predict the value variables will have at

the end of the sequence. First, all input actions (both the MPI resp_* actions and the buffer input

actions) are deterministic. Second, input actions do not reference any variables referenced by actions

in any other thread. Third, by construction, micro-action sequences in the same thread are never

interleaved. (Such interleaving is preventing by checking the value of the controlling µPC in the

precondition of each micro-action.) The only way one sequence can affect the outcome of another

is by changing the value of some variable referenced by the other sequence. The only variables

shared across threads are locks and the special stdin and stdout sequences. In our translation, no

input actions reference these shared variables. Therefore, input actions are deterministic even if

micro-action sequences are interleaved across threads or across nodes.

Figures 7.7 and 7.8 show two sequences of micro-actions. The first sequence corresponds to an

internal macro-transition π in the schedule thread that accesses the shared variable stdin. The

second sequence corresponds to an input macro-transition φ in the stdin thread. The first sequence

demonstrates our model of spin-locks and how history variables are updated in the last step of

locally-controlled actions. In contrast, the result of applying the composite function f∗φ to µSTstdin

(and, thus, the result of executing the entire sequence) is assigned to µSTstdin in the effects of the

112

first micro-action of the second sequence. The history µPC variable is also updated in the first

micro-action of the second sequence.

7.3.5 Invariants

The following seven invariants of µN̂i help to establish a refinement mapping from µN̂i to Ni. The

first invariant defines the locking discipline of the micro-node automaton. It asserts that there is no

reachable state of the micro-node automaton where two actions are simultaneously in the critical-

section and that locks always name the thread currently in the critical section (if any). The next five

are “progress” invariants that relate the values of the five history variables to the partial progress

sequences of micro-actions make in updating the five parts of the state of the micro-node automaton.

The last invariant asserts that preconditions are stable over the course of a sequence of micro-actions.

That is, the precondition of the macro-action remains satisfied by history variables in every step of

the micro-action sequence.

The Locking Invariant says that no action sequence that accesses a shared queue can begin

or proceed without the lock on that queue. Furthermore, access to the queue is exclusive to one

thread. While micro-action sequences that access the shared queue can be always be scheduled,

such sequences never proceed past the first micro-step without obtaining the lock. (Recall that the

first micro-step of such sequences is defined to be a no-op if the thread does not have the lock. See

Figure 7.7.) We do not prove this invariant. Rather, we take it as our axiomatic definition of locking.

Invariant 7.1 (Locking) In all reachable states of µN̂i, for all locally-controlled action sequences

π in the stdin thread and φ in the main thread that (both) access stdin,

1. µPCstdin = [π, x] ∧ µPCsched = [φ, y] ⇒ x = 1 ∨ y = 1,

2. For all x, 1 < x ≤ z, µPCstdin = [π, x] ⇒ lockstdin = stdin, and

3. For all y, 1 < y ≤ z, µPCsched = [φ, y] ⇒ lockstdin = schedule.

Likewise, in all reachable states of µN̂i, for all locally-controlled action sequences π in the stdout

thread and φ in the main thread that (both) access stdout,

4. µPCstdout = [π, x] ∧ µPCsched = [φ, y] ⇒ x = 1 ∨ y = 1,

5. For all x, 1 < x ≤ z, µPCstdout = [π, x] ⇒ lockstdout = stdout, and

6. For all y, 1 < y ≤ z, µPCsched = [φ, y] ⇒ lockstdout = schedule.

The µSTstdin Progress Invariant says that in the states where a micro-action sequence in the

stdin thread has been scheduled but not begun executing, the µSTstdin state variable equals its

corresponding history variable µSTstdin . Note that there may be many such states because the

113

micro-actions of the other two threads may be interleaved with those of the stdin thread. The

invariant also states that each micro-action in the sequence affects the value of µSTstdin as if it had

been executed immediately after the preceding action in the sequence — without regard to any

interleaved micro-actions from the other threads. Thus, value of µSTstdin can always be related to

the value of µSTstdin simply by knowing which micro-action sequence is executing and the index of

the particular micro-action scheduled to run next.

The proof proceeds by considering the effects of micro-actions from other threads and then by six

cases for which micro-action scheduled in the stdin thread. The six cases are the combinations of the

kind of the micro-action sequence (input or locally-controlled) and the position of the micro-action

in the sequence (first, middle, or last).

The µSTstdout Progress and µSTsched Progress Invariants below are completely analogous.

Invariant 7.2 (µSTstdin Progress) In all reachable states of Ni

1. For all action sequences π of µN̂i,

µPCstdin = [π, 1] ⇒ µSTstdin = µSTstdin ∧ PCstdin = π,

2. For all input action sequence π of µN̂i and 1 < x ≤ z,

µPCstdin = [π, x] ⇒ fπ,z(fπ,z−1(. . . (fπ,x(µSTstdin)))) = µSTstdin , and

3. For all locally-controlled action sequences π of µN̂i and 1 < x ≤ z,

µPCstdin = [π, x] ⇒ fπ,x(fπ,x−1(. . . (fπ,1(µSTstdin)))) = µSTstdin .

Proof: We show Invariant 7.2 by induction on the length of an execution of µN̂i. In the initial

state s0 of µN̂i, s0.µPCstdin = [schedule, 1], si.PCstdin = schedule, and s0.µSTstdin = s0.µSTstdin by

construction, so implication 7.2.1 holds and the other two are trivial.

For the inductive case, we assume the invariant holds in some reachable state s and we show

that every micro-action πx resulting in post-state s′ when executed in s maintains the invariant. We

proceed by case analysis on the micro-action πx and the sequence π of which it is a part.

• If π is not in the stdin thread, then by construction fπ,x is the identity on µSTstdin and so

s′.µSTstdin = s.µSTstdin and s′.µSTstdin = s.µSTstdin . Furthermore s′.µPCstdin = s.µPCstdin and

s′.PCstdin = s.PCstdin . Therefore, all the expressions appearing in the invariant are unchanged

from s to s′ and the invariant is maintained.

114

• If πx is the first micro-action in a locally-controlled sequence in the stdin thread (i.e., x = 1),

then implication 7.2.1 is non-trivial in s and, thus, µSTstdin = µSTstdin . The effect of the

action is to apply fπ,1 to s and to increment µPCstdin so that s′.µPCstdin = [π, 2]. Since his-

tory variables are unchanged by the action, s′.µSTstdin = s.µSTstdin . Therefore, s′.µSTstdin =

fπ,1(s).µSTstdin = fπ,1(s).µSTstdin = fπ,1(s′).µSTstdin . Thus, the consequent of the implica-

tion 7.2.3 is satisfied in s′. The other two implications are trivially true in s′.

• If π is a locally-controlled micro-action sequence in the stdin thread and πx is neither the first

nor the last action in the sequence (i.e., 1 < x < z), then only implication 7.2.3 is non-trivial

in s. The effect of the action applies fπ,x to s. Therefore, s′.µSTstdin = fπ,x(s).µSTstdin and

s′.µPCstdin = [π, x+1]. Implication 7.2.1 is trivially true in s′ because x > 1. Implication 7.2.2

is trivially true in s′ because π is not an input sequence. Implication 7.2.3 remains true in s′

because fπ,x has been applied to both sides of the equality.

• If πx is the last micro-action in a locally-controlled sequence in the stdin thread (i.e., x =

z), then s′.µPCstdin = [φ, 1] where φ is some action in the stdin thread. By construction,

s′.µSTstdin = s′.µSTstdin and s′.PCstdin = φ making implication 7.2.1 true in s′. Both implica-

tions 7.2.2 and 7.2.3 are trivially true in s′.

• If πx is the first micro-action in an input sequence in the stdin thread (i.e., x = 1), then

only implication 7.2.1 is non-trivial in s and, thus, s.µSTstdin = s.µSTstdin . The effect of the

action applies fπ,1 to s and to increment µPCstdin so that s′.µPCstdin = [π, 2]. By construc-

tion, s′.µSTstdin = f∗π(s).µSTstdin . Therefore s′.µSTstdin = fπ,1(s).µSTstdin and s′.µSTstdin =

fπ,z(fπ,z−1(. . . (fπ,2(s′)))).µSTstdin . Thus, the consequent of implication 7.2.2 is satisfied in s′.

Implications 7.2.1 and 7.2.3 are trivially true in s′.

• If π is an input micro-action sequence in the stdin thread and πx is neither the first nor the

last action in the sequence (i.e., 1 < x < z), then only implication 7.2.2 is non-trivial in

s. The effect of the action applies fπ,x to s. Therefore, s′.µSTstdin = fπ,x(s).µSTstdin and

s′.µPCstdin = [π, x + 1]. By construction, s′.µSTstdin = s.µSTstdin . Implication 7.2.1 is trivially

true in s′ because x + 1 > 1. Implication 7.2.3 is trivially true in s′ because π is not a locally-

controlled sequence. Implication 7.2.2 remains true in s′ because fπ,x has been applied to

µSTstdin while the sequence of functions is reduced by the application of the same function.

Therefore, both sides of the equality remain unchanged.

• If πx is the last micro-action in an input sequence in the stdin thread (i.e., x = z), then

only implication 7.2.2 is non-trivial in s. By construction, s′.µPCstdin = [schedule, 1]. Since

fπ,z is the only function in the sequence in that implication and because the action applies

115

fπ,z to s, s′.STstdin = s′.µSTstdin and, therefore, implication 7.2.1 is true in s′. Implica-

tions 7.2.2 and 7.2.3 are trivially true in s′.

Invariant 7.3 (µSTstdout Progress) In all reachable states of Ni, for all action sequences π of µN̂i,

In all reachable states of Ni

1. For all action sequences π of µN̂i,

µPCstdout = [π, 1] ⇒ µSTstdout = µSTstdout ,

2. For all input action sequence π of µN̂i and 1 < x ≤ z,

µPCstdout = [π, x] ⇒ fπ,z(fπ,z−1(. . . (fπ,x(µSTstdout)))) = µSTstdout , and

3. For all locally-controlled action sequences π of µN̂i and 1 < x ≤ z,

µPCstdout = [π, x] ⇒ fπ,x(fπ,x−1(. . . (fπ,1(µSTstdout)))) = µSTstdout .

Proof: The proof of Invariant 7.3 is analogous to that of Invariant 7.2.

Invariant 7.4 (µSTsched Progress) In all reachable states of Ni

1. For all action sequences π of µN̂i,

µPCsched = [π, 1] ⇒ µSTsched = µSTsched ,

2. For all input action sequence π of µN̂i and 1 < x ≤ z,

µPCsched = [π, x] ⇒ fπ,z(fπ,z−1(. . . (fπ,x(µSTsched)))) = µSTsched , and

3. For all locally-controlled action sequences π of µN̂i and 1 < x ≤ z,

µPCsched = [π, x] ⇒ fπ,x(fπ,x−1(. . . (fπ,1(µSTsched)))) = µSTsched .

Proof: The proof of Invariant 7.4 is analogous to that of Invariant 7.2.

The stdin Progress Invariant says that in any state where neither the stdin thread nor the

schedule thread has the lock on the shared stdin queue, the stdin queue is equal to its corresponding

116

history variable stdin. Second, the invariant says that in the states where a micro-action sequence

that accesses the stdin queue has been scheduled but not begun executing in one thread, either the

other thread has the lock on the queue, or the queue equals its history variable. Third, the invariant

says that each micro-action in the sequence affects the value of stdin as if it had been executed

immediately after the preceding action in the sequence — without regard to any interleaved micro-

actions from the other threads. Thus, the value of stdin can always be related to the value of

stdin simply by knowing which micro-action sequence is executing and the index of the particular

micro-action scheduled to run next.

The proof proceeds by considering the effects of micro-actions from the stdout thread, micro-

actions that do not access the shared variable, and then micro-actions that do access the shared

variable. Recall, that no input actions access the shared queue. For the locally-controlled actions of

the stdin thread that access the shared queue, we consider three cases depending on the position of

the micro-action in the sequence (first, middle, or last). We apply Locking Invariant 7.1 to exclude

interleavings where micro-actions from different threads both access the shared queue.

The three cases for locally-controlled actions of the schedule thread are analogous.

The stdout Progress Invariant below is completely analogous.

Invariant 7.5 (stdin Progress) In all reachable states of Ni

1. lockstdin = idle⇒ stdin = stdin,

2. For all locally-controlled action sequences π in the stdin thread of µN̂i that reference stdin,

µPCstdin = [π, 1] ⇒ (stdin = stdin ∨ lockstdin = schedule),

3. For all locally-controlled action sequences π in the stdin thread of µN̂i that reference stdin and

1 < x ≤ z,

µPCstdin = [π, x] ⇒ fπ,x(fπ,x−1(. . . (fπ,1(stdin)))) = stdin,

4. For all locally-controlled action sequences φ in the schedule thread of µN̂i that reference stdin,

µPCsched = [φ, 1] ⇒ (stdin = stdin ∨ lockstdin = stdin), and

5. For all locally-controlled action sequences φ in the schedule thread of µN̂i that reference stdin

and 1 < y ≤ z,

µPCsched = [φ, y] ⇒ fφ,y(fφ,y−1(. . . (fφ,1(stdin)))) = stdin.

117

Proof: We show Invariant 7.5 by induction on the length of an execution of µN̂i. In the initial state

s0 of µN̂i, µPCsched = µPCstdin = [schedule, 1], lockstdin = idle, and stdin = stdin by construction. In

s0, implication 7.5.1 is true, implications 7.5.3 and 7.5.5 are trivial, and implications 7.5.2 and 7.5.4

hold because the first conjunct of each consequent is true.

For the inductive case, we assume the invariant holds in some reachable state s and we show

that every micro-action πx resulting in post-state s′ when executed in s maintains the invariant. We

proceed by case analysis on the micro-action πx and the sequence π of which it is a part.

• If micro-action sequence π is in the stdout thread then, by construction, fπ,x is the identity

on stdin and stdin, so s′.stdin = s.stdin and s′.stdin = s.stdin. Furthermore, s′.µPCstdin =

s.µPCstdin , s′.µPCsched = s.µPCsched , and s′.lockstdin = s.lockstdin . Therefore, all the expres-

sions appearing in the invariant are unchanged from s to s′ and the invariant is maintained.

• If micro-action sequence π does not reference stdin then fπ,x is the identity on stdin and stdin

so s′.stdin = s.stdin and s′.stdin = s.stdin. Furthermore, s′.µPCsched = s.µPCsched . Since

π does not reference stdin, it also does not reference lockstdin and s′.lockstdin = s.lockstdin .

Therefore, πx does not alter the value of any term appearing in implications 7.5.1, 7.5.4 and 7.5.5

and the three implications are maintained.

Implications 7.5.2 and 7.5.3 are trivially true in s. Furthermore , s′.µPCsched = s.µPCsched . Let

s′.µPCstdin = [π′, x′]. If π = π′ then implications 7.5.2 and 7.5.3 remain trivially true in s′. If

π 6= π′ then x′ = 1 and implication 7.5.3 remains trivially true. Since x′ = 1, s′.lockstdin 6=

stdin, either s′.lockstdin = schedule or s′.lockstdin = idle. If the latter, implication 7.5.1

implies that s′.stdin = s′.stdin. Either way, implication 7.5.2 is true in s′.

• If πx is the first micro-action in a locally-controlled micro-action sequence (i.e., x = 1) in

the stdin thread that references stdin then we consider two cases depending on the value of

lockstdin . If s.lockstdin = schedule, then by construction, πx is a no-op and s′ = s. So the

invariant is maintained. If s.lockstdin = idle then, by implication 7.5.1 s.stdin = s.stdin.

The effect of the action increments µPCstdin and grabs the lock so s′.µPCstdin = [π, 2] and

s′.lockstdin = stdin. Therefore, implications 7.5.1, 7.5.2, and 7.5.4 are trivially true in s′.

Let s′.µPCsched = [π′, x′]. By invariant 7.1 either π′ does not reference stdin or x = 1.

Either way, implications 7.5.5 is true in s′. The effect of the action applies fπ,1 to s.stdin so

implication 7.5.3 remains true in s′ because fπ,x has been applied to both sides of the equality.

• If π is a locally-controlled micro-action sequence in the stdin thread that references stdin

and πx is neither the first nor last action in the sequence (i.e., 1 < x < z), then the im-

plications 7.5.1 and 7.5.2 are trivial while implication 7.5.3 is not. The effect of the action

118

applies fπ,x to s. Therefore, s′.stdin = fπ,x(s).stdin and s′.µPCstdin = [π, x + 1]. By con-

struction, s′.stdin = s.stdin, implication 7.5.2 remains trivially true in s′ because x + 1 > 1.

Implication 7.5.3 remains true in s′ because fπ,x has been applied to both sides of the equality.

By Locking Invariant 7.1, since x > 1, s.lockstdin = stdin and s.µPCsched either equals [φ, 1]

or [θ, y] where φ is an action in the schedule thread that references stdin and θ is action that

does not reference stdin.

If the former case, implication 7.5.4 is trivial and implication 7.5.5 holds because s.lockstdin =

stdin. Since π is neither the first nor last micro-action in the sequence, πx changes neither the

value of lockstdin nor the value of µPCsched . So both invariants remain true in s′. In the latter

case, implications 7.5.4 and 7.5.5 are trivially true in s and remain so in s′ because πx does

not change µPCsched . Implication 7.5.1 remains trivially true in s′.

• If πx is the last micro-action in a locally-controlled micro-action sequence in the stdin thread

(i.e., x = z) that references stdin then, by construction, s′.stdin = s′.stdin and s′.µPCstdin =

[φ, 1] for some micro-action sequence φ in the stdin thread. Implications 7.5.1, 7.5.2, and 7.5.4

are true in s′ because s′.stdin = s′.stdin. Implications 7.5.3 and 7.5.5 are trivially true in s′

because the index of s′.µPCstdin = 1.

• The cases where π is an input micro-action sequence in the schedule thread that references

stdin are symmetric to the three previous cases.

Invariant 7.6 (stdout Progress) In all reachable states of Ni

1. lockstdin = idle⇒ stdout = stdout,

2. For all locally-controlled action sequences π in the stdout thread of µN̂i that reference stdout,

µPCstdin = [π, 1] ⇒ stdout = stdout ∨ lockstdin = schedule,

3. For all locally-controlled action sequences π in the stdout thread of µN̂i that reference stdout

and 1 < x ≤ z,

µPCstdin = [π, x] ⇒ fπ,x(fπ,x−1(. . . (fπ,1(stdout)))) = stdout,

4. For all locally-controlled action sequences φ in the schedule thread of µN̂i that reference stdout,

µPCsched = [φ, 1] ⇒ stdout = stdout ∨ lockstdin = stdout, and

119

5. For all locally-controlled action sequences φ in the schedule thread of µN̂i that reference stdout

and 1 < y ≤ z,

µPCsched = [φ, y] ⇒ fφ,y(fφ,y−1(. . . (fφ,1(stdout)))) = stdout.

Proof: The proof of Invariant 7.6 is analogous to that of Invariant 7.5.

The Precondition Stability Invariant says that the precondition of the macro-action corresponding

to each micro-action sequence (one in each thread) currently scheduled is always true when evaluated

on the history variables of µN̂i.

The proof of the following invariant depends explicitly on our assumptions about the behavior of

the schedule action and of the actions that enqueue and dequeue elements from the shared buffers

stdin and stdout. In the former case, we assume that the schedule only schedules enabled actions. In

the latter case, we use the fact that enqueue action cannot disable the dequeue action. We need this

second assumption because the precondition check (presumably) performed by the schedule action

before scheduling the dequeue action is not atomic with the actual execution of the action. That

is, the enqueue action in one thread can happen between the schedule action and dequeue action in

another thread.

Invariant 7.7 (Precondition Stability) In all reachable states of µN̂i,

1. For all locally-controlled action sequences π in the stdin thread of µN̂i,

µPCstdin = [π, x] ⇒ preπ(PCstdin , µSTstdin , stdin, stdout),

2. For all locally-controlled action sequences φ in the stdout thread of µN̂i,

µPCstdout = [φ, y] ⇒ preφ(PCstdout , µSTstdout , stdin, stdout), and

3. For all locally-controlled action sequences θ in the schedule thread of µN̂i,

µPCsched = [θ, w] ⇒ preθ(PCsched , µSTsched , stdin, stdout).

Proof: We show Invariant 7.7 by induction on the length of an execution of µN̂i. In the initial

state s0 of µN̂i, PCsched = PCstdin = PCstdout = schedule. In all three threads, the precondition of the

schedule action is that the controlling PC = schedule. So Invariant 7.7 holds.

For the inductive case, we assume the invariant holds in some reachable state s and we show

that every micro-action πx resulting in post-state s′ when executed in s maintains the invariant. We

proceed by case analysis on the micro-action πx and the sequence π of which it is a part.

120

• If πx is a micro-action in an input sequence in the stdin thread then π is not locally-controlled.

Thus, each micro-action in the sequence other than the last trivially maintains implica-

tion 7.7.1. The last micro-action πz in the sequence sets µPCstdin to [schedule, 1] and PCstdin

to schedule. Since preschedule only requires that PCstdin = schedule, πz also maintains impli-

cation 7.7.1. By construction, no micro-action in the sequence references µPCstdout , µPCsched ,

PCstdout , PCsched , µSTstdout , µSTsched , stdin, or stdout and, therefore, each action in the se-

quence maintains implications 7.7.2 and 7.7.3.

Analogous arguments show that the invariant is maintained if πx is a micro-action in an input

sequence in either the stdout or schedule threads.

• If π is a locally-controlled micro-action sequence in the stdin thread and πx is not the last action

in the sequence (i.e., x < z), then πx does not affect history variables, µPCstdout , or µPCsched

and, therefore, implications 7.7.2 and 7.7.3 remain true in s′. If x = 1 and lockstdin = schedule

and sequence π references stdin then πx is a no-op and the invariant is maintained. Otherwise,

s′.µPCstdin = [π, x + 1] and the invariant is maintained.

Analogous arguments show that the invariant is maintained if π is a locally-controlled sequence

in either the stdout or schedule threads and πx is not the last action in the sequence.

• If πx is the last micro-action in a locally-controlled micro-action sequence in the stdin thread

and π is not the schedule action (i.e., π 6= schedule and x = z) and π does not reference stdin

then by construction s′.µPCstdin = [schedule, 1] and s′.µPC = [schedule]. Since preschedule

only requires that PCstdin = schedule, implication 7.7.1 is maintained. Since πx does not refer-

ence µPCsched , µPCstdout , PCsched , PCstdout , µSTsched , µSTstdout , stdin, or stdout, implication 7.7.2

is maintained.

If πx is the last micro-action in a locally-controlled sequence π that does not reference stdout

in the stdout thread or πx is the last micro-action in a locally-controlled sequence π that

references neither stdin nor stdout in the schedule thread, analogous arguments show the

invariant is maintained.

• If πx is the last micro-action in a locally-controlled micro-action sequence in the stdin thread

and π is not the schedule action (i.e., π 6= schedule and x = z) but π does reference stdin then

by construction s′.µPCstdin = [schedule, 1] and s′.µPC = [schedule]. Since preschedule only

requires that PCstdin = schedule, implication 7.7.1 is maintained. Since πx does not reference

µPCstdout , PCstdout , µSTstdout , or stdout, implication 7.7.2 is maintained.

Let s.µPCsched = [θ, w]. If θ does not reference stdin then since πx does not reference µPCsched ,

PCsched , or µSTsched , implication 7.7.3 is maintained.

If both π and θ reference stdin then π must be the action that enqueues items on stdin

121

(i.e., appendInvocation) and θ must be an action that dequeues them. Since π does not

reference µPCsched , PCsched , preθ(s′.PCsched , s.′µSTsched , s′.stdin, s.′stdout) can only be false if

preθ(s.PCsched , s.µSTsched , s′.stdin, s.stdout) is also false — that is, if the change to stdin

falsified the precondition of the dequeuing action. However, by the µSTstdin Progress Invariant

s′.stdin = s′.stdin = fπ,z(s).stdin = f∗π(s.)stdin. We assume that the difference between

s.stdin and f∗π(s).stdin is that an element has been added to the tail of stdin. (Note this is

an assumption on f∗π rather than on s.) The precondition of θ depends only on the head of

stdin. Therefore, πx cannot falsify preθ and the invariant is maintained.

Analogous arguments show that the invariant is maintained if πx is the last micro-action in a

locally-controlled sequence in either the stdout or schedule threads.

• Suppose πx is the last micro-action in the schedule micro-action sequence in the stdin thread

(i.e., π = schedule and x = z). Since πx does not reference µPCstdout , PCstdout , µSTstdout , or

stdout, implication 7.7.2 is maintained.

By construction, s′.stdin = s′.stdin = fπ,z(s).stdin. Thus, by the stdin Progress Invariant,

s′.stdin = f∗π(s).stdin. Since π is the schedule micro-action sequence, we assume that f∗π is

the identity on stdin. (NDR programs are not permitted to alter state variables.) Therefore

s′.stdin = s.stdin. Furthermore, since πx does not reference µPCsched , PCsched , µSTsched , or

stdout, implication 7.7.2 is maintained.

By construction s′.µPCstdin = [φ, 1] where φ is some micro-action sequence in the stdin thread.

Furthermore, by the definition of the schedule action, the precondition of the selected action,

preφ,1(s′.µPCstdin , s′.µSTstdin , s′.stdin, s′.stdout) is true in s′. By the STstdin Progress Invariant

s′.µSTstdin = s′.µSTstdin and s′.PCstdin = φ. Since, the only difference between preφ,1 and preφ

is that the former requires µPCstdin = [φ, 1] while the latter requires PC = φ, the invariant is

maintained.

Analogous arguments show that the invariant is maintained if πx is the last micro-action in

the schedule sequence in either the stdout or schedule threads.

7.3.6 Refinement Mapping

We prove Theorem 7.1 by showing a refinement mapping M from µN̂i to Ni. If s is a state of µN̂i

then we define S = M(s) to be a state of Ni where

1. S.STsched = s.µSTsched ,

2. S.STstdin = s.µSTstdout ,

122

3. S.STstdout = s.µSTstdout ,

4. S.stdin = s.stdin,

5. S.stdout = s.stdout,

6. S.PCsched = s.PCsched ,

7. S.PCstdin = s.PCstdin , and

8. S.PCstdout = s.PCstdout .

In this refinement mapping, the history variables are used to delay or accelerate the effects of an

entire micro-action sequences to the point in the execution where the externally visible action occurs.

Thus, each externally visible micro-action appears to have the same effect as the corresponding

macro-action happening at the same point in the execution. The effects of a sequence for a locally-

controlled action are delayed until the end of the sequence. The effects of a sequence for an input

action are accelerated to the beginning of the sequence. In other words, it appears to an external

observer as if the execution of µN̂i had been reordered so that every micro-action sequence happens

all in one step, uninterrupted by any interleaving.

Applying the definition of a refinement mapping from Section 2.1.2, M is a refinement mapping

if: (1) for any initial state s0 of µN̂i, S0 = M(s0) is an initial state of Ni, and (2) for any reachable

states s and S = M(s) of µN̂i and Ni, respectively, and for any transition π of µN̂i enabled in state

s and resulting in state s′, there is a (possibly empty) sequence of transitions α of Ni that results in

state S′ = M(s′) where α has the same trace as π. Figure 7.9 depicts the requirements schematically.

The proof that M is a refinement mapping from µN̂i to Ni proceeds by proving two lemmas.

Lemma 7.3 asserts the initial state correspondence holds. Lemma 7.4 asserts a step correspondence

maintains the state correspondence.

Lemma 7.3 If s0 is an initial state of µN̂i then M(s0) is an initial state of Ni.

Proof: Let s0 be the unique initial state of µN̂i and S0 be the unique initial state of Ni. By definition,

in S0 all variables of Ni have the same values as the corresponding history variables of µN̂i in s0. In

the unique initial states of µN̂i and Ni, STsched = µSTsched , STstdin = µSTstdin , STstdout = µSTstdout ,

and PCsched = PCstdin = PCstdout = PCsched = PCstdin = PCstdout = schedule. Since three history

variables, µSTsched , µSTstdin , and µSTstdout are initialized to the initial values of µSTsched , µSTstdin ,

and µSTstdout the unique initial state of µN̂i is S0, as needed.

Lemma 7.4 Let s be a reachable state of µN̂i, S = M(s) be a reachable state of Ni, and πx be a

transition of µN̂i resulting in state s′ when executed in s. There is a sequence of transitions α of Ni,

enabled in S, that results in state S′ = M(s′), such that trace(α) = trace(π).

123

s’ss
0

S
0 S S’ Ni

NiµStates of
π

α

M MM

States of

^

Figure 7.9: Schematic of system refinement mapping M. M is a refinement mapping from Ni to µN̂i

if (1) for any initial state s0 of µN̂i, S0 = M(s0) is an initial state of Ni, and (2) for any reachable
states s and S = M(s) of µN̂i and Ni, respectively, and for any transition π of µN̂i enabled in state
s and resulting in state s′, there is a sequence of transitions α of Ni that results in state S′ = M(s′)
where α has the same trace as π.

Proof: We prove Lemma 7.4 by case analysis on the micro-action πx of µN̂i and the corresponding

macro-action sequences α of Ni. Let S = M(s) and S′ = M(s′).

If πx is neither the first nor last step in a micro-action sequence, α is empty. Similarly, if πx

the last step of an input sequence or the first step on an output sequence, α is empty. In none of

these cases do either the history variables of µN̂i or the state of Ni change. Therefore, α results in

state S = M(s) = M(s′) = S′, as needed. Since π must be an internal action in these cases, both

trace(πx) and trace(α) are empty, as needed.

The interesting cases are when πx begins an input micro-action sequence or ends a locally-

controlled action sequence. That is, πx is either an input micro-action π1 derived from an input

macro-action φ, an internal or output micro-action πz derived from an internal or output macro-

action π. In those cases, α is the macro-action π of Ni from which πx is derived.

• Suppose πx is the first micro-action in an input sequence in the stdin thread (i.e., x = 1). Since

micro-action π1 is derived from input macro-action π, trace(πx) = trace(α) = π, as needed.

Since S = M(s), all variables in S are equal to the corresponding history micro-variables

in s. Since πx does not reference PCsched , PCstdout , µSTsched , µSTstdout , stdin, stdout, those

variables are unchanged from s to s′. Since the macro-action π does not reference PCsched ,

PCstdout , STsched , STstdout , stdin, or stdout, those variables are unchanged from S to S′. Thus,

the correspondence of these variables is maintained. By µSTstdin Progress Invariant 7.2.1,

s.µSTstdin = s.µSTstdin . The micro-action assigns to µSTstdin the result of applying f∗π to

µSTstdin and assigns schedule to PCstdin . The macro-action updates STstdin by applying fπ to

124

it and sets PCstdin to schedule. Since s.µSTstdin = S.STstdin , f∗π(s).µSTstdin = s′.µSTstdin =

fπ(S).STstdin = S′.STstdin . Finally, s′.PCstdin = S′.PCstdin . Therefore S′ = M(s′), as needed.

• Suppose πx is the last micro-action in an internal sequence in the stdin thread (i.e., x = z).

Since micro-action πx is derived from an internal action both trace(πx) and trace(α) are

empty, as needed. Since S = M(s), all variables in S are equal to the corresponding history

micro-variables in s. By the Precondition Stability Invariant 7.7, π is enabled in S.

Since φx does not reference PCsched , PCstdout , µSTsched , or µSTstdout those variables are un-

changed from s to s′. Since the macro-action φ does not reference PCsched , PCstdout , STsched ,

or STstdout those variables are unchanged from S to S′. Thus, the correspondence of these

variables is maintained. The micro-action assigns to µSTstdin the result of applying fφ,z to

µSTstdin and to stdin the result of applying fφ,z to stdin. The macro-action updates STstdin

and stdin by applying fφ to them. By µSTstdin Progress Invariant 7.2.3 and stdin Progress

Invariant 7.5.1, s′.µSTstdin = s.µSTstdin and s′.stdin = s′.stdin. Since s.µSTstdin = S.STstdin ,

fφ,z(s).µSTstdin = s′.µSTstdin = fφ(S).STstdin = S′.STstdin . Similarly, s′.stdin = S.stdin. Fi-

nally, by construction, the first element of s′.µPCstdin = s′.PCstdin equals S′.PCstdin . Therefore

S′ = M(s′), as needed.

• If π is the last micro-action φz in an output sequence, the argument that α is enabled in S and

that S′ = M(s′) are analogous to the previous case. Since micro-actions φz is derived from an

output macro-action φ, trace(π) = trace(α) = φ, as needed.

Analogous arguments show that S′ = M(s′) and trace(π) = trace(α) if π is a micro-action φx

in the schedule or stdout threads.

Lemma 7.5 The set of traces of µN̂i is a subset of the set of trace of Ni.

Proof: It follows immediately from Lemmas 7.3 and 7.4 and the definition of a refinement mapping

that M is a refinement mapping from µN̂i to Ni. Lemma 7.5, therefore, follows from Theorem 3.4 of

[83] which implies that it is sufficient to show a refinement mapping to demonstrate trace inclusion.

Lemma 7.6 The set of traces of µNi is a subset of the set of trace of µN̂i.

Proof: Lemma 7.6 follows immediately from Theorem 5.5 of [83] which states that set of traces of

an automaton augmented by history is a subset of the traces of the unaugmented automaton.

Finally, we are ready to prove Theorem 7.1 that we claimed in Section 7.3.1.

Proof of Theorem 7.1 (Node Correctness): Theorem 7.1 follows from Lemmas 7.5 and 7.6 by

transitivity.

125

7.4 Handshake Theorem

As we describe in Section 3.4, we allow the programmer to specify an arbitrary interface to the console

while also requiring IOA systems submitted for compilation to be correct even when each node

automaton is composed with a buffer automaton. The buffer automata we describe in Section 3.4

implement a handshake protocol similar to the one described in Section 3.3. Unfortunately, this

protocol changes the interface between the IOA program and its environment. Since we want to

allow the programmer to specify the interface, we would like to relax this obligation.

In this section, we show that augmenting the interface between two automata to follow such

a handshake protocol does not substantially change their interaction. More importantly, we show

that omitting such a protocol from the interface also does not substantially change the interaction.

Formally, we show that, ignoring the added ready actions, the set of traces of the system does not

change when the handshake augmentations are added or removed. The key insight is that the system

performing the handshake can always mimic the behavior of the original system by immediately

preceding each input action with the output action to signal that it is ready and following it with

whatever local work needs to be done. On the other hand, the original system can always mimic

the handshake system because it does not use the ready output signal.

Let Buf be a buffer automaton as described in Section 3.4.1 unaugmented by the handshake

protocol. That is, omitting the actions inReady and outReady and the state variables enabled and

signalled. Similarly, let Env be the unaugmented environment automaton. Let φ1, φ2, . . . be the

console input actions of the algorithm automaton from which Buf is derived and, consequently, also

input actions Buf receives from the environment. Similarly, let θ1, θ2, . . . be the console output

actions of the algorithm automaton from which Buf is derived and consequently also output actions

Buf emits to the environment. Let B̂uf and Ênv be the automata with the handshake protocols. For

example, while Figure 3.4 show the augmented buffer automaton for the LCR example, Figure 7.10

shows the somewhat simpler automaton the LCR programmer may use to prove correctness.

Let Env ◦ Buf be the composition of automata Env and Buf. Similarly, let B̂uf be the augmented

version of the Let Ênv ◦ B̂uf be the composition of augmented automata where the inReady and

outReady actions are hidden. Theorem 7.7 says the externally visible behavior of the system (other

than the appearances of inReady and outReady actions) does not change by adding or removing the

handshake protocol between the two components.

Theorem 7.7 (Handshake) The set of traces of Ênv ◦ B̂uf is equal to the set of traces of Env ◦ Buf.

We prove Theorem 7.7 by showing two refinement mappings, each showing trace containment in

one direction. We define R which maps the states of Ênv ◦ B̂uf to the states of Env ◦ Buf as follows.

If s is a state of Ênv ◦ B̂uf then S = R(s) is the projection of s on the state space of Env ◦ Buf. In

other words, R is the identity, ignoring the enabled and signalled variables in both B̂uf and Ênv.

126

type IOA_Invocation = tuple of action : IOA_Action , params : Seq[IOA_Parameter]

type IOA_Parameter = union of Int: Int

type IOA_Action = enumeration of leader , vote

automaton LCRProcessInterface(i: Int, ringSize : Int, name: Int)

signature
input

vote(I0: Int) where I0 = i,

leader(I5: Int) where I5 = i,

output
leader(I5: Int) where I5 = i,

vote(I0: Int) where I0 = i,

internal
appendInvocation(I0: Int) where I0 = i

states
valid : Bool := false,

invocation : IOA_Invocation,

stdin : LSeqIn[IOA_Invocation]:= {},

stdout : LSeqOut[IOA_Invocation]:= {}

transit ions
input vote(I0)

e f f invocation := [vote , {} ` Int(I0)];

valid := true;

internal appendInvocation(I0)

pre valid

e f f stdin := stdin ` invocation;

valid := false;

output vote(I0)

pre stdin 6= {} ∧
((((head(stdin). action) = vote) ∧
(len(head(stdin). params)) = 1) ∧
(tag(head(stdin). params [0])) = Int) ∧
(head(stdin). params [0]. Int) = I0

e f f stdin := tail(stdin)

input leader(I5)

e f f stdout := stdout ` [leader , ({}) ` Int(I5)]

output leader(I5)

pre stdout 6= {} ∧
(((head(stdout). action) = leader) ∧
(len(head(stdout). params)) = 1) ∧
(tag(head(stdout). params [0])) = Int) ∧
(head(stdout). params [0]. Int) = I0

e f f stdout := tail(stdout);

Figure 7.10: IOA specification the LCRProcessInterface buffer automaton without handshake pro-
tocol

127

We define M which maps the states of Env ◦ A to the states of Ênv ◦ B̂uf as follows. If s is

a state of Env ◦ Buf then S = M(s) is the projection of s on the state space of Env ◦ Buf where

Buf.enabled = Buf.signalled = Env.enabled = Env.signalled = false. In other words, M is the

identity supplemented by the constant false function of enabled and signalled.

The proof that each of these functions is a refinement mapping proceeds by proving two lemmas

for each. Lemmas 7.8 and 7.9 assert the initial state correspondences hold. Lemmas 7.10 and 7.11

assert that step correspondences maintain the state correspondences.

Lemma 7.8 If s0 is an initial state of Ênv ◦ B̂uf then R(s0) is an initial state of Env ◦ Buf.

Proof: Let s0 be the unique initial state of Ênv ◦ B̂uf and S0 = R(s0). By definition, in S0 all

variables of Env ◦ Buf are equal to the corresponding variables in s0. In the unique initial state of

Env ◦ Buf, all variables that exist in that automaton are also equal to the corresponding variables of

Ênv ◦ B̂uf in s0, as needed.

Lemma 7.9 If s0 is an initial state of Env ◦ Buf then M(s0) is an initial state of Ênv ◦ B̂uf.

Proof: Let s0 be the unique initial state of Env ◦ Buf and S0 = M(s0). By definition, in S0 all

variables are equal to the corresponding variables in s0 and enabled and signalled are false. In the

unique initial state of Ênv ◦ B̂uf, all variables are also equal to the corresponding variables in s0 and

Buf.enabledf and Buf.signalled, Env.enabled and Env.signalled are also false, as needed.

Lemma 7.10 Let s be a reachable state of Ênv◦B̂uf, S = R(s) be a reachable state of Env◦Buf, and π

be a transition of Ênv◦ B̂uf resulting in state s′ when executed in s. There is a sequence of transitions

α of Env ◦ Buf, enabled in S, that results in state S′ = R(s′), such that trace(α) = trace(π).

Proof: We prove Lemma 7.10 by case analysis of the transitions π of Ênv ◦ B̂uf. Let S = R(s).

π is inReady Let α be {}. Since inReady is hidden, both the trace of π and the trace of α are empty,

as needed. Since S = R(s) and inReady affects only Env.enabled and R ignores that variable,

S′ = R(s′), as needed.

π is outReady Let α be {}. Since outReady is hidden, both the trace of π and the trace of α are

empty, as needed. Since S = R(s) and outReady affects only Buf.enabled and Env.signalled

and R ignores those variables , S′ = R(s′), as needed.

π is φi Let α be {φi}. The trace of φi equals the trace of α, as needed. Since S = R(s), φi is

enabled in s and the precondition of α less strict than that of φi, α is enabled in S. Since φi

and α have the same effect, as needed.

128

π is appendInvocation Let α be {appendInvocation}. The trace of θi equals the trace of α, as needed.

Since S = R(s), θi is enabled in s and the precondition of α identical to that of π, α is enabled

in S. Since π and α have the same effect other than assignments to Buf.signalled and since

R ignores that variable, S′ = R(s′), as needed.

π is any other action Let α be {π}. The trace of π equals the trace of α, as needed. Since

S = R(s) and π is enabled in s, α is enabled in S. Since π and α have the same effect,

S′ = R(s′), as needed.

Lemma 7.11 Let s be a reachable state of Env◦Buf, S = M(s) be a reachable state of Ênv◦ B̂uf, and

π be a transition of Env◦Buf resulting in state s′ when executed in s. There is a sequence of transitions

α of Ênv ◦ B̂uf, enabled in S, that results in state S′ = M(s′), such that trace(α) = trace(π).

Proof: We prove Lemma 7.11 by case analysis of the transitions π of Env◦Buf and the corresponding

transition sequences α of Ênv ◦ B̂uf. Let S = M(s).

π is φi Let α be {inReady, φi, appendInvocation}. The trace of π equals the trace of α, as needed.

Since S = M(s), all four enabled and signalled variables are false in S and, therefore, inReady

is enabled in S. After the execution of inReady, both Ênv.enabled and B̂uf.signalled are true,

so φi is enabled. Execution of φi toggles B̂uf.valid to true and Ênv.enabled to false, enabling

appendInvocation. Thus, α is enabled in S. Since φi and α have the same effect other than

assignments to Ênv.enabled and B̂uf.signalled and since both those are assigned false by

inReady and appendInvocation, respectively, S′ = M(s′), as needed.

π is θi Let α be {outReady, θi}. The trace of π equals the trace of α, as needed. Since S = M(s),

all four enabled and signalled variables are false in S and, therefore, outReady is enabled in

S. After the execution of outReady, both B̂uf.enabled and Ênv.signalled are true, and, thus, θi

is enabled. Execution of θi toggles both those variables back to false. Since θi and α have the

same effect other than the assignments to those two variables, S′ = M(s′), as needed.

π is any other action, α = π The trace of π equals the trace of α, as needed. Since S = R(s), π

is enabled in s, α is enabled in S. Since π and α have the same effect, S′ = M(s′), as needed.

Finally we are ready to prove Theorem 7.7.

Proof of Theorem 7.7 (Handshake): Lemmas 7.8 and 7.10, and the definition of a refinement

mapping that R is a refinement mapping from Ênv◦ B̂uf to Env◦Buf. Similarly, Lemmas 7.9 and 7.11

imply that M is a refinement mapping from Env ◦ A to Ênv ◦ B̂uf. Theorem 7.7 then follows from

from Theorem 3.4 of [83].

129

130

Chapter 8

Experimental Evaluation

We are, I think, in the right Road of Improvement, for we

are making Experiments.

— Benjamin Franklin [42]

To evaluate the IOA compiler and the code it produces, we have written IOA automata to

implement three distributed algorithms from the literature. We have compiled these node automata

and run the resulting systems to demonstrate the functionality of the generated code, measure some

its basic properties, and make some observations about the compilation process. Measuring the

performance of the running algorithms establishes some quantitative benchmarks for comparing this

prototype to any alternative implementations or future optimizations. The three algorithms we have

used are LCR leader election, computation of a spanning tree, and repeated broadcast/convergecast

over a computed spanning tree [75, 18, 19, 107].

Our selected experiments exercise many features of the compiler. First and foremost, we show

that distributed message-passing algorithms run and pass messages as expected. In doing so, we

employ most of the catalog of IOA datatypes, datatype constructors, and record types. The basic

datatypes are booleans, integers, natural numbers, characters, and strings. The type constructors

are arrays, sets, multisets, sequences, and mappings. The record types are enumerations, tuples,

and unions. Of these, we use all but naturals, characters, and strings. In addition, we introduce new

and enhanced datatypes not in the basic IOA language. For example, we enhance the Set and Mset

datatype constructors with choice operators and introduce a Null type constructor. We demonstrate

the use of all the supported control structures in the language including loops that iterate over the

elements of finite sets.

We show the initialization of automaton formal parameters at run time both from user provided

131

input and from values extracted from the MPI runtime environment. We use this functionality to

specify and to adapt to the topology and size of the network on which the systems run. We run

algorithms on a variety of network sizes and topologies.

Below we discuss our experimental testbed, our measurements of each algorithm, and some

general observations about the compiler.

8.1 Testbed

Our experimental testbed consists of a collection of networked workstations. Each machine has

a direct wire connection to a common Ethernet switch. The macines in our study are built with

Pentium III CPUs running at clock speeds of 2–3.2GHz using 128–896 megabytes of RAM. Each

operates under Red Hat Linux release 9 (Shrike). We use Sun Microsystems’ Java 2 SDK, Standard

Edition Version 1.4.2. Our MPI implementation is mpiJava Version 1.2.5 from Indiana University

running over mpich 1.2.5.2 from Argonne National Laboratory.

We have enhanced the compiler to output code instrumented to measure the algorithm runtime

at each node in the system. We exclude startup and initialization from our timing measurements

by having each node perform an MPI Barrier call after initialization but before executing any

transitions or processing any input. The Barrier call does not return until every node in the system

has executed the call. The timing period ends after the main thread completes its schedule. Each

node records its elapsed run time, the number of transitions it executed and the number of executions

of each of the four MPI messaging calls (Isend, test, Iprobe, and receive).

MPI requires that no node shuts down its MPI service while other nodes in the system are

continuing to use MPI. Therefore, each node performs a second Barrier call before exiting. In our

experiments, we used only algorithms that terminate at every node.

8.2 LCR Leader Election

In our first experiment, we generated code for the LeLann-Chang-Roberts (LCR) leader election

algorithm. We modified the algorithm presented in earlier chapters to achieve termination at all

nodes rather than just at the leader. Termination at every node is achieved by adding an extra

communication round in which the leader announces its status to the other nodes by sending a

message around the ring as well as to the outside world by executing an output action. Each node

schedule terminates after the announcement message has been forwarded. The algorithm automaton

for the terminating version of LCR is shown in Figure 8.1. The code for the composed, scheduled,

terminating version of LCR appears in Appendix A.2.

132

type Status = enumeration of idle, voting , elected , announced , over

automaton TermininatingLCRProcess(i, ringSize , name: Int)

signature
input vote(const i)

input RECEIVE(m: Int, const mod(i-1, ringSize), const i)

output SEND(m: Int, const i, const mod(i+1, ringSize))

output leader(const i)

states
pending : Mset[Int] := {name},

status : Status := idle

transit ions
input vote(i)

e f f status := voting

input RECEIVE(m, j, i) where m > name

e f f pending := insert(m, pending)

input RECEIVE(m, j, i) where 0 ≤ m ∧ m < name

input RECEIVE(m, j, i) where m < 0

e f f i f status 6= announced then
pending := insert(m, pending)

f i ;
status := over

input RECEIVE(name, j, i)

e f f status := elected

output SEND(m, i, j)

pre status 6= idle ∧ m ∈ pending

e f f pending := delete(m, pending)

output leader(i)

pre status = elected

e f f status := announced;

pending := insert (-1, pending)

Figure 8.1: Algorithm automaton TerminatingLCRProcess specifies an LCR process where every node
knows when the leader has been announced.

133

nodes samples messages transitions Iprobes runtime (σ)

2 962 5.00 19.3 5.30 0.158 (0.030)

3 966 8.80 25.4 8.60 0.227 (0.048)

4 961 12.7 30.7 11.8 0.308 (0.069)

5 966 16.0 32.4 13.2 0.325 (0.066)

6 931 20.2 37.5 17.0 0.418 (0.13)

7 905 24.9 41.5 19.9 0.485 (0.23)

8 923 29.3 48.1 25.2 0.603 (0.26)

9 902 34.9 51.0 26.5 0.633 (0.23)

10 728 37.3 50.0 28.5 0.662 (0.20)

Table 8.1: Measurements of LCR. The columns are the number of the number of nodes in the ring,
the number of sample runs measured, the total number of messages sent across all channels in a run,
the maximum number of transitions executed at any node in a run, the maximum number of Isends
performed at any node in a run, and the maximum runtime at any node on a run. Figures shown in
the last four columns are averages across all sample runs. The standard deviation of the maximum
runtime is shown in parenthesis. Runtimes times are measured in seconds.

8.2.1 Results

We ran LCR on rings ranging in size from two to ten nodes. For each ring size we executed one

thousand runs of LCR in batches of one hundred. We permuted the names of the nodes randomly

before each batch. The number of messages sent by the algorithm is wholly determined by the

permutation of the names. We spot checked the correctness of the result. As expected, in every

case, only the node with the largest name executed the leader output action.

Table 8.1 summarizes our measurements. We take the maximum runtime at any node as the

runtime of the algorithm. Similarly, we report the maximum number of transitions and Iprobe calls

executed at any node in a particular node. For messages, we report the total number of messages

sent by all nodes in the ring for that run. Each row in the column contains information about

the one thousand runs for a particular ring size. The latter four columns show the averages of

these measurements over the measured runs. The standard deviation of the runtimes is shown in

parenthesis.

In the first eight rows of Table 8.1, we have excluded runs where the runtime exceeded the mean

by more than two standard deviations. In the case of the ten-node rings we have excluded any

runs where the runtime exceeded the mean by more than three quarters of a standard deviation.

The reason for this broad definition of an outlier is that the samples show a distinctly bimodal

distribution. (This large outlier set also accounts for the substantially smaller number of samples

included.) Approximately ten percent of all runs involving six nodes exhibit excessive runtimes. The

distribution in the ten node case was so broad that we had to expand our definition of outlier to

134

Histogram of 10 Node LCR Runtimes

5.5

0.5

0

50

100

150

200

250

300

0 5 10 15 20

Runtime (seconds)

N
u

m
b

e
r

o
f

ru
n

s

Runs

Figure 8.2: 10 Node LCR Histogram

separate the two apparent distributions. We have yet to find the explanation for this phenomenon

but we suspect some artifact of our MPI installation. For all five larger node sizes, the larger mode

was at a runtime approximately five seconds longer than the reported mean. Figure 8.2 show a

histogram of all one thousand measured runtimes for LCR on a ten-node ring.

Figure 8.3 plots the four means against the number of nodes in the ring. The runtimes are plotted

against the left hand Y-axis showing the time in seconds. The other events are counted on the right

hand Y-axis. We observe that the all four measurements increase linearly with the number of nodes

in the ring, as expected. The number of transitions executed is dominated by the number of Iprobe

calls performed. (Although each MPI call corresponds to two IOA transitions in the model, we count

only the output in these measurements.) There is a substantial opportunity for tuning the system

performance by adjusting the ratio of Iprobe calls to messages actually received. For example,

following a suggestion by Mavrommatis and Georgiou based on their preliminary experiments, we

improved system performance by more than an order of magnitude by injecting sleep into the thread

schedules [87]. The main thread sleeps ten milliseconds after each Iprobe and each of the input and

output threads sleeps ten milliseconds after each iteration of its schedule loop. Measured run times

fell from more than ten seconds of elapsed time on a ten-node ring to less than half a second.

Figure 8.4 shows a sample of an execution of LCR. Command line arguments control whether

such transition by transition records are generated at runtime. No such records were produced in

135

LCR Measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12

Nodes

T
im

e
 (

se
co

n
d

s)

0

10

20

30

40

50

60

C
o

u
n

t

Runtime

Transitions

Messages

Iprobes

y = 0.07x

Figure 8.3: LCR Measurements

the measured runs but output actions were generated. The sequence of six transitions in that figure

shows node 4 processing a message “9” from node 3. In this run, the name of node 4 is “2”, so the

node forwards the message to node 5.

8.3 Spanning Tree

In our second experiment, we implemented the AsynchSpanningTreei algorithm presented in Sec-

tion 15.3 of [81]. Our automaton is based on an implementation of the algorithm by Mavrommatis

and Georgiou [88]. Figure 8.5 shows the algorithm automaton. Figure 8.6 shows the composite node

automaton. The complete expanded and scheduled node automaton appears in Appendix A.3.

The formal parameters of each node are its identifier, the size of the network and a set specifying

the neighbors with which the node may communicate. Note, that in the composite node automaton

shown in Figure 8.6, each node is connected to every node in the network (including itself). This

clique structure contrasts with the ring structure defined for LCRNode in Figure 3.7. In this design,

the formal parameters to the algorithm automaton specify the network topology, and the algorithm

automaton (and scheduled node automaton) respect that specification by exchanging messages only

with nodes in its neighbors set. This design has the advantage that network topology can be specified

136

[[[[transition: output Iprobe(4, 3) in automaton LCRNode(4)
on loon.csail.mit.edu at 16:13:56:224
%%%% Modified state variables:

RM --> Map, modified entries: {[3 -> Tuple, modified fields:
{[ready -> true] }]}
]]]]
[[[[transition: output receive(4, 3) in automaton LCRNode(4)
on loon.csail.mit.edu at 16:13:56:244
%%%% Modified state variables:

RM --> Map, modified entries: {[3 -> Tuple, modified fields:
{[toRecv -> Sequence, elements added: {9 } Elements removed: {}]
[ready -> false] }]}
]]]]
[[[[transition: internal RECEIVE(9, 3, 4) in automaton LCRNode(4)
on loon.csail.mit.edu at 16:13:56:246
%%%% Modified state variables:

P --> Tuple, modified fields: {[pending -> ((9 1))] }
RM --> Map, modified entries: {[3 -> Tuple, modified fields:

{[toRecv -> Sequence, elements added: {} Elements removed: {9 }] }]}
]]]]
[[[[transition: internal SEND(9, 4, 5) in automaton LCRNode(4)
on loon.csail.mit.edu at 16:13:56:248
%%%% Modified state variables:

P --> Tuple, modified fields: {[pending -> ()] }
SM --> Map, modified entries: {[5 -> Tuple, modified fields:

{[toSend -> Sequence, elements added: {9 } Elements removed: {}] }]}
]]]]
[[[[transition: output Isend(9, 4, 5) in automaton LCRNode(4)
on loon.csail.mit.edu at 16:13:56:252
%%%% Modified state variables:

SM --> Map, modified entries: {[5 -> Tuple, modified fields:
{[toSend -> Sequence, elements added: {} Elements removed: {9 }]
[sent -> Sequence, elements added: {9 } Elements removed: {}]
[handles -> Sequence, elements added: {mpi.Request@df503 }
Elements removed: {}] }]}
]]]]
[[[[transition: output test(mpi.Request@df503, 4, 5) in automaton LCRNode(4)
on loon.csail.mit.edu at 16:13:56:256
%%%% Modified state variables:

SM --> Map, modified entries: {[5 -> Tuple, modified fields:
{[handles -> Sequence, elements added: {} Elements removed:
{mpi.Request@df503 }] }]}
]]]]

Figure 8.4: An excerpt of example run of LCR leader election

137

type Message = enumeration of search , nil

automaton spanProcess(i, size: Int, neighbors : Set[Int])

signature
input search (const i)

input RECEIVE(m: Message , const i, j: Int)

output SEND(m: Message , const i, j: Int)

output parent(const i, j: Int)

states
searching : Bool := false,

reported : Bool := false,

parent : Int := -1,

send: Map[Int, Message],

nbrs: Set[Int],

nbr: Int

i n i t i a l l y
∀ k:Int (defined(send, k) ⇔ k ∈ neighbors) ∧
∀ k:Int ((defined(send, k) ∧ send[k] = search) ⇔ i = 0)

transit ions
input search(i)

e f f searching := true;

input RECEIVE(m, i, j) where i = 0

input RECEIVE(m, i, j) where i 6= 0

e f f i f parent = -1 then
parent := j;

for k: Int in neighbors - {j} do
send[k] := search

od
f i

output SEND(m, i, j)

pre searching;

send[j] = search;

m = search

e f f send[j] := nil

output parent(i, j) where i 6= 0

pre parent = j;

parent ≥ 0;

¬reported;
searching

e f f reported := true

output parent(i, j) where i = 0

pre ¬reported;
searching

e f f reported := true

Figure 8.5: Algorithm automaton spanProcess specifies a participating process in an algorithm that
constructs a spanning tree of an arbitrary connected network.

138

at runtime. For example, the neighbor relation might be built such that only nodes with relatively

faster connections are neighbors.

The state of each node includes two boolean flags searching and reported which specify whether

the node has begun actively participating in the search for the spanning tree and whether the node

has announced its parent, respectively. In addition the state includes a send map that stores the

next message to be sent to each neighbor and a variable specifying the parent of the node, if known.

Initially, the flags are false and parent is set to -1 to indicate that the node’s parent is unknown.

The send map is empty at every node except the distinguished root node. At node 0, the send

map is initialized such that node sends a search message to each of its neighbors. Finally, the state

includes two auxiliary variables nbrs and nbr that are used in scheduling the node. They appear in

the algorithm node only because the current prototype does not allow initially det blocks to declare

their own variables or reference schedule variables.

The signature of the automaton has two console and two network actions. The console actions

are the input search action, which toggles the searching flag to activate the node, and the output

parent action, which announces the node’s parent and toggles the reported flag. The network actions

are the usual SEND and RECEIVE actions. When the node is active, the former sends a message stored

in the send map and removes that message from the map. The first message received causes the node

to set the sending node as its parent and to prepare to flood its neighbors with search messages.

(The flood is only sent when the node is active.)

axioms Infinite(Handle)

axioms ChoiceSet(Int)

automaton spanNode(MPIrank , MPIsize : Int, neighbors : Set[Int])

components
P: spanProcess(MPIrank , MPIsize , neighbors);

RM[j: Int]: ReceiveMediator(Message , Int, MPIrank , j);

SM[j: Int]: SendMediator(Message , Int, MPIrank , j);

I: spanProcessInterface(MPIrank , MPIsize , neighbors)

hidden SEND(m, i, j), RECEIVE(m, j, i), parent(i, j), search(i)

Figure 8.6: Composite node automaton spanNode specifies one node in the spanning tree system.

8.3.1 Results

In our testbed, due to the broadcast nature of the interconnect, there are no marked disparities in

connection times between nodes. We ran some initial experiments in which the neighbor relation

specified that all nodes were neighbors. The resulting spanning tree was always a star with every

node announcing the root as its parent. To avoid this rather uninteresting result, we specified

a wrap-around mesh neighbor relation. An example twenty-node mesh is shown schematically in

Figure 8.7.

All spanning tree experiments were run on a twenty-node mesh running on a network of ten

139

samples messages transitions Iprobes runtime (s)

54 61 40.1 61 22.7 (9.5)

Table 8.2: Measurements of the spanning tree algorithm on 20 nodes run on 10 machines. The
columns are the number of the number of sample runs measured, the total number of messages sent
across all channels in a run, the maximum number of transitions executed at any node in a run,
the maximum number of Isends performed at any node in a run, and the maximum runtime at any
node on a run. Figures shown in the last four columns are averages across all sample runs. The
standard deviation of the maximum runtime is shown in parenthesis. Runtimes times are measured
in seconds.

machines. (Two nodes were allocated per machine). We ran the spanning tree algorithm fifty times.

The trace of the output actions of a typical run is shown in Figure 8.8. The tree constructed is

represented schematically in Figure 8.9. Since the algorithm simply floods the network with search

messages, the number of messages sent by the algorithm is totally determined by the neighbor

relation. One message is sent across every (directed) edge in the network. In a wrap-around mesh

network every node has degree four. Thus, each run of the algorithm sent 80 messages. In our

measurements, we take the maximum runtime at any node as the runtime of the algorithm. As with

LCR, the number of transitions executed is dominated by the number of Iprobe calls performed.

In fact, unless a test call returns false (a phenomenon not observed), all variability in the number

of transitions executed is due to the number of Iprobe calls executed. Table 8.2 summarizes our

measurements.

8.4 Asynchronous Broadcast/Convergecast

The third algorithm we use is an extension of the AsynchBcastAcki algorithm presented in Section

15.3 of [81] and of an earlier IOA implementation of that algorithm by Mavrommatis and Geor-

giou [88]. This version of the algorithm combines three phases. First, it builds a spanning tree

for the network. This phase is just a slightly different implementation of the previous algorithm.

Second, the root broadcasts messages over the spanning tree. Finally, when the root broadcasts a

distinguished “last” value, the leaves convergecast an acknowledgment back to the root.

Initially, all nodes in the network are idle. Inputs are only processed at a distinguished root

node (in this case, node 0). The formal parameters of each node are its set of neighbors and the

distinguished last value. Console inputs consist of messages to be broadcast. Console inputs at any

node except the root are ignored.

When the root is awakened by the first input action, it begins a phase to build a spanning tree

on the network. The root floods its neighbors with wakeup messages. Upon receipt of a wakeup

message, each node selects the sending node as its parent in the spanning tree and proceeds to flood

its neighbors. If a node receives a wakeup message after it has selected a parent (or if it is the parent-

140

Figure 8.7: A 4 x 5 node wrap-around mesh network

less root node), it immediately responds with a negative acknowledgment (nack). When a node

receives a positive acknowledgment (ack), it adds the acknowledging node to its set of children. A

node announces its parent with the parent output action and sends a positive acknowledgment to its

parent after it has received acknowledgments (negative or positive) from all its neighbors other than

its parent. Since only the leaves of the spanning tree initially receive (negative) acknowledgments

from all their neighbors, the positive acknowledgment messages are convergecast up the tree from

the leaves. When the root has received acknowledgments from all its children, the spanning tree is

complete and broadcasts may begin.

Since broadcast requests may arrive at the root at any time, it buffers them until the spanning

tree has been set up. After the tree has been initialized and each node has announced its parent, an

internal action begins copying messages from the buffer onto individual queues of messages destined

for each child of the root. Each intermediate node in the spanning tree forwards any message it

receives to its children and reports the message as received in an output action.

When the special “last” message is broadcast a second convergecast begins. This time each

node waits until it has reported all broadcasts and for acks from its children before sending an

141

[action: parent, params: {Int(14), Int(15)}]
[action: parent, params: {Int(17), Int(0)}]
[action: parent, params: {Int(7), Int(3)}]
[action: parent, params: {Int(16), Int(0)}]
[action: parent, params: {Int(9), Int(5)}]
[action: parent, params: {Int(3), Int(0)}]
[action: parent, params: {Int(2), Int(1)}]
[action: parent, params: {Int(18), Int(19)}]
[action: parent, params: {Int(12), Int(16)}]
[action: parent, params: {Int(19), Int(3)}]
[action: parent, params: {Int(10), Int(6)}]
[action: parent, params: {Int(1), Int(0)}]
[action: parent, params: {Int(6), Int(5)}]
[action: parent, params: {Int(4), Int(0)}]
[action: parent, params: {Int(15), Int(19)}]
[action: parent, params: {Int(13), Int(9)}]
[action: parent, params: {Int(8), Int(4)}]
[action: parent, params: {Int(5), Int(4)}]
[action: parent, params: {Int(0), Int(-1)}]
[action: parent, params: {Int(11), Int(7)}]

Figure 8.8: Typical output of the spanning tree algorithm on a 4 x 5 node wrap-around mesh network

Figure 8.9: Typical spanning tree computed on a 4 x 5 node wrap-around mesh network

142

acknowledgment to its parent. Again since leaves have no children, the acks propagate up the tree.

The schedule of each node may terminate after it has sent this final acknowledgment. When the

root node has received acks from all its children, it and the entire algorithm may terminate. Notice

that since the root node is the first to awake and the last to complete, the runtime of the entire

algorithm may be determined at the root node alone.

The number of messages sent by this algorithm is totally determined by the number of nodes

and number of edges in the network. Setting up the spanning tree requires two messages per edge

in the network: one search message and one ack or nack. Sending a broadcast requires one message

per edge in the spanning tree. To convergecast an acknowledgment of the last broadcast requires an

additional message per edge in the spanning tree.

In our experiment, we use a wrap-around mesh network with R rows and C columns and N =

R× C nodes. During spanning tree initialization each node sends a search message to and receives

an acknowledgment from each of its neighbors except its parent. Each node in a wrap-around mesh

has degree four. Thus, the root node sends four search messages and four nacks and every other node

sends three search messages and three acknowledgments (positive or negative). Thus, setting up the

spanning tree in a wrap-around mesh requires 6N + 2 messages. There are, by definition, N − 1

edges in a spanning tree. Therefore, sending a broadcast or a convergecast requires N − 1 messages.

Thus to send M messages plus the acknowledging final convergecast in an N node wrap-around

mesh network requires (6N + 2) + (M + 1)(N − 1) messages. For example to send 100 messages in

a 3× 3 network requires 56 + 808 = 864 total messages.

8.4.1 Results

In our broadcast experiment, we again measured the number of messages sent, the number of

transitions executed, the number of Iprobe calls executed, and the algorithm runtime. In this

experiment we varied the number of broadcasts sent through a wrap-around mesh network of nine

nodes from eleven to 751. Our results are summarized in Table 8.3. Average runtime is plotted

against the number of broadcasts in Figure 8.13. Average number of transitions and Iprobes

executed and the measured total number messages per run are plotted against the same abscissa in

Figure 8.14.

The runtime of the algorithm and the number of transitions and Iprobes executed grow quadrat-

ically with the number of broadcasts. The result is quite unexpected because, as discussed above,

the number of messages sent grows only linearly with the number of broadcasts. In fact, the message

counts conform exactly to formula calculated above. Compilation adds no overhead in number of

messages sent.

We can attribute this quadratic growth to our näıve implementation of datatypes. The standard

library implements every instance of a datatype as an immutable object. Even collections such as

143

axioms Null(Int)

type Status = enumeration of idle, initializing , announced,

bcasting , finalizing , done

type Kind = enumeration of bcast , ack, nack

type Message = tuple of kind: Kind, payload : Null[Int]

automaton bcastProcess(i, size: Int, neighbors : Set[Int], last: Int)

signature
input bcast(const i, v: Int)

internal queue(const i, v:Int)

internal ackInit(const i)

internal ackLast(const i)

input RECEIVE(m: Message , const i, j: Int)

output SEND(m: Message , const i, j: Int)

output parent(const i, j: Null[Int])

output report(const i, v: Int)

states
status : Status := idle,

parent : Null[Int] := nil,

children : Set[Int] := {},

acked : Set[Int] := {},

outgoing : Seq[Int] := {},

incomming : Seq[Int] := {},

send: Map[Int, Seq[Message]],

nbrs: Set[Int],

nbr: Int

i n i t i a l l y
∀ k:Int (defined(send, k) ⇔ k ∈ neighbors) ∧
∀ k:Int (i = 0 ⇒ (defined(send, k) ∧ head(send[k]) = [bcast, nil]))

transit ions
input bcast(i, v) where i 6= 0

input bcast(i, v) where i = 0

e f f i f status = idle then
status := initializing;

for k: Int in neighbors do
send[k] := send[k] ` [bcast, nil]

od
f i ;
outgoing := outgoing ` v;

internal queue(i, v) where i 6= 0

internal queue(i, v) where i = 0

pre status = bcasting;

outgoing 6= {};

v = head(outgoing)

e f f outgoing := tail(outgoing);

for k: Int in children do
send[k] := send[k] ` [bcast, embed(v)];

od;
i f v = last then

status := finalizing;

acked := {}

f i

Figure 8.10: Beginning of algorithm automaton bcastProcess specifies a participating process in an
algorithm that constructs a spanning tree and performs repeated broadcasts along that tree until a
distinguished last value is broadcast.

144

internal ackInit(i)

pre status = announced

e f f status := bcasting;

i f i 6= 0 then
send[parent.val] := send[parent.val] ` [ack, nil]

f i

internal ackLast(i)

pre status = finalizing;

acked = children;

incomming = {}

e f f status := done;

i f i 6= 0 then
send[parent.val] := send[parent.val] ` [ack, nil]

f i

input RECEIVE(m, i, j) where m.kind = nack

e f f acked := acked ∪ {j};

input RECEIVE(m, i, j) where m.kind = ack

e f f acked := acked ∪ {j};

i f status = initializing then children := children ∪ {j}; f i
input RECEIVE(m, i, j) where m.kind = bcast ∧ m.payload = nil

e f f i f parent = nil ∧ i 6= 0 then
parent := embed(j);

status := initializing;

acked := { parent.val};

for k: Int in neighbors - { parent.val} do
send[k] := send[k] ` m

od
else

send[j] := send[j] ` [nack, nil]

f i
input RECEIVE(m, i, j) where m.kind = bcast ∧ m.payload 6= nil

e f f incomming := incomming ` m.payload.val;

for k: Int in children do
send[k] := send[k] ` m

od;
i f m.payload.val = last then

status := finalizing;

acked := {};

f i

output SEND(m, i, j)

pre send[j] 6= {};

m = head(send[j])

e f f send[j] := tail(send[j])

output parent(i, j)

pre status = initializing;

acked = neighbors;

parent = j

e f f status := announced;

output report(i, v)

pre incomming 6= {};

v = head(incomming)

e f f incomming := tail(incomming)

Figure 8.11: Remainder of algorithm automaton bcastProcess specifies a participating process in an
algorithm that constructs a spanning tree and performs repeated broadcasts along that tree until a
distinguished last value is broadcast.

145

axioms Infinite(Handle)

axioms ChoiceSet(Int)

automaton bcastNode(MPIrank , MPIsize : Int, neighbors : Set[Int], last: Int)

components
P: bcastProcess(MPIrank , MPIsize , neighbors , last);

RM[j: Int]: ReceiveMediator(Message , Int, MPIrank , j);

SM[j: Int]: SendMediator(Message , Int, MPIrank , j);

I: bcastProcessInterface(MPIrank , MPIsize , neighbors , last)

hidden SEND(m, i, j), RECEIVE(m, i, j),

bcast(i, v), parent(i, j), report(i,v)

Figure 8.12: Composite node automaton bcastNode specifies one node in the broadcast system.

broadcasts samples messages transitions Iprobes runtime (σ)

11 67 152 554 389 8.41 (4.3)

21 98 232 828 537 11.9 (4.5)

31 98 312 1140 721 16.8 (6.4)

41 72 392 1330 780 18.8 (5.9)

51 97 472 1570 893 21.7 (6.5)

101 99 872 2600 1420 38.3 (8.1)

151 97 1272 3780 2610 62.4 (10)

201 14 1672 7330 6140 132 (39)

251 95 2072 8510 7020 150 (23)

301 96 2472 12100 10700 227 (30)

351 20 2872 17400 16000 340 (28)

401 20 3272 29600 28000 594 (160)

451 20 3672 41600 40200 840 (220)

501 20 4072 52400 50900 1070 (230)

751 19 6072 177000 170000 3560 (530)

Table 8.3: Measurements of the broadcast algorithm. The columns are the number of broadcasts
sent through the spanning tree, the number of sample runs measured, the total number of messages
sent across all channels in a run, the maximum number of transitions executed at any node in a
run, the maximum number of Isends performed at any node in a run, and the maximum runtime at
any node on a run. Figures shown in the last four columns are averages across all sample runs. The
standard deviation of the maximum runtimes is shown in parenthesis. Runtimes times are measured
in seconds.

146

Broadcast Runtimes

y = 0.0085x2 - 1.7677x

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600 700 800

Broadcasts sent

T
im

e
 (

se
co

n
d

s)

Runtime

Quadratic trend

Figure 8.13: Broadcast runtimes

arrays, maps, sets, and sequences are implemented this way. Thus, in the current implementation

every change to a variable that stores a collection entails copying all the unchanged parts of the

collection to generate the new instance. For example, in our current implementation appending

an element to a sequence causes the entire sequence to be copied. As a result, sequence append

takes time proportional to the length of the sequence. Thus, a sequence of appends (without any

intervening operations) takes time proportional to the square of the number of appends.

8.5 Observations

Programming algorithms from the literature with IOA was generally a smooth process. An under-

graduate student with only minimal experience with IOA and I/O automata was able to implement

versions of the asynchronous spanning tree and broadcast/convergecast algorithms in a matter of

hours. Writing schedules was both easier and harder than expected: For the algorithms in our case

studies, schedules followed fairly predictable patterns. The arrival of a message or an input action

triggers the execution of a cascade of transitions. The schedules for our case studies essentially

loop over these possible sources of input and when an input arrives the schedule performs the entire

resulting cascade of transitions before checking for the next input. Thus, the basic structure of a

schedule turned out to be very easy to outline. On the other hand, our experience was that most

147

Broadcast Events

y = 0.4036x2 - 80.067x

-20000

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 200 400 600 800

Broadcasts sent

C
o

u
n

t

Transitions

Messages

Iprobes

Quadratic trend

Figure 8.14: Broadcast counts

programming time was spent debugging NDR schedules. In this regard, runtime checks on NDR

generated values (e.g., precondition checks) proved valuable. Unfortunately, livelock was an all too

frequent result of a buggy schedule. Writing the conditional guards for fire statements was partic-

ularly tricky when polling for items from the stdin queue. In particular, it was a frequent bug that

a schedule never executed any transitions.

148

Part II

IOA Composer

149

150

Chapter 9

Introduction

“Where shall I begin, please your Majesty?” he asked.

“Begin at the beginning,” the King said, gravely, “and go

on till you come to the end: then stop.”

— Lewis Carroll [16]

In our IOA compilation strategy, the programmer composes a basic algorithm automaton with

a number of channel mediator and console buffer automata to create a composite node automaton.

However, the IOA compiler translates only primitive IOA programs into Java. Therefore, the com-

posite automaton must be expanded into primitive form before compilation. We have designed and

implemented a composer tool to translate a composite IOA automaton into a semantically equiva-

lent primitive automaton. This part describes, both formally and with examples, the constraints on

the definitions of primitive and composite IOA automata, the composability requirements for the

components of a composite automaton, and the syntactic transformation of a composite automaton

into an equivalent primitive automaton.

Chapter 10 introduces four examples used throughout this part to illustrate new definitions and

operations. Chapter 11 treats IOA programs for primitive I/O automata: it introduces notations

for describing the syntactic structures that appear in these programs, and it lists syntactic and

semantic conditions that these programs must satisfy to represent valid primitive I/O automata.

Chapter 12 describes how to reformulate primitive IOA programs into an equivalent but more regular

(desugared) form that is used in later definitions in this part. Chapter 13 treats IOA programs

for composite I/O automata: it introduces notations for describing the syntactic structures that

appear in these programs, describes resortings induced by them, and lists syntactic and semantic

conditions that these programs must satisfy to represent valid composite I/O automata. Chapter 14

describes the translation of the name spaces of component automata into a unified name space

151

for the composite automaton. Chapter 15 shows how to expand an IOA program for a composite

automaton into an equivalent IOA program for a primitive automaton. The expansion is generated

by combining syntactic structures of the desugared programs for the component automata after

applying appropriate replacements of sorts and variables. Chapter 16 details the expansion of the

composite automaton introduced in Chapter 10 using the desugared forms developed throughout

Chapters 12–14 and the techniques described in Chapter 15. Finally, Chapter 17 gives a precise

definition of the resortings and substitutions used to replace sorts and variables.

This part is also published as MIT LCS Technical Report 959 co-authored with Steve Gar-

land [118].

152

Chapter 10

Illustrative examples

And is then example nothing? It is every thing. Example

is the school of mankind, and they will learn at no other.

— Edmund Burke [15]

We use several examples of primitive and composite automata to illustrate both the notations

provided by IOA and also the formal semantics of IOA. We refer to Examples 10.1–10.3 throughout

Sections 11–16. Example 10.4 is relevant only to Sections 13–16.

Example 10.1 Figure 10.1 contains an IOA specification for a communication channel that can

both drop duplicate messages and reorder messages. Type parameters for the specification, Node

and Msg, represent the set of nodes that can be connected by channels and the set of messages that

can be transmitted. Individual parameters, i and j, represent the nodes connected by a particular

channel.

Two features of this example warrant particular attention later in this Part. First, the example

uses both type and variable automaton parameters. Second, it uses the keyword const to indicate

that the parameters i and j in the action signature are terms referring to the parameters i and j of

the automaton, rather than fresh variable declarations.

Example 10.2 Figure 10.2 contains the specification for a process that runs on a node indexed by

a natural number and that communicates with its neighbors by sending and receiving messages that

consist of natural numbers. The process records the smallest value it has received and passes on all

values that exceed the recorded value; if the set of values waiting to be passed on grows too large,

the process can also lose a nondeterministic set of those values. Interesting features of this example

153

automaton Channel(Node, Msg:type, i, j:Node)

signature
input send(const i, const j, m:Msg)

output receive(const i, const j, m:Msg)

states contents:Set[Msg] := {}

transit ions
input send(i, j, m)

e f f contents := insert(m, contents)

output receive(i, j, m)

pre m ∈ contents

e f f contents := delete(m, contents)

Figure 10.1: Sample automaton Channel

automaton P(n:Int)

signature
input receive(const n-1, const n, x:Int)

output send(const n, const n+1, x:Int),

overflow(const n, s:Set[Int])

states
val:Int := 0,

toSend:Set[Int] := {}

transit ions
input receive(n-1, n, x)

e f f i f val = 0 then val := x

e l s e i f x < val then
toSend := insert(val, toSend);

val := x

e l s e i f val < x then
toSend := insert(x, toSend)

f i
output send(n, n+1, x)

pre x ∈ toSend

e f f toSend := delete(x, toSend)

output overflow(n, s:Set[Int]; loca l t:Set[Int])

pre s = toSend ∧ n < size(s) ∧ t ⊆ s

e f f toSend := t

Figure 10.2: Sample automaton P

include the use of terms as parameters in transition definitions and a local variable representing an

initial nondeterministic choice and temporary state local to the transition. (The keyword local, newly

added to the IOA language, replaces and extends the keyword choose formerly used to introduce

hidden parameters. See Chapter 11 for a fuller description of local parameters.)

Example 10.3 Figure 10.3 contains the specification for another process that watches for overflow

actions and reports those that meet a simple criterion. Interesting features of this example include

more complicated uses of type parameters and where clauses, both in the action signature and to

distinguish two transition definitions for a single action.

Example 10.4 Finally, Figure 10.4 contains the specification of an automaton formed by composing

154

automaton Watch(T:type, what:Set[T])

signature
input overflow(x:T, s:Set[T]) where x ∈ what

output found(x:T) where x ∈ what

states seen:Array[T,Bool] := constant(false)

transit ions
input overflow(x, s ∪ {x})

e f f seen[x] := true

input overflow(x, s) where ¬(x ∈ s)

e f f seen[x] := false

output found(x)

pre seen[x]

Figure 10.3: Sample automaton Watch

axioms Between(Int, ≤)

automaton Sys(nProcesses : Int)

components C[n:Int]: Channel(Int, Int, n, n+1)

where 1 ≤ n ∧ n < nProcesses;

P[n:Int] where 1 ≤ n ∧ n ≤ nProcesses;

W: Watch(Int, between (1, nProcesses))

hidden send(nProcesses , nProcesses +1, m)

invariant of Sys:

∀ m:Int ∀ n:Int (1 ≤ m ∧ m < n ∧ n ≤ nProcesses

⇒ P[m].val < P[n].val ∨ P[n].val = 0)

Figure 10.4: Sample composite automaton Sys

instances of these three primitive automata. This specification relies on an auxiliary specification,

shown in Figure 10.5, to define the term between(1, nProcesses).

Between(T, ≤:T,T→Bool): tra i t
includes Set(T)

introduces
__≤__: T, T → Bool

between : T, T → Set[T]

asserts with x, y, z: T

x ∈ between(y, z) ⇔ y ≤ x ∧ x ≤ z

Figure 10.5: Auxiliary definition of function between

155

156

Chapter 11

Definitions for primitive automata

The beginning of wisdom is calling things by their right

names.

– Chinese Proverb

In order to describe syntactic manipulations of IOA programs, we introduce a nomenclature for

their syntactic elements. We expose just those elements of an IOA program we use to describe the

expansion of composite automata into primitive form. Section 11.1 introduces nomenclature for,

and the meaning of, syntactic structures in primitive automata. Section 11.2 examines how states

are represented and referenced in primitive IOA programs. Sections 11.3 and 11.4 describe semantic

conditions that must hold for an IOA program to represent a valid primitive I/O automaton.

11.1 Syntax

Figure 11.1 illustrates the general form of an IOA definition for a primitive I/O automaton. The

figure exposes just those elements of an IOA program we use to describe the expansion of composite

automata into primitive form. It does not expose the individual statements that appear in an

eff clause. (These are treated separately in Chapter 17.) Rather the figure simply refers to the

“program” (i.e., the complete sequence of statements) in an eff clause.

11.1.1 Notations and writing conventions

In Figure 11.1, paramsA denotes the sequence of type and variable declarations that serve as the

parameters of the automaton A. The Assumptions are LSL theories defining required properties

for these parameters. Notations paramsA,π
kind and paramsA,π

kind,tj
, where kind is one of in, out, or

157

automaton A(paramsA)

assumes Assumptions

signature

. . .

input π(paramsA,π
in) where PA,π

in

output π(paramsA,π
out) where PA,π

out

internal π(paramsA,π
int) where PA,π

int

. . .

states stateVarsA := initValsA initially PA
init

transitions

. . .

input π(paramsA,π
in,tj

; local localVarsA,π
in,tj

) case tj where PA,π
in,tj

eff ProgA,π
in,tj

ensuring ensuringA,π
in,tj

output π(paramsA,π
out,tj ; local localVarsA,π

out,tj) case tj where PA,π
out,tj

pre PreA,π
out,tj

eff ProgA,π
out,tj ensuring ensuringA,π

out,tj

internal π(paramsA,π
int,tj

; local localVarsA,π
int,tj

) case tj where PA,π
int,tj

pre PreA,π
int,tj

eff ProgA,π
int,tj

ensuring ensuringA,π
int,tj

. . .

Figure 11.1: General form of a primitive automaton

int, denote sequences of variables and/or terms that serve as parameters for the action π and its

transition definitions. The notations PA,π
kind , PA

init , PA,π
kind,tj

, PreA,π
kind,tj

, and ensuringA,π
kind,tj

denote

predicates (i.e., boolean-valued expressions). The notation initValsA denotes the sequence of terms

or choose expressions serving as initial values for the state variables. If the definition of A does

not specify an initial value for some state variable, we treat the declaration of that state variable

as equivalent to one of the form x:T := choose t:T where true. The notation ProgA,π
kind,tj

denotes

a program. The notation localVarsA,π
kind,tj

denotes a sequence of variables. In general, a notation

ending with an “s” denotes a sequence of zero or more elements.

Our conventions for decorating syntactic structures throughout this paper are as follows. Su-

perscripts refer either to automaton names or to automaton-name/action-name pairs. Automaton

names are capitalized (e.g., A, Ci, P). Action names are not capitalized and are either Greek letters

(e.g., π, π1) or written in mono-spaced font (e.g., send). Subscripts refer to more specific restrictions

such as action kind (i.e., in, out, or int), transition label (e.g., t1), or origin (e.g., desug). IOA

keywords appear in a small-bold roman font. References to other text in sample IOA programs

appear in a mono-spaced font. Syntactic structure labels and names in general IOA programs are

158

italicized .

11.1.2 Syntactic elements of primitive IOA programs

Variables in IOA programs can be declared explicitly as automaton parameters (varsA, which is a

subsequence of paramsA), as state variables (stateVarsA), or as local variables (localVarsA,π
kind,tj

); they

can also be declared implicitly as post-state variables that correspond to state variables, post-local

variables corresponding to local variables, or by their appearance in action parameters (varsA,π
in ,

which appear in paramsA,π
in) or in transition parameters (varsA,π

in,tj
, which appear in paramsA,π

in,tj
).

Variables in IOA programs can appear in parameters, terms, predicates, and programs. For simplic-

ity, Figure 11.1 does not indicate which variables may have free occurrences in which parameters,

terms, predicates, or programs; Section 11.3 describes which can occur where. As an illustration,

variables that occur freely in PA,π
in must be in one of the sequences varsA or varsA,π

in .

Below, we define each labeled syntactic structure and then illustrate it using selections from

Examples 10.1–10.3.

11.1.3 Parameters

• paramsA is the sequence of formal parameters for A, which can be either variables or type

parameters. We decompose paramsA into two disjoint subsequences, one (varsA) containing

variable declarations and the other (typesA) containing type parameters (identifiers qualified

by the keyword type). For example, paramsWatch is 〈T:type, what:Set[T]〉, which consists

of a type parameter T followed by a variable what:Set[T]. Hence typesWatch is 〈T:type〉 and

varsWatch is 〈what:Set[T]〉.

• paramsA,π
kind is the sequence of parameters for the set of actions of type kind named by π

in A’s signature. Action parameters can be either variables or const terms.1 For example,

paramsChannel,send
in is 〈const i, const j, m:Msg〉.

• paramsA,π
kind,tj

is the sequence of terms serving as parameters for transition definition tj for

actions of type kind named by π. Whereas π can appear at most once as the name of an

input, output, and internal action in A’s signature, it can have more than one transition

definition as an input, output, and internal action. For example, paramsWatch,overflow
in,t1

is

〈x, s ∪ {x}〉 and paramsWatch,overflow
in,t2

is 〈x, s〉.

1We may want to consider an alternative treatment for action parameters, similar to that for paramsA,π
kind,tj

, that

would dispense with the keyword const and treat all action parameters as terms, rather than as a mixture of terms
and variable declarations. The current treatment allows factored notations, such as π(i, j:Int), which introduce a list
of variables of a given sort; the alternative treatment would require unfactored notations, such as π(i:Int , j:Int), in
which a sort qualification applies only to the term it follows immediately.

159

11.1.4 Variables

• As noted above, varsA is the sequence of variables that are declared explicitly in paramsA,

that is, varsA is the sequence of identifiers in paramsA qualified by some sort other than type.2

For example, varsChannel is 〈i:Node, j:Node〉.

• varsA,π
kind is the sequence of variable declarations (i.e., non-const parameters) in paramsA,π

kind .

For example, varsChannel,send
in is 〈m:Msg〉.

• stateVarsA is the sequence of state variables of A. For example, the sequence stateVarsChannel

is 〈contents:Set[Msg]〉.

• postVarsA is the sequence of variables for post-states of A that can occur in any ensuringA,π
kind,tj

.

These variables are primed versions of variables in stateVarsA. For example, postVarsP is

〈val′:Int, toSend′:Set[Int]〉.3

• varsA,π
kind,tj

is the sequence of variables that occur freely in paramsA,π
kind,tj

, but are not in varsA.

For example, varsP,send
out,t1 is 〈x:Int〉, because n is in varsP.

• localVarsA,π
kind,tj

is a sequence of additional local variables for transition definition tj for actions

of type kind named π; these variables are not listed as parameters of π in the signature of A.

For example, localVarsP,overflow
out,t1 is 〈t:Set[Int]〉.

• localPostVarsA,π
kind,tj

is the sequence of post-local variables that name the values of local variables

after execution of ProgA,π
kind,tj

. These variables are primed versions of variables in localVarsA,π
kind,tj

that appear on the left side of an assignment statement in the transition definition and that

can occur in ensuringA,π
kind,tj

.

11.1.5 Predicates

• PA,π
kind is the where clause for the set of actions of type kind named by π in A’s signature. For

example, PWatch,found
out is x ∈ what. If PA,π

kind is not specified explicitly, it is taken to be true.

If action π does not appear as a particular kind—input, output, or internal—in A’s signature,

then PA,π
kind is defined to be false.

2When we define a sequence by selecting some members of another sequence, we preserve order in projecting from
the defining sequence to the defined sequence. For example, if u:S precedes v:T in paramsA, then u:S precedes v:T
in varsA.

3Previously, only the primed versions of state variables that appeared on the left side of an assignment statement

in the transition definition were allowed to appear in an ensuring clause. For example, we defined postVarsP,send
out,t1

to be 〈toSend′:Set[Int]〉, which did not include the variable val′, because val does not appear on the left side
of an assignment in this transition definition. The more complicated definition was intended as a safeguard against
specifiers writing val′ in an ensuring clause when there was no way the value of val′ could differ from that of val.
However, the more complicated definition did not safeguard against all such errors, because specifiers could still write
A′.val in an ensuring clause. Hence the simpler definition appears preferable.

160

• PA
init is a predicate constraining the initial values for A’s state variables. If it is not specified

explicitly, it is taken to be true.

• PA,π
kind,tj

is the where clause for transition definition tj for actions of type kind named by π.

For example, PWatch,overflow
in,t2

is ¬(x ∈ s). If PA,π
kind,tj

is not specified explicitly, it is taken

to be true. If action π does not appear as a particular kind in A’s signature, then PA,π
kind,tj

is

defined to be false.

• PreA,π
kind,tj

is the precondition for transition definition tj for actions of type kind named π,

where kind is out or int. For example, PreP,send
out,t1 is x ∈ toSend. If PreA,π

kind,tj
is not specified

explicitly, it is taken to be true. For every input transition, PreA,π
in,tj

is defined to be true

because transition definitions for input actions do not have preconditions.

• ensuringA,π
kind,tj

is the ensuring clause in the effects clause in transition definition tj for actions

of type kind named π. If ensuringA,π
kind,tj

is not specified explicitly, it is taken to be true. In

the examples, all ensuring clauses are true by default.4

11.1.6 Programs and values

• ProgA,π
kind,tj

is the program in the effects clause in transition definition tj for actions of type

kind named π. For example, ProgP,overflow
out,t1 is toSend := t.

• initValsA is the sequence of initial values for A’s state variables, which can be specified as either

terms or choose expressions. A state variable without an explicit initial value is equivalent

to one with an unconstrained initial value, that is, to one specified by a choose expression

constrained by the predicate true. For example, initValsP is 〈0, {}〉.

• tj is an optional identifier used to distinguish transition definitions of the same kind for the

same action π. If there is no case clause, tj is taken to be an arbitrary, but unique label.5

4The keyword ensuring replaces the so that keyword, which has been removed from IOA. Formerly, so that
was used to introduce three types of predicates in IOA: the initialization predicate for automaton state, the post-state
predicate for transition definitions, and the loop variable predicate in for statements. This multiple use was confusing.
Furthermore, the keyword where also introduces predicates, which led to additional confusion. In the new syntax,
automaton state predicates are introduced by initially, post-state predicates are introduced by ensuring, and all
other predicates (including for predicates) are introduced by where. The semantics of the clauses containing these
predicates has not changed.

5The case clause was introduced for use by the IOA simulator; it is not described yet in the IOA manual.

161

11.2 Aggregate sorts for state and local variables

11.2.1 State variables

The value (or the lvalue) of any state variable (e.g., toSend:Set[Int]) may be referenced using that

variable (e.g., toSend) as if it were a constant operator (e.g., toSend: → Set[Int]).6 However, in con-

texts that involve more than a single automaton (e.g., simulation relations or composite automata),

such variable references may be ambiguous. Hence IOA provides an equivalent, unambiguous nota-

tion for the values of state variables.

For each automaton A without type parameters, IOA automatically defines a sort States[A],

known as the aggregate state sort of A, as a tuple sort with a selection operator __.v:States[A] → T

for each state variable v of sort T . IOA also automatically defines variables A and A′ of sort States[A]

to represent the aggregate state and aggregate post-state of A. The terms A.v and A′.v are equivalent

to references to the state variable v and to its value v′ in a post-state. For example, States[P] =

tuple of val:Int, toSend:Set[Int], and P.val is a term of sort Int equivalent to the state variable

val.

If an automaton A has type parameters, the notation for its aggregate state sort is more com-

plicated, because there can be different instantiations of A with different actual types, and a simple

notation States[A] for the aggregate state sort would be ambiguous. To avoid this ambiguity, IOA

includes the type parameters of A (if any) in the notation States[A, typesA] for the aggregate state

sort of A, and the aggregate state and post-state variables A have this sort States[A, typesA]. For

example, States[Channel,Node,Msg] = tuple of contents:Set[Msg], and Channel.contents is a term

of sort Set[Msg] equivalent to the state variable contents.

As we will see in Section 13.2, including type parameters in the name of the aggregate state sort

enables us to generate distinct aggregate state sorts for each instantiation of A.

11.2.2 Local variables

In previous editions of the language, IOA introduced hidden action parameters with the keyword

choose appearing subsequent to the where clause. Thus, hidden or choose parameters could not

appear in the where clause. In the course of writing this document, we discovered a need for

hidden parameters in the where clauses of desugared input actions (see Chapter 12). In addition,

we believed that the ability to assign (temporary) values to hidden parameters would simplify the

definitions of expanded transition definitions of composite automata.7 We introduced local variables

into IOA to serve both these purposes. Local variables replace and extend choose parameters.

6An unambiguous variable identifier can be used alone. If two variables defined in the same scope have the same
identifier, but different sorts, their identifier may need to be qualified by their sorts.

7In the end, our final definitions in Sections 15.6–15.9 do not to use this feature. However, the ability to assign to
local variables was deemed useful and remains in the language.

162

Thus, the keyword local replaces the keyword choose in transition definition parameter lists and

local variables are those introduced following the keyword local in these parameter lists.

In the new notation, the scope of local variables extends to the whole transition definition, not

just to the precondition and effects. In addition, local variables may be assigned values in the eff

clause. Semantically, local variables are not part of the state of the I/O automaton represented

by an IOA program. Rather, they define intermediate states that occur during the execution of

an atomic transitions, but are not visible externally. Therefore, local variables may not appear in

simulation relations or invariants.

Although local variables differ significantly from state variables in terms of semantics, their

syntactic treatment is similar. As for state variables, IOA automatically defines an aggregate local

sort, together with aggregate local and post-local variables, to provide a second, equivalent notation

for references to local and post-local variables. For every transition definition tj for an action π of

type kind in automaton A, the aggregate local sort Locals[A, typesA, kind , π, tj] is a tuple sort with

a selection operator __.v:States[A] → T for each local variable v of sort T . Furthermore, aggregate

local and post-local variables, A and A′ of sort localVarsA,π
kind,tj

, are defined in the scope of that

transition definition. If there is only one transition definition for an action π of type kind, we omit

tj in the notation for this sort. For example, the aggregate locals sort Locals[P,out,overflow] is

tuple of t:Set[Int], and P.t is a term of sort Set[Int] equivalent to the local variable t in the

scope of overflow.

Note that the automaton name A is used as the identifier for two aggregate variables in ev-

ery transition definition: A:States[A, typesA] and A:Locals[A, typesA, kind , π, tj]. As specified in

Section 11.3, stateVarsA and localVarsA,π
kind,tj

must have no variables in common. Therefore, the

aggregate sorts have no selection operators in common and there is no ambiguity.

The initial values of local variables are constrained by the where predicate of the declaring

transition definition. In particular, a transition kind π(. . .) case tj is defined only for values of its

parameters that

1. satisfy the where clause of that kind of π in the signature of A, and

2. together with some choice of initial values for its local variables, satisfy the where clause of

the transition definition.

A transition is enabled only for the values of its parameters and local variables for which it is defined

and for which the precondition, if any, is satisfied.

Thus, the initial values of local variables are chosen nondeterministically from among the values

that meet these constraints. Local variables serve as hidden parameters with the semantics formerly

applied to choose parameters. We provide a formal treatment of the “values of its parameters” and

“some choice of values” at the end of Section 12.

163

location of term variables that can occur freely in term

paramsA varsA

paramsA,π
kind varsA, varsA,π

kind

PA,π
kind varsA, varsA,π

kind

initValsA varsA

PA
init varsA, stateVarsA

paramsA,π
kind,tj

varsA, varsA,π
kind,tj

PA,π
kind,tj

varsA, varsA,π
kind,tj

, localVarsA,π
kind,tj

PreA,π
kind,tj

varsA, varsA,π
kind,tj

, localVarsA,π
kind,tj

, stateVarsA

ProgA,π
kind,tj

varsA, varsA,π
kind,tj

, localVarsA,π
kind,tj

, stateVarsA

ensuringA,π
kind,tj

varsA, varsA,π
kind,tj

, localVarsA,π
kind,tj

, stateVarsA,

postVarsA, localPostVarsA,π
kind,tj

Table 11.1: Variables that can occur freely in terms in the definition of a primitive automaton.
Variables listed on the right may occur freely in the syntactic structure listed to their left.

Example 11.1 The type declarations and variables automatically defined for the sample automata

Channel, P, and Watch are shown in Figure 11.2.

type States[Channel,Node,Msg] = tuple of contents:Set[Msg]

type States[P] = tuple of val:Int, toSend:Set[Int]

type States[Watch,T] = tuple of seen:Array[T,Bool]

type Locals[P,out,overflow] = tuple of t:Set[Int]

Channel : States[Channel , Node, Msg]

P: States[P]

Watch : States[Watch,T]

P: Locals[P,out,overflow]

Figure 11.2: Automatically defined types and variables for sample automata

11.3 Static semantic checks

The following conditions must be true for an IOA program to represent a valid primitive I/O au-

tomaton. These conditions, which can be checked statically, are currently performed by ioaCheck,

the IOA parser and static-semantic checker.

X No sort appears more than once in typesA.

X Each action name (e.g., π) occurs at most three times in the signature of an automaton: at

most once in a list of input actions, at most once in a list of output actions, and at most once

in a list of internal actions.

164

X Each occurrence of an action name (e.g., π) in the signature of an automaton, or in one of its

transition definitions, must be followed by the same number and sorts of parameters.

X The sequences varsA and varsA,π
kind of variables contain no duplicates; furthermore, no variable

appears in both varsA and varsA,π
kind for any value of kind.8

X For each transition definition tj for an action of type kind named π, no variable appears

more than once in the combination of the sequences varsA, stateVarsA, postVarsA, varsA,π
kind,tj

,

localVarsA,π
kind,tj

, and localPostVarsA,π
kind,tj

.

X For each transition definition tj for an action of type kind named π, and for any identifier v

and sort S, the sequences stateVarsA and localVarsA,π
kind,tj

do not contain both of the variables

v:S and v′:S.

X Any operator that occurs in a term used in the definition of an automaton must be introduced

by a type definition or axioms clause in the IOA specification that contains the automaton

definition, by a theory specified in the assumes clause of the definition, or by a built-in datatype

of IOA.

X Any variable that occurs freely in a term used in the definition of an automaton must satisfy

the restrictions imposed by Table 11.1.

11.4 Semantic proof obligations

The following conditions must also be true for an IOA program to represent a valid I/O automaton.

Except in special cases, these conditions cannot be checked automatically, because they may require

nontrivial proofs (or even be undecidable); hence static semantic checkers must translate all but the

simplest of them into proof obligations for an automated proof assistant. These proof obligations

must be discharged using the axioms provided by IOA’s built-in types, by the theories associated

with the type definitions and the axioms in the IOA specification that contains the automaton

definition, and by the theories associated with the assumes clause of that definition.

X The sets of input, output, and internal actions in an I/O automaton must be disjoint. Thus,

for each sequence of values for the parameters of an action named π in the definition of an

automaton A, at most one of PA,π
in , PA,π

out , and PA,π
int can be true.

8This restriction is designed to avoid the confusion that would result if variables in varsA,π
kind are allowed to hide

or override variables with the same identifiers and sorts in varsA. A stronger restriction would prohibit an identifier

from appearing in two different variables (of different sorts) in varsA and varsA,π
kind ; this restriction would avoid the

need to pick a fresh variable when an instantiation of A causes two variables with the same identifier to clash by
mapping their sorts to a common sort. However, IOA does not make this stronger restriction.

165

Special cases arise if two of the three signature where clauses for π are literally false or if two

of three clauses are literally true. In the former case, the check automatically succeeds; in the

latter, it automatically fails.

X There must be a transition defined for every action specified in the signature. Thus, for each

sequence of values for the parameters of an action named π that make PA,π
kind true, there must

be a transition definition tj for π of type kind such that PA,π
kind,tj

is true for these values together

with some values for the local variable of that transition definition.

X For each kind of each action π, at most one transition definition tj can be defined for each

sequence of parameters values. That is, for each sequence of values, PA,π
kind,tj

can be true for at

most one value of j.

Special cases arise if all but one of the transition definition where clauses for a kind of an action

are literally false or any two are literally true. In the former case, the check automatically

succeeds; in the latter, it automatically fails.

We define these proof obligations more formally at the end of Chapter 12.

166

Chapter 12

Desugaring primitive automata

A spoonful of sugar helps the medicine go down.

— Mary Poppins [109]

The syntax for IOA programs described in Chapter 11 allows some flexibility of expression.

However, when defining semantic checks and algorithmic manipulations (e.g., composition) of IOA

programs, it is helpful to restrict attention, without loss of generality, to IOA programs that conform

to a more limited syntax.

In this chapter, we describe how to transform any primitive IOA program (as in Figure 11.1)

into an equivalent program (Figure 12.7) written with a more limited syntax. We describe this

transformation in four stages. First, in Section 12.1, we show how to desugar terms that appear as

parameters by replacing them with variables constrained by where clauses; that is, we show how

to reformulate action and transition definitions so as to eliminate the use of terms as parameters.

Second, in Section 12.2, we show how to introduce canonical parameters into desugared actions and

transition definitions. A canonicalized action is parameterized by the same sequence of variables

in all appearances, both in the signature and in the transition definitions. Third, in Section 12.3,

we combine all transition definitions of a single kind of an action into a single transition definition.

Fourth, in Section 12.4, we convert each reference to a state variable x to the equivalent reference

A.x defined in Section 11.2. In Section 12.5, we summarize the effects of these desugarings, which are

illustrated in Figure 12.7. Finally, in Section 12.6, we use the result of the first two transformations

to formalize the semantic proof obligations introduced in Chapter 11.

167

automaton A(typesA, varsA)

signature

. . .

input π(varsA,π
in,desug) where PA,π

in ∧ varsA,π
in,desug = paramsA,π

in

output π(varsA,π
out,desug) where PA,π

out ∧ varsA,π
out,desug = paramsA,π

out

internal π(varsA,π
int,desug) where PA,π

int ∧ varsA,π
int,desug = paramsA,π

int

. . .

states stateVarsA := initValsA initially PA
init

transitions

. . .

input π(varsA,π
in,tj ,desug

; local localVarsA,π
in,tj

, varsA,π
in,tj

) case tj

where PA,π
in,tj

∧ varsA,π
in,tj ,desug

= paramsA,π
in,tj

eff ProgA,π
in,tj

ensuring ensuringA,π
in,tj

output π(varsA,π
out,tj ,desug

; local localVarsA,π
out,tj , vars

A,π
out,tj) case tj

where PA,π
out,tj ∧ varsA,π

out,tj ,desug
= paramsA,π

out,tj

pre PreA,π
out,tj

eff ProgA,π
out,tj ensuring ensuringA,π

out,tj

internal π(varsA,π
int,tj ,desug

; local localVarsA,π
int,tj

, varsA,π
int,tj

) case tj

where PA,π
int,tj

∧ varsA,π
int,tj ,desug

= paramsA,π
int,tj

pre PreA,π
int,tj

eff ProgA,π
int,tj

ensuring ensuringA,π
int,tj

. . .

Figure 12.1: Preliminary form of a desugared primitive automaton: all action parameters are vari-
ables

12.1 Desugaring terms used as parameters

12.1.1 Signature

We desugar const parameters for an action in A’s signature by introducing fresh variables and

modifying the action’s where clause. For each const parameter we introduce a fresh variable and

add a conjunct to the where clause that equates the new variable with the term that served as the

const parameter. For example, if t is a term of sort T , then we desugar the action

input π(varsA,π
in , const t) where PA,π

in

as

input π(varsA,π
in , v:T) where v = t ∧ PA,π

in

168

Here, v:T is a fresh variable, that is, one that does not appear in varsA, varsA,π
in , stateVarsA,

postVarsA, localVarsA,π
in,tj

, or localPostVarsA,π
in,tj

for any j.1

Let PA,π
kind,desug be the where predicate that results after all const parameters in paramsA,π

kind have

been desugared. Let varsA,π
kind,desug be the sequence of distinct variables that parameterize π after

desugaring. Note that all variables that occur freely in PA,π
kind,desug are either in varsA,π

kind,desug or in

varsA. In general, varsA,π
kind,desug is a supersequence of varsA,π

kind (in that it contains a fresh variable for

each const parameter in paramsA,π
kind). In the above example, a const parameter appears in the last

position of paramsA,π
in . In general, const parameters may appear in any position. A fresh variable

appears in varsA,π
kind,desug in the same position the const parameter it replaces appears in paramsA,π

kind .

The preliminary form for desugaring an automaton signature shown in Figure 12.1 indicates

that each variable in varsA,π
kind,desug is equated to the corresponding entry in paramsA,π

kind . (In the

figure, we use paramsA,π
kind to mean the sequence of terms without the const keyword.) An obvious

simplification is to omit any identity conjuncts that arise when a variable in varsA,π
kind is equated to

itself.

12.1.2 Transition definitions

We desugar the parameters for each transition definition for an action named π to eliminate pa-

rameters that are not just simple variable references.2 As shown in Figure 12.1, we first replace

the transition parameters paramsA,π
kind,tj

by references to distinct fresh variables varsA,π
kind,tj ,desug

, that

is, to variables that do not appear in varsA, stateVarsA, postVarsA, varsA,π
kind,tj

, localVarsA,π
kind,tj

,

or localPostVarsA,π
kind,tj

.3 Second, we maintain the original semantics of the transition definition by

adding conjuncts to the where clause to equate the new variables with the old parameters. Third,

because transition definition parameters may introduce variables implicitly, but where clauses may

not, we introduce the previously free variables (i.e., varsA,π
kind,tj

) as additional local variables, letting

localVarsA,π
kind,tj ,desug

be the concatenation of localVarsA,π
kind,tj

and varsA,π
kind,tj

. In effect, these steps

move terms used as parameters into the where clause. For example, if t is a term and v is a fresh

1For the purposes of this transformation, it suffices to pick some v:T that does not appear in either varsA or

varsA,π
in . However, by ensuring that v:T is distinct from additional variables, we avoid having to replace it by yet

another fresh variable when we introduce canonical transition parameters, as described in Section 12.2. Furthermore,
to avoid any ambiguity that may arise when two variables share an identifier, and to avoid having to replace v:T by
yet another fresh variable in an instantiation of A that maps T and the sort of another variable with identifier v to a

common sort, it is helpful to pick v to be an identifier that does not appear in varsA, varsA,π
in , stateVarsA, postVarsA,

localVarsA,π
in,tj

, or localPostVarsA,π
in,tj

for any j.
2As mentioned in Footnote 1, we distinguish between action parameters in the signature that are terms (const

parameters) and those that are variable declarations to provide strong typing for variable declarations. Since the sorts

of paramsA,π
kind determine the sorts of paramsA,π

kind,tj
, there is no need for such a distinction in transition parameters.

3It suffices to replace just those parameters that are not simply references to variables, because the fresh variables
corresponding to such terms disappear when we substitute references to canonical variables for the parameters, as
described in the next section. However, the replacement is easier to describe if we replace all parameters.

Furthermore, as for const parameters, to avoid any ambiguity that may arise in the where clause when two
variables share an identifier, and to avoid having to replace v:T by yet another fresh variable in an instantiation of
A that maps T and the sort of another variable with identifier v to a common sort, it is helpful to pick v to be an

identifier that is not in varsA, stateVarsA, postVarsA, varsA,π
kind,tj

, localVarsA,π
kind,tj

, or localPostVarsA,π
kind,tj

.

169

variable with the same sort as t, then we desugar the transition definition

input π(t) where PA,π
in,tj

as

input π(v; local varsA,π
in,tj

) where v = t ∧ PA,π
in,tj

Let PA,π
kind,tj ,desug

be the where predicate that results after transition parameters have been desug-

ared in this fashion. Then any variable that has a free occurrence in this predicate must be in varsA,

varsA,π
kind,tj ,desug

, or localVarsA,π
kind,tj ,desug

.

After const and transition definition terms have been desugared, the valid occurrences of free

variables in syntactic forms, shown in Table 11.1, is revised by those shown in Table 12.1. After

desugaring, paramsA,π
kind = varsA,π

kind,desug and paramsA,π
kind,tj

= varsA,π
kind,tj ,desug

.

location of term variables that can occur freely in term

PA,π
kind,desug varsA, varsA,π

kind,desug

PA,π
kind,tj ,desug

varsA, varsA,π
kind,tj ,desug

, localVarsA,π
kind,tj ,desug

Table 12.1: Variables that can occur freely in terms in the definition of a desugared primitive
automaton. Variables listed on the right may occur freely in the syntactic structure listed to their
left.

Example 12.1 The first step in desugaring the primitive automata defined in Figures 10.1–10.3 is

shown in Figure 12.2. For the automaton Channel, n1:Node and n2:Node are fresh variables intro-

duced to desugar the const parameters in the signature. Similarly, n1:Node, n2:Node, and m1:Msg

are fresh variables introduced to desugar transition parameters. Since both varsChannel,send
in,t1

and

varsChannel,receive
out,t1 contain the single variable m:Msg, we introduce m:Msg as a local variable for each

transition definition. Notice that the variables introduced for each action need be fresh only with

respect to i:Node, j:Node, and m:Msg; furthermore, “freshness” need not extend across transitions or

between actions and transitions.

The automata P and Watch are desugared in a similar fashion. Since there are no const parame-

ters in the signature of Watch, that signature is unchanged. Since the parameters for the transition

definitions for the overflow action in Watch contain two free variables, x and s, the desugared tran-

sition definitions declare these variables as local. Also, in the second of the desugared transition

definitions, the desugared where clause incorporates the original where clause as a conjunct.

170

automaton Channel(Node, Msg:type, i, j:Node)

signature
input send(n1, n2:Node, m:Msg) where n1 = i ∧ n2 = j

output receive(n1, n2:Node, m:Msg) where n1 = i ∧ n2 = j

states contents:Set[Msg] := {}

transit ions
input send(n1, n2, m1; loca l m:Msg) where n1 = i ∧ n2 = j ∧ m1 = m

e f f contents := insert(m, contents)

output receive(n1, n2, m1; loca l m:Msg)

where n1 = i ∧ n2 = j ∧ m1 = m

pre m ∈ contents

e f f contents := delete(m, contents)

automaton P(n:Int)

signature
input receive(i1, i2, x:Int) where i1 = n-1 ∧ i2 = n

output send(i1, i2, x:Int) where i1 = n ∧ i2 = n+1,

overflow(i1:Int, s:Set[Int]) where i1 = n

states
val:Int := 0,

toSend:Set[Int] := {}

transit ions
input receive(i1, i2, i3; loca l x:Int)

where i1 = n-1 ∧ i2 = n ∧ i3 = x

e f f ... % effect clause unchanged from original definition of P

output send(i1, i2, i3; loca l x:Int)

where i1 = n ∧ i2 = n+1 ∧ i3 = x

pre x ∈ toSend

e f f toSend := delete(x, toSend)

output overflow(i1, s1; loca l t, s:Set[Int]) where i1 = n ∧ s1 = s

pre s = toSend ∧ n < size(s) ∧ t ⊆ s

e f f toSend := t

automaton Watch(T:type, what:Set[T])

signature
input overflow(x:T, s:Set[T]) where x ∈ what

output found(x:T) where x ∈ what

states seen:Array[T,Bool] := constant(false)

transit ions
input overflow(t1, s1; loca l x:T, s:Set[T])

where t1 = x ∧ s1 = s ∪ {x}

e f f seen[x] := true

input overflow(t1, s1; loca l x:T, s:Set[T])

where ¬(x ∈ s) ∧ t1 = x ∧ s1 = s

e f f seen[x] := false

output found(t1; loca l x:T) where t1 = x

pre seen[x]

Figure 12.2: Preliminary desugarings of the sample automata Channel, P, and Watch

171

12.2 Introducing canonical names for parameters

12.2.1 Signature

IOA does not require that the sequences of variables varsA,π
in , varsA,π

out , and varsA,π
int be the same. For

example, const parameters may cause these sequences to have different lengths. However, since IOA

requires paramsA,π
in , paramsA,π

out , and paramsA,π
int to contain the same number and sorts of elements,

the desugared versions of these sequences (i.e., varsA,π
in,desug , varsA,π

out,desug , and varsA,π
int,desug) do have

the same number and sorts of elements. We choose one of these desugared variable sequences to

be the canonical parameters for the action π in A. We call the canonical sequence varsA,π. We

replace the other two sequences of parameters for π in the signature of A by varsA,π, and we define

substitutions σA,π
kind to replace varsA,π

kind,desug with varsA,π in PA,π
kind .4

12.2.2 Transition definitions

We canonicalize the parameters for each transition definition for an action named π so that the

definition also uses varsA,π as its parameters. Specifically, we replace the references to variables

that parameterize a desugared transition definition of π (i.e., varsA,π
kind,tj ,desug

) by references to the

canonical variables (i.e., varsA,π) throughout the transition definition. Therefore we define a sub-

stitution σA,π
kind,tj

to perform this replacement and apply it to the whole transition definition. As

described in Chapter 17, if the canonical variables clash with the desugared local variables (i.e.,

localVarsA,π
kind,tj ,desug

), we must substitute fresh local variables for those that clash. The variables

introduced by the substitution must be be distinct and fresh with respect to varsA, varsA,π, and the

desugared local variables. The substitutions for canonicalization are listed in Table 12.2. Variables

listed in the center column are mapped by the substitution named in the left column to those listed

in the right column.

12.2.3 Simplifying local variables

Finally, we simplify each desugared and canonicalized transition definition for actions named π by

eliminating extraneous local variables. A local variable may be eliminated if it is never an lvalue in

an assignment in the transition definition for π and if the where clause equates it with a canonical

variable for π, that is, if it is used only as a constant in the transition definition and is already

named by a canonical parameter.

This simplification is accomplished in four steps.

4See Chapter 17 for a precise definition of a substitution, which maps a set of variables to a set of terms. Often
we represent the domain and range of a substitution as sequences, with the ith variable in the domain being replaced
by the ith variable or term in the range.

172

automaton A(typesA, varsA)

signature

. . .

input π(varsA,π) where σA,π
in (PA,π

in,desug)

output π(varsA,π) where σA,π
out (PA,π

out,desug)

internal π(varsA,π) where σA,π
int (PA,π

int,desug)

. . .

states stateVarsA := initValsA initially PA
init

transitions

σA,π
in,tj

 input π(varsA,π
in,tj ,desug

; local localVarsA,π
in,tj ,desug

) case tj where PA,π
in,tj ,desug

eff ProgA,π
in,tj

ensuring ensuringA,π
in,tj

σA,π
out,tj

output π(varsA,π

out,tj ,desug
; local localVarsA,π

out,tj ,desug
) case tj where PA,π

out,tj ,desug

pre PreA,π
out,tj

eff ProgA,π
out,tj ensuring ensuringA,π

out,tj

σA,π
int,tj

internal π(varsA,π

int,tj ,desug
; local localVarsA,π

int,tj ,desug
) case tj where PA,π

int,tj ,desug

pre PreA,π
int,tj

eff ProgA,π
int,tj

ensuring ensuringA,π
int,tj

. . .

Figure 12.3: Intermediate form of a desugared primitive automaton with canonical action parameters
(cf. Figure 12.1)

substitution domain range

σA,π
kind varsA,π

kind,desug varsA,π

σA,π
kind,tj

varsA,π
kind,tj ,desug

varsA,π

σA,π
kind,tj ,simp Redundant variables in σA,π

kind,tj
(localVarsA,π

kind,tj ,desug
) varsA,π

σA

x ∈ stateVarsA A:States[A, typesA].x

x′ ∈ postVarsA A′:States[A, typesA].x

x ∈ localVarsA,π
kind,tj

A:Locals[A, typesA, π].x

x′ ∈ localPostVarsA,π
kind,tj

A′:Locals[A, typesA, π].x

Table 12.2: Substitutions used in desugaring a primitive automaton. Substitutions listed on the left
map variables in the domain to their right to variables in the range their far right.

173

1. Define a substitution σA,π
kind,tj ,simp that maps the redundant local variables to the corresponding

canonical variables.

2. Apply σA,π
kind,tj ,simp to each clause in the transition definition: the where, pre, eff, and ensuring

clauses.

3. Delete identity conjuncts from the where clause.

4. Delete the declarations of local variables that no longer appear in the transition.

Example 12.2 The second step in desugaring the primitive automata defined in Figures 10.1–10.3

is shown in Figure 12.4. The definitions in this figure are obtained from those in Figure 12.2 by

selecting canonical parameters for each action.

Since each action occurs only once in the signature of the automaton Channel, selecting the

canonical variables is trivial:

• varsChannel,send defaults to varsChannel,send
in,desug = 〈n1:Node, n2:Node, m:Msg〉, and

• varsChannel,receive defaults to varsChannel,receive
out,desug = 〈n1:Node, n2:Node, m:Msg〉.

These selections also make canonicalizing the signature trivial, because identity substitutions suffice.

We canonicalize the transition definitions by defining two substitutions.

• σChannel,send
in,t1

maps varsChannel,send
in,t1 ,desug = 〈n1:Node, n2:Node, m1:Msg〉, to varsChannel,send by

replacing the parameter m1:Msg with the canonical parameter m:Msg. To avoid a conflict between

the local variable m:Msg and the canonical parameter m:Msg, the substitution also replaces m:Msg

by the fresh variable m2:Msg.

• In the same way, σChannel,receive
out,t1 maps varsChannel,receive

out,t1 ,desug = 〈n1:Node, n2:Node, m1:Msg〉 to

varsChannel,receive by replacing the parameter m1:Msg with the canonical parameter m:Msg

and the local variable m:Msg with the fresh variable m2:Msg.

Applying these substitution to the transition definitions produces
input send(n1, n2, m; loca l m2:Msg) where n1 = i ∧ n2 = j ∧ m = m2

e f f contents := insert(m2, contents)

output receive(n1, n2, m; loca l m2:Msg) where n1 = i ∧ n2 = j ∧ m = m2

pre m2 ∈ contents

e f f contents := delete(m2, contents)

However, the local variable m2 is extraneous in both transition definitions, because it is equated with

m in the where clause and no value is assigned to it. Hence m2 equals m throughout the transition,

and we can eliminate it entirely by applying a substitution (e.g., σchannel,send
in,t1 ,simp , which maps m2 to

m) to the where,eff and pre (in the case of receive) clauses and simplifying the result, as shown in

Figure 12.4.

174

automaton Channel(Node, Msg:type, i, j:Node)

signature
input send(n1, n2:Node, m:Msg) where n1 = i ∧ n2 = j

output receive(n1, n2:Node, m:Msg) where n1 = i ∧ n2 = j

states contents:Set[Msg] := {}

transit ions
input send(n1, n2, m) where n1 = i ∧ n2 = j

e f f contents := insert(m, contents)

output receive(n1, n2, m) where n1 = i ∧ n2 = j

pre m ∈ contents

e f f contents := delete(m, contents)

automaton P(n:Int)

signature
input receive(i1, i2, x:Int) where i1 = n-1 ∧ i2 = n

output send(i1, i2, x:Int) where i1 = n ∧ i2 = n+1,

overflow(i1:Int, s:Set[Int]) where i1 = n

states
val:Int := 0,

toSend:Set[Int] := {}

transit ions
input receive(i1, i2, x) where i1 = n-1 ∧ i2 = n

e f f i f val = 0 then val := x

e l s e i f x < val then
toSend := insert(val, toSend);

val := x

e l s e i f val < x then
toSend := insert(x, toSend)

f i
output send(i1, i2, x) where i1 = n ∧ i2 = n+1

pre x ∈ toSend

e f f toSend := delete(x, toSend)

output overflow(i1, s; loca l t:Set[Int]) where i1 = n

pre s = toSend ∧ n < size(s) ∧ t ⊆ s

e f f toSend := t

automaton Watch(T:type, what:Set[T])

signature
input overflow(x:T, s:Set[T]) where x ∈ what

output found(x:T) where x ∈ what

states seen:Array[T,Bool] := constant(false)

transit ions
input overflow(x, s; loca l s2:Set[T]) where s = s2 ∪ {x}

e f f seen[x] := true

input overflow(x, s) where ¬(x ∈ s)

e f f seen[x] := false

output found(x)

pre seen[x]

Figure 12.4: Intermediate desugarings of the sample automata Channel, P, and Watch, obtained from
the preliminary desugarings in Figure 12.2 by selecting canonical parameters for each action

175

As for Channel, each action occurs only once in the signature of the automaton P. Hence, it is

trivial to select varsP,receive, varsP,send, and varsP,overflow and to canonicalize the signature.

To map varsP,receive
in,t1 ,desug (i.e., 〈i1:Int, i2:Int, i3:Int〉) to varsP,receive, we define σP,receive

in,t1
to

replace i3:Int by x:Int. To avoid conflicts between the local variable x:Int and the canonical

parameter x:Int, the substitution also replaces x:Int by i4:Int. Applying this substitution to the

transition definition produces:
input receive(i1, i2, x; loca l i4:Int) where i1 = n-1 ∧ i2 = n ∧ x = i4

e f f i f val = 0 then val := i4

e l s e i f i4 < val then

toSend := insert(val, toSend);

val := i4

e l s e i f val < i4 then

toSend := insert(i4, toSend)

f i

Since the local variable i4 equals x throughout the transition definition, we can eliminate it entirely

by defining a substitution mapping i4 to x, applying that substitution to the where and eff clauses,

and simplifying the result, as shown in Figure 12.4.

Canonicalization of the send transition follows the same pattern as the receive transition. Ap-

plication of the canonicalizing substitution σP,send
out,t1 yields:

output send(i1, i2, x; loca l i4:Int) where i1 = n ∧ i2 = n+1 ∧ x = i4

pre i4 ∈ toSend

e f f toSend := delete(i4, toSend)

This definition simplifies to the one shown in Figure 12.2, which does not contain a local variable.

Similarly applying the canonicalizing substitution σP,overflow
out,t1 to the overflow transition yields:

output overflow(i1, s; loca l t, s2:Set[Int]) where i1 = n ∧ s = s2

pre s2 = toSend ∧ n < size(s2) ∧ t ⊆ s2

e f f toSend := t

Once again, this definition simplifies to the one shown in Figure 12.2. Notice that the local variable

t cannot be eliminated because it is not equated with a canonical parameter. Further notice that, in

this case, canonicalization has eliminated all the local variables introduced in the desugaring step.

As for Channel and P, each action occurs only once in the signature of the automaton Watch.

Hence it is trivial to select varsWatch,overflow and varswatch,found.

Canonicalizing the two transition definitions for overflow proceeds by defining σwatch,overflow
in,t1

and σwatch,overflow
in,t2

, which happen to be the same. They map t1:T to x:T, s1:Set[T] to s:Set[T],

s:Set[T] to s2:Set[T], and x:T to t2:T. Applying these substitutions to the transition definitions

yields:
input overflow(x, s; loca l t2:T, s2:Set[T])

where x = t2 ∧ s = s2 ∪ {t2}

e f f seen[t2] := true

176

input overflow(x, s; loca l t2:T, s2:Set[T])

where ¬(t2 ∈ s2) ∧ x = t2 ∧ s = s2

e f f seen[x] := false

The local variable t2:T can be eliminated from both transition definitions. The local variable

s2:Set[T] can be eliminated from the second transition definition but not from the first. These

simplifications result in the transition definitions shown in Figure 12.4.

Notice that after the simplification of the local variable, the semantic meaning of the parameter

s:Set[T] in the desugared and canonicalized automaton shown in Figure 12.4 is different than the

meaning of the parameter s:Set[T] in the original automaton shown in Figure 10.3. The parameter

s:Set[T] in the original actually corresponds to the local variable s2:Set[T] in the canonicalized

version.

Applying the canonicalizing substitution σwatch,found
in,t1

to the found transition yields:
output found(x; loca l t2:T) where x = t2

pre seen[t2]

After its local variables are simplified, the transition definition shown in Figure 12.4 is identical to

the one originally defined in Figure 10.3.

12.3 Combining transition definitions

We will see in Sections 15.7–15.9 that combining multiple transition definitions for a given action

into a single transition definition is useful for composing automata. It is necessary for combining

input actions that execute atomically in the composition, and it avoids a code explosion multiplica-

tive in the number of input and output actions. Because this transition combining step is easy

to understand when applied to a single primitive automaton, we describe it here and assume all

automata hereafter have only a single transition definition per kind per action, as shown in Fig-

ure 12.5. To combine the transition definitions for a given kind of an action π, we need to combine

their sequences of parameters, their local variables, and their where, pre, eff, and ensuring clauses

into one, semantically equivalent, transition definition.

Furthermore, as will be discussed further in Chapter 15, the kind of an action may be changed

by composition. Input actions may be subsumed by output actions, and output actions may be

hidden as internal actions. Thus, the expansion of a composite automaton may combine transition

definitions across kinds. To facilitate such combinations, we collect together all the local variables

for each action of an automaton A into a single sequence of variables localVarsA,π, which is the

concatenation (with duplicates removed) of the all sequences localVarsA,π
kind,tj

. Again, this variable

combining step is easy to understand when applied to a single primitive automaton, so we describe

it here and assume all automata hereafter have only one sequence of local variables per action name.

In describing this combination, we assume that parameters of the automaton have already been

177

automaton A(typesA, varsA)

. . .

states stateVarsA := initValsA initially σA(PA
init)

transitions

input π(varsA,π; local localVarsA,π) where
∨

j PA,π
in,tj ,desug

eff

if PA,π
in,tj ,desug

then ProgA,π
in,tj ,desug

elseif . . .

fi

ensuring
∧

j

(
PA,π

in,tj ,desug
⇒ ensuringA,π

in,tj ,desug

)
output π(varsA,π; local localVarsA,π) where

∨
j PA,π

out,tj ,desug

pre
∨

j

(
PA,π

out,tj ,desug
∧ PreA,π

out,tj ,desug

)
eff

if PA,π
out,tj ,desug

then ProgA,π
out,tj ,desug

elseif . . .

fi

ensuring
∧

j

(
PA,π

out,tj ,desug
⇒ ensuringA,π

out,tj ,desug

)
internal π(varsA,π; local localVarsA,π) where

∨
j PA,π

int,tj ,desug

Analogous to output.

. . .

Figure 12.5: Intermediate form of a desugared primitive automaton, with canonical action parame-
ters and with all transition definitions for each kind of an action combined into a single transition
definition

178

desugared and canonicalized as described in Sections 12.1 and 12.2. In Figure 12.5 and the discussion

below, we indicate the syntactic forms that result from that desugaring by use of the desug subscript.

We rely on the key semantic condition (mentioned in Section 11.4 and discussed in Section 12.6) that

exactly one transition definition be defined for each assignment of values to varsA,π that satisfies

PA,π
kind . That is, within an automaton, all like-named transition definitions must have where clauses

that are satisfiable only for disjoint sets of parameter values.5

First, notice that since all the contributing transition definitions are already desugared and

canonicalized, each is is parameterized by varsA,π. Hence, combining the parameters is trivial.

At first glance, combining local variables looks trickier. Each transition definition has local

scope with respect to local variables. So, there may be any amount of duplication of variables

among the sequences localVarsA,π
kind,tj ,desug

. One might think that a correctly combined transition

definition might need distinct local variables to store the values of the duplicate local variable

appropriate to each contributing transition definition. However, for each assignment of values to

varsA,π only one contributing transition definition can be defined for any assignment of values to its

local variables. Therefore, there is at most one “useful” initial value for each local variable. Similarly,

at most one contributing eff clause can make assignments to its local variables. Hence, duplicate

declarations of local variables have no effect on the combined transition definition. Accordingly, we

define localVarsA,π to be the sequence of variables obtained by removing any duplicates from the

concatenation of all sequences localVarsA,π
kind,tj ,desug

.

In combining the various clauses of the contributing transitions, we use the where clauses of the

contributing transitions as guards to select the correct case to use. The four clauses of the combined

transition are combined as follows:

• The combined where clause is the disjunction of the where clauses from all the contributing

transition definitions.

• For output and internal transition definitions, the combined pre clause checks that one set of

parameters fulfills both the where and pre clauses of some contributing transition definition.

• The combined eff clause is a single if...then...elseif...fi statement in which the contributing

eff clause is guarded by the associated where clause.

• Similarly, the combined ensuring clause asserts the appropriate contributing ensuring clause

when the associated where clause is true. Note that since PA,π
kind,tj ,desug

is defined on the initial

values of localVarsA,π
kind,tj ,desug

, assignments made to local variables in the eff clause have no

effect on which ensuring clause is asserted.

5These semantic conditions also ensure that, in the absence of local variables, the resulting where clause can be
eliminated because it will be equivalent to true.

179

automaton Watch(T:type, what:Set[T])

signature
input overflow(x:T, s:Set[T]) where x ∈ what

output found(x:T) where x ∈ what

states seen:Array[T,Bool] := constant(false)

transit ions
input overflow(x, s; loca l s2:Set[T]) where s = s2 ∪ {x} ∨ ¬(x ∈ s)

e f f i f s = s2 ∪ {x} then seen[x] := true

e l s e i f ¬(x ∈ s) then seen[x] := false

f i
output found(x)

pre seen[x]

Figure 12.6: Improved intermediate desugaring of the sample automaton Watch, obtained from the
intermediate desugaring in Figure 12.4 by combining the transition definitions for overflow

automaton A(typesA, varsA)

. . .

states stateVarsA := initValsA initially σA(PA
init)

transitions

σA

σA,π
kind

kind π(varsA,π; local localVarsA,π) where PA,π

kind,comb,t1

pre PreA,π
kind

eff ProgA,π
kind ensuring ensuringA,π

kind

. . .

Figure 12.7: Final form of a desugared primitive automaton, with canonical action parameters, with
all transition definitions for each kind of an action combined into a single transition definition, and
with all variable references expanded.

Example 12.3 Consider the desugared and canonicalized automaton Watch shown in Figure 12.4.

The only action with multiple transition definitions is the overflow input action. Following the

above recipe, they are combined into the one equivalent action shown in Figure 12.6.

12.4 Combining aggregate sorts and expanding variable ref-

erences

Section 11.2 described aggregate sorts that are automatically defined for the state and local variables

of an automaton A (i.e., States[A, typesA] and Locals[A, typesA, kind , π, tj]). Desugaring alters the

automaton A and, consequently, can alter these aggregate sorts. In particular, as discussed in

Section 12.3, combining multiple transition definitions for a particular action π in automaton A

involves combining the local variables that appear in each transition into a single sequence. We

collect together all the local variables for each action π of an automaton A into a single sequence

of variables localVarsA,π, which is the concatenation (with duplicates removed) of the all sequences

localVarsA,π
kind,tj

.

180

As a result, the aggregate sort for local variables also changes. Notationally, the kind and case

labels tj are dropped from the aggregate local sort name Locals[A, typesA, kind , π, tj]. We define a

new sort Locals[A, typesA, π] for the combined transition definition to be a tuple with selection oper-

ators that are named, typed, and have values in accordance with the local variables in localVarsA,π.

That is, the set of identifiers for the selection operators on the sort Locals[A, typesA, π] is the union of

the sets of identifiers for the selection operators on the sorts Locals[A, typesA, kind , π, tj]. We change

the sorts of the aggregate local and post-local variables A and A′ to this new sort. This has the

effect of collapsing multiple aggregate local and post-local variables each defined in the scope of one

transition into a single local and post-local variable defined in all transitions for a given action.6).

Formally, for each transition definition tj for a given kind of an action π in A, we define a

resorting7 that maps the aggregate local sort Locals[A, typesA, kind , π, tj] to the new aggregate local

sort Locals[A, typesA, π], and we apply that resorting to the transition definition before performing

the combining step. As a result, each variable A:Locals[A, typesA, kind , π, tj] is mapped to a variable

A:Locals[A, typesA, π]. Thus, local variable references using the notation A.v form remain well

defined and the resorting does not change the text of the transition definition. After combining, the

sorts Locals[A, typesA, kind , π, tj] may be ignored.

In addition to introducing notations for aggregate local sorts, Section 11.2 also introduced nota-

tions for aggregate state sorts. These notations provided an additional, and potentially less ambigu-

ous, way of referencing the values of local and state variables. We now desugar simple references to

local and state variables to use the notations for aggregate local and state variables.

Formally, we define a substitution8 σA to map state and post-state variables to terms. If x is a

state variable or a post-state variable (i.e., x ∈ stateVarsA or x ∈ postVarsA), then σA(x)) = A.x,

where A has sort States[A, typesA] and the operator __.x has signature States[A, typesA] → T , where

T is the sort of x.

Similarly, for each transition definition π of type kind, we define a substitution σA,π
kind to map

local and post-local variables to terms. If x is a local or post-local variable (i.e., x ∈ localVarsA,π

or x ∈ localPostVarsAi ,π
kind), then σA,π

kind(x) = A.x, where A has sort Locals[A, typesA, kind , π], and the

operator __.x has signature Locals[A, typesA, kind , π] → T , where T is the sort of x.

Figure 12.7 shows the final form of a desugared primitive automaton with canonical action

parameters and local variables and with all transition definitions for each kind of an action combined

into a single transition definition, and with all variable references expanded. In that figure, we

indicate the syntactic forms that result from the combining step by use of the comb subscript.

Figure 12.8 shows the result of applying these substitutions to the sample primitive automata.

6To avoid complications that arise when new fields are added to an aggregate local tuple during the combining of
local variables across transitions, we should disallow use of the constructor [__,...] for aggregate local sorts.

7See Chapter 17 for a formal definition of resortings, which map sorts to sorts.
8See Chapter 17 for a formal definition of substitutions, which map variables to terms.

181

automaton Channel(Node, Msg:type, i, j:Node)

signature
input send(n1, n2:Node, m:Msg) where n1 = i ∧ n2 = j

output receive(n1, n2:Node, m:Msg) where n1 = i ∧ n2 = j

states contents:Set[Msg] := {}

transit ions
input send(n1, n2, m) where n1 = i ∧ n2 = j

e f f Channel.contents := insert(m, Channel.contents)

output receive(n1, n2, m) where n1 = i ∧ n2 = j

pre m ∈ Channel.contents

e f f Channel.contents := delete(m, Channel.contents)

automaton P(n:Int)

signature
input receive(i1, i2, x:Int) where i1 = n-1 ∧ i2 = n

output send(i1, i2, x:Int) where i1 = n ∧ i2 = n+1,

overflow(i1:Int, s:Set[Int]) where i1 = n

states
val:Int := 0,

toSend:Set[Int] := {}

transit ions
input receive(i1, i2, x) where i1 = n-1 ∧ i2 = n

e f f i f P.val = 0 then P.val := x

e l s e i f x < P.val then
P.toSend := insert(P.val, P.toSend);

P.val := x

e l s e i f P.val < x then
P.toSend := insert(x, P.toSend)

f i
output send(i1, i2, x) where i1 = n ∧ i2 = n+1

pre x ∈ P.toSend

e f f P.toSend := delete(x, P.toSend)

output overflow(i1, s; loca l t:Set[Int]) where i1 = n

pre s = P.toSend ∧ n < size(s) ∧ P.t ⊆ s

e f f P.toSend := P.t

automaton Watch(T:type, what:Set[T])

signature
input overflow(x:T, s:Set[T]) where x ∈ what

output found(x:T) where x ∈ what

states seen:Array[T,Bool] := constant(false)

transit ions
input overflow(x, s; loca l s2:Set[T])

where s = Watch.s2 ∪ {x} ∨ ¬(x ∈ s)

e f f
i f s = Watch.s2 ∪ {x} then Watch.seen[x] := true

e l s e i f ¬(x ∈ s) then Watch.seen[x] := false

f i
output found(x)

pre Watch.seen[x]

Figure 12.8: Sample desugared automata Channel, P, and Watch, obtained from the intermediate
desugarings in Figures 12.4 and 12.6 by desugaring references to state and local variables

182

12.5 Restrictions on the form of desugared automaton defi-

nitions

After the definition of a primitive automaton A has been desugared as described in Sections 12.1–

12.4, it has the following properties.

• No const parameters appear in the signature of A.

• Each appearance of an action π in the signature of A is parameterized by the canonical action

parameters varsA,π of π in A.

• Each transition definition of an action π is parameterized by the canonical action parameters

varsA,π of π in A; i.e., every parameter is a simple reference to a variable in varsA,π.

• Each action name has at most one transition definition of each kind.

• Each reference to a state variable x of A, other than in the list of state variables in the states

statement, has been replaced by the term A.x.

• Each reference to a post-state variable x′ of A has been replaced by the term A′.x.

• Each reference to a local variable x in a transition of A, other than in the local clause of that

transition definition, has been replaced by the term A.x.

• Each reference to a post-local variable x′ in a transition of A has been replaced by the term

A′.x.

12.6 Semantic proof obligations, revisited

We are now ready to formalize the semantic proof obligations for primitive automata introduced in

Section 11.4. Previously, we said that for each action named π and each sequence of parameters

values:

1. At most one of PA,π
in , PA,π

out , and PA,π
int is true.

2. If PA,π
kind is true, at least one PA,π

kind,tj
is true.

3. If PA,π
kind is true, at most one PA,π

kind,tj
is true

We explicitly did not define the phrase “sequence of parameters values” because these predicates

may be stated in terms of different variables. In other words, varsA,π
in may be different from varsA,π

out

and varsA,π
in,t1

. Similarly, varsA,π
in,t1

may be different from varsA,π
in,t2

. However, after desugaring and

canonicalizing (but before combining), we have predicates that are semantically equivalent to those

183

in the original automaton, but defined over a common set of free variables. That is, all the free

variables of all the predicates σA,π
kind(PA,π

kind,desug) and σA,π
kind,tj

(PA,π
kind,tj ,desug

) are among varsA and

varsA,π.

The alert reader will realize that Tables 11.1 and 12.1 list localVarsA,π
kind,tj

among the variables

that may occur freely in PA,π
kind,tj

and PA,π
kind,tj ,desug

and might therefore conclude that the afore-

mentioned predicates are not “defined over a common set of free variables”. However, as noted

Section 11.2, a transition π is defined only for values of its parameters that, together with some

choice of initial values for its local variables, satisfy the where clause of the transition definition.

Thus, for the purposes of formalizing the semantic proof obligations for transition definitions, local

variables should be existentially bound, not free in where clauses, that is, PA,π
kind,tj ,desug

should be

preceded by ∃localVarsA,π
kind,tj

.

The semantic proof obligations we introduced in Section 11.4 can be stated precisely as follows.

We require that for each action name π, all values of varsA, and all values of varsA,π, the following

statements must be provable from the axioms provided by IOA’s built-in types, by the theories

associated with the type definitions and the axioms in the IOA specification that contains the

automaton definition, and by the theories associated with the assumes clause of that definition.

X ¬
(
σA,π
in (PA,π

in,desug) ∧ σA,π
out (PA,π

out,desug)
)

, (12.1)

X ¬
(
σA,π
in (PA,π

in,desug) ∧ σA,π
int (PA,π

int,desug)
)

, (12.2)

X ¬
(
σA,π
out (PA,π

out,desug) ∧ σA,π
int (PA,π

int,desug)
)

, (12.3)

X σA,π
kind(PA,π

kind,desug) ⇒
∨
j

∃localVarsA,π
kind,tj

σA,π
kind,tj

(PA,π
kind,tj ,desug

), and (12.4)

X σA,π
kind(PA,π

kind,desug) ⇒ (12.5)

¬
(
∃localVarsA,π

kind,tj
σA,π
kind,tj

(PA,π
kind,tj ,desug

) ∧ ∃localVarsA,π
kind,tk

σA,π
kind,tk

(PA,π
kind,tk ,desug)

)
,

when j 6= k.

184

Chapter 13

Definitions for composite automata

Today we have naming of parts. Yesterday,

We had daily cleaning. And tomorrow morning,

We shall have what to do after firing. But today,

Today we have naming of parts. Japonica

Glistens like coral in all of the neighboring gardens,

And today we have naming of parts.

— Henry Reed [103]

This chapter introduces notations and semantic checks for composite IOA automata. Section 13.1

describes the syntactic structures that may appear in an IOA description of a composite I/O automa-

ton. Section 13.2 describes notations for the state variables of a composite automaton. When com-

ponent automata have type parameters, the sorts of these state variables are obtained by mapping

the formal type parameters of the component automata to the actual parameters used to instantiate

those components in the composition. Finally, Sections 13.3 and 13.4 describe the conditions that

descriptions of composite automata must satisfy to be semantically valid.

13.1 Syntax

As for primitive automata, we introduce a labeling of the syntactic elements of composite IOA

programs in order to facilitate describing their syntactic manipulation. Figure 13.1 indicates a

particular labeling of the expressions that can appear in the IOA definition of a composite I/O

automaton. Again, we have selected the granularity of this labeling to expose just those elements

of composite IOA programs that are needed in Chapter 15 to describe the expansion of composite

185

syntactic structure free variables

actualsD,Ci varsD , varsD,Ci

PD,Ci varsD , varsD,Ci

H D,πp

hidep
varsD , varsD,πp

hidep

paramsD,πp

hidep
varsD , varsD,πp

hidep

InvD
x varsD , stateVarsD

Table 13.1: Variables that can occur freely in terms in the definition of a composite automaton.
Variables listed on the right may occur freely in the syntactic structure listed to their left.

automata into primitive form.

automaton D(typesD , varsD)

assumes Assumptions

components

C1[varsD,C1] : A1(actualTypesD,C1 , actualsD,C1) where PD,C1 ;

. . . ;

Cn[varsD,Cn] : An(actualTypesD,Cn , actualsD,Cn) where PD,Cn

hidden

π1(paramsD,π1

hide1
) where H D,π1

hide1
;

. . . ;

πm(paramsD,πm

hidem
) where H D,πm

hidem

invariant of D : InvD
1 ; . . . InvD

z

Figure 13.1: General form of a composite automaton

In Figure 13.1, parameterized components named C1, . . . , Cn are based on instantiations of au-

tomata named A1, . . . , An. The formal parameters of component Ci are varsD,Ci , and the actual

parameters of automaton Ai consist of a sequence actualTypesD,Ci of sorts and a sequence actualsD,Ci

of terms. IOA permits the specification of Ci to be abbreviated by deleting the colon and the fol-

lowing expression when Ci and Ai are named by the same identifier, actualTypesD,Ci is empty, and

actualsD,Ci = varsD,Ci (e.g., see component P in Example 10.4). In the specification of hidden

actions, paramsD,πp

hidep
is a sequence of terms, analogous to paramsA,πp

out,t1 , and we define varsD,πp

hidep
to be

the set of variables that occur freely in paramsD,πp

hidep
but are not in varsD . Each invariant of D is

stated as a predicate InvD
x .

Example 10.4 conforms to this general form, as follows.

186

• The first component of Sys is named C. Its parameters, varsSys,C, are 〈n:Int〉, and it is based

on the automaton Channel, for which it supplies the actual parameters actualTypesSys,C =

〈Int, Int〉 and actualsSys,C = 〈n, n+1〉.

• The second component of Sys is named P. It has the same parameters as C. By the conventions

for abbreviating component descriptions, it is based on the automaton of the same name, for

which it supplies the actual parameters actualsSys,P = 〈n〉; in this case, actualTypesSys,P is

empty (as required to use this abbreviated form).

• The third component of Sys, named W, has no parameters. It is based on the automaton Watch,

for which it supplies the actual parameters actualTypesSys,W = 〈Int〉 and actualsSys,W =

〈between(1,nProcesses)〉.

• The send actions that Sys inherits from P[nProcesses] are hidden as internal actions in Sys.

The parameters paramsSys,sendhide1
= 〈nProcesses, nProcesses+1, m〉 in the single clause in the

hidden statement involve a single free variable in varsSys,sendhide1
= 〈m:Int〉, and H Sys,send

hide1
is

true.

• The predicate
∀ m:Int ∀ n:Int (1 ≤ m ∧ m < n ∧ n ≤ nProcesses

⇒ P[m].val < P[n].val ∨ P[n].val = 0)

is invariant InvSys1 of Sys.

13.2 State variables of composite automata

The definition of a composite automaton in IOA does not mention the automaton’s state variables

explicitly. Rather, its components statement implicitly introduces a single state variable for each

component. We first describe the notations IOA provides for state variables associated with compo-

nent automata that have no type parameters. Then we describe how these notations extend to state

variables associated with component automata that have type parameters. Our goal is to provide a

precise explanation of notations for state variables such as P[m].val, which appears in the invariant

for the sample composite automaton Sys.

As for primitive automata (see Section 11.2), we automatically define a sort States[D , typesD]

representing the aggregate states of a composite automaton D, and we also define aggregate state and

post-state variables D and D′ of sort States[D , typesD]. Similarly, we treat the sort States[D , typesD]

in the same fashion as for primitive automata, namely, as a tuple of state variables: we define the

aggregate state of a composite automaton D to be a tuple containing a state variable for each

component automaton, and we use the names of the components (i.e., C1, . . . , Cn) as the names of

these state variables and of the corresponding selectors (i.e., __.C1, . . . , __.Cn) of States[D , typesD].

187

13.2.1 State variables for components with no type parameters

Defining the sort of the state variable Ci is simplest when the component Ci does not have parameters

and when the automaton Ai on which Ci is based does not have type parameters. For each such

component Ci, the state variable Ci of D has sort States[Ai], and the selector __.Ci has signature

States[D , typesD] → States[Ai].

When the component Ci has parameters, but Ai still does not have type parameters, the situation

is slightly more complicated, because the composite automaton D may contain multiple instances

of Ai. For example, the composite automaton Sys contains nProcesses instances of the component

automaton P, each with its own state variables val and toSend. These instances are parameterized

by a single integer n and are distinguished by the component names P[1], . . . , P[nProcesses].

For each parameterized component Ci, the corresponding state variable Ci does not refer to

the aggregate state of a single instance of Ai. Rather, it refers to a map from the values of the

parameters varsD,Ci of Ci to the aggregate states of Ai. That is, the state variable Ci has sort

Map[typesD,Ci ,States[Ai]], where typesD,Ci is the sequence of sorts of the variables in varsD,Ci . The

selection operator __.Ci has signature States[D , typesD] → Map[typesD,Ci ,States[Ai]].

For example, the state variable P of Sys has sort Map[Int,States[P]]. Hence, P[n] is a legitimate

term with sort States[P], and the term P[n].val has sort Int. Likewise, the selection operator __.P

has signature States[Sys] → Map[Int,States[P]], and Sys.P[n].val is an alternative notation for

the state variable val that Sys inherits from component P[n].

13.2.2 Resortings for automata with type parameters

Defining the sort of the state variable Ci is more complicated when Ai has type parameters. Since

the semantics for IOA are defined using multisorted, first-order logic, we cannot quantify over sorts

or use sorts as component indices. Instead, different instances of Ai, corresponding to different actual

types, must be described in separate clauses in the components statement, where they are further

distinguished by different component names. As a result, there can be only finitely many differently

typed instantiations of Ai, even though altogether there may be infinitely many instances of Ai that

are distinguished by the values of their non-type parameters. For example, a composite automaton

might contain channel components that transmit finitely many different types of messages, but there

may be infinitely many instances of such a component that transmits a given type of message.

When a component Ci is based on an automaton Ai parameterized by the sorts typesAi , we

define a resorting ρi (which we write as ρCi in contexts, such as ρW, where it is more convenient to

use the name of the component rather than its position in the list of all components) that maps

typesAi to actualTypesD,Ci . For example, ρW maps typesWatch = 〈T〉 to actualTypesSys,W = 〈Int〉,

and ρC maps typesChannel = 〈Node, Msg〉 to actualTypesSys,C = 〈Int, Int〉.

188

As described in Section 17, there is a natural way to extend the resorting ρi to map arbitrary sorts

involving the formal type parameters in the defining automaton Ai to sorts involving the correspond-

ing actual types that the component Ci supplies for Ai. For example, this extension maps the auto-

matically defined sort States[Ai , typesAi] for the state of Ai to the sort States[Ai , actualTypesD,Ci]

for the state of the instances of Ai corresponding to the component Ci.1

The resorting ρi also extends naturally to map operators with signatures involving the formal type

parameters in the defining automaton Ai to operators with signatures involving the corresponding

actual types that the component Ci supplies for Ai. Thus, for example, ρC maps
States[Channel,Node,Msg] = tuple of contents : Set[Msg]

to
States[Channel,Int,Int] = tuple of contents : Set[Int]

and it maps the signature of the selection operator __.contents from States[Channel,Node,Msg] →

Set[Msg] to States[Channel,Int,Int]→ Set[Int].

13.2.3 State variables for components with type parameters

When Ai has type parameters, we employ a resorting of its aggregate state sort to define the

sort of the state variable Ci of D. In the simple case when the component Ci does not have any

parameters, the state variable Ci has sort States[Ai , actualTypesD,Ci], and the selection operator

__.Ci has signature States[D , typesD] → States[Ai , actualTypesD,Ci].

For example, the state variable W of Sys has sort States[Watch,Int], the term W.seen has sort

Array[Int,Bool], the selection operator __.W has signature States[Sys] → States[Watch,Int], and

Sys.Watch.seen is an alternative notation for the state variable seen that Sys inherits from component

W.

In the case when the component Ci has parameters (and the automaton Ai has type parame-

ters), the state variable Ci has sort Map[typesD,Ci ,States[Ai , actualTypesD,Ci]], where typesD,Ci is

the sequence of sorts of the variables in varsD,Ci , and the selection operator __.Ci has signature

States[D , typesD] → Map[typesD,Ci ,States[Ai , actualTypesD,Ci]].

For example, the state variable C of Sys has sort Map[Int,States[Channel,Int,Int]], the term

C[n] has sort States[Channel[Int,Int], the term C[n].contents has sort Set[Int], the selection

operator __.C has signature States[Sys]→ Map[Int,States[Channel,Int,Int], and C[n].contents is

an alternative notation for the state variable contents that Sys inherits from component C[n].

1Although Ai, typesA, Ci, and actualTypesD,Ci appear as subsorts of a sort constructor States[__,...], IOA
assigns no semantics to these sorts. Syntactically, however, they are treated in the same fashion as other sorts; in
particular, the resorting ρi replaces typesAi by actualTypesD,Ci .

189

13.3 Static semantic checks

The following must be true for an IOA program to represent a valid composite I/O automaton and

can be checked statically. These checks are currently performed by ioaCheck, the IOA parser and

static-semantic checker.

X No sort appears more than once in typesD .

X Each component name (i.e., Ci) occurs at most once.

X The sequences varsD and varsD,Ci of variables contain no duplicates; furthermore, no variable

appears in both varsD and varsD,Ci for any value of i.

X Each component automaton is supplied with the appropriate number of actual types, that is,

actualTypesD,Ci has the same length as typesAi .

X For every operator f in a theory specified in the assumes clause of the automaton Ai, a

corresponding operator ρi(f) must be introduced by a type definition or axioms clause in the

IOA specification that contains the definition of D, by a theory specified in the assumes clause

of D, or by a built-in datatype of IOA.

X Each component automaton is supplied with the appropriate number and sorts of its other

actual parameters, that is, actualsD,Ci has the same length as varsAi and the same sorts as

ρi(varsAi).

X Each component automaton is supplied with actual types that do not reduce the number of

distinct state variables. That is, all selectors of States[Ai , actualTypesD,Ci] are distinct.

X All occurrences of an action name π in all component automata have the same number and

sorts of parameters; that is, if π is an action name in both Ai and Aj , then varsAi ,π has the

same length as varsAj ,π, and ρi(varsÂi,π) has the same sort as ρj(varsÂj ,π).

X Each action name in a hidden statement must be an action name in some component automa-

ton.

X All occurrences of an action name π in a hidden statement have the same number and sorts

of parameters as the occurrences of the action name π in the component automata; that is,

if π is an action name in some Ai and π = πp for the hidden clause p, then varsAi ,π has the

same length as paramsD,πp

hidep
, and ρi(varsÂi,π) has the same sorts as paramsD,πp

hidep
.

X Any variable that occurs freely in a term used as a parameter or predicate, in the definition

of a composite automaton must satisfy the restrictions imposed by Table 13.1.

190

13.4 Semantic proof obligations

The following must also be true for an IOA program to represent a valid I/O automaton. Except in

special cases, these conditions cannot be checked automatically, because they may require nontrivial

proofs (or even be undecidable); hence static semantic checkers must translate all but the simplest

of them into proof obligations for an automated proof assistant. 2

X Only output actions may be hidden.

X The components of a composite automaton must have disjoint sets of output actions.

X The set of internal actions for any component must be disjoint from the set of all actions of

every other component.

We will express these these proof obligations in first-order logic in Section 15.4 using syntactic

forms we define earlier in Chapter 15.

2An implementation of these checks might reduce the number of errors reported by first confirming that the
composition contains no duplicate instances of any component automaton that contains internal or output actions.
Any such duplication would necessarily cause violations of the latter two checks.

191

192

Chapter 14

Expanding component automata

To keep every cog and wheel is the first precaution of in-

telligent tinkering. — Leopold, Aldo [77]

Before we can describe the contribution of a component Ci of a composite automaton D to the

expansion of D into a primitive automaton DExpanded , we must take four preparatory steps. The

result is a component that represents the instantiation of automaton Ai on which Ci is based using

the actual parameters supplied by the component and whose variables have been translated into a

unified name space used for DExpanded .

The first step is to desugar the definition of each component automaton Ai as described in

Chapter 12. In the discussion below, we refer to this desugared version of Ai as Âi and assume

that it satisfies the restrictions listed in Section 12.5. The second step, shown in Section 14.1, is to

replace, throughout the entire definition of the automaton Âi, the formal type parameters typesÂi of

Âi by the actual types actualTypesD,Ci supplied by the component Ci. The third step is to replace

the formal automaton (non-type) parameters varsAi by the actual parameters actualsD,Ci supplied

by the component Ci. The fourth step is to translate the aggregate state variables, aggregate local

variables, and action parameters from the name space of Âi into a unified name space for DExpanded .

(It is not necessary to translate individual state and local variables, because references to them have

been eliminated by the desugaring described in Section 12.4.) Sections 14.2 describes how we choose

canonical action parameters for the unified name space. Section 14.3 describes the substitution we

use to perform both this translation and the instantiation of actual automaton parameters for the

previous step. Table 14.8 summarizes the notation, figures, and examples we use to present these

stages.

Section 14.4 describes the result of applying these replacements and translations to individual

component automata. It sets the stage Chapter 15, which describes how to combine the expanded

193

resorting domain range

ρC

Node Int

Msg Int

Set[Msg] Set[Int]

States[Channel,Node,Msg] States[Channel,Int,Int]

ρW

T Int

Set[T] Set[Int]

Array[T,Bool] Array[Int,Bool]

States[Watch,T] States[Watch,Int]

Locals[Watch,T,overflow] Locals[Watch,Int,overflow]

Table 14.1: Mappings of sorts by resortings in the composite automaton Sys. Resortings listed on
the left map domain sorts to their right to the range sorts on their far right.

components into a description of DExpanded by developing explicit representations for its signature

and transition definitions.

14.1 Resorting component automata

We produce a definition of the instances of Âi whose sorts correspond to those of the component Ci

by replacing the formal type parameters typesÂi of Âi with the actual types actualTypesD,Ci supplied

by the component Ci. This replacement is accomplished by applying the resorting ρi, defined in

Section 13.2 to the entire definition of the automaton Âi. The precise definition of resortings and

a full description of how resortings are extended to perform this replacement throughout the entire

definition of the automaton Âi are given in Chapter 17. We denote the resulting definition by ρiÂi.

Example 14.1 Tables 14.1–14.3 show how the resortings ρC and ρW, induced by the components

statement of the sample automaton Sys in Example 10.4, map the sorts, variables, and operators

of the component automata.1 The resorted components ρCChannel and ρWWatch of the composite

automaton Sys are shown in Figure 14.1. Since the component automaton P of Sys does not have

any type parameters, ρP is the identity, and the resorted component ρPP is the same as shown in

Figure 12.8.

1The table shows only the non-identity mappings of sorts, variables, and operators. Sorts, variables, and operators
that appear in the sample automata, but are not shown in the table, are mapped to themselves.

194

resorting domain range

ρC

i:Node i:Int

j:Node j:Int

contents:Set[Msg] contents:Set[Int]

n1:Node n1:Int

n2:Node n2:Int

m:Msg m:Int

ρW

what:Set[T] what:Set[Int]

seen:Array[T,Bool] seen:Array[Int,Bool]

x:T x:Int

x:T x:Int

s:Set[T] s:Set[Int]

s2:Set[T] s2:Set[Int]

Table 14.2: Mappings of variables by resortings in the composite automaton Sys. Resortings listed
on the left map domain variables to their right to the range variables on their far right.

% Resorting of Channel for component C of Sys

automaton Channel(Node, Msg:type, i, j:Int)

signature
input send(n1, n2:Int, m:Int) where n1 = i ∧ n2 = j

output receive(n1, n2:Int, m:Int) where n1 = i ∧ n2 = j

states contents:Set[Int] := {}

transit ions
input send(n1, n2, m) where n1 = i ∧ n2 = j

e f f Channel.contents := insert(m, Channel.contents)

output receive(n1, n2, m) where n1 = i ∧ n2 = j

pre m ∈ Channel.contents

e f f Channel.contents := delete(m, Channel.contents)

% Resorting of Watch for component W of Sys

automaton Watch(T:Type, what:Set[Int])

signature
input overflow(x:Int, s:Set[Int]) where x ∈ what

output found(x:Int) where x ∈ what

states seen:Array[Int,Bool] := constant(false)

transit ions
input overflow(x, s; loca l s2:Set[Int])

where s = Watch.s2 ∪ {x} ∨ ¬(x ∈ s)

e f f i f s = Watch.s2 ∪ {x} then Watch.seen[x] := true

e l s e i f ¬(x ∈ s) then Watch.seen[x] := false

f i
output found(x)

pre Watch.seen[x]

Figure 14.1: Sample component automata Channel and Watch, obtained by resorting the desugared
automata shown in Figure 12.8

195

resorting operator original and new signatures

ρC

=
Node,Node→Bool

Int,Int→Bool

=
Msg,Msg→Bool

Int,Int→Bool

→Set[Msg]

→Set[Int]

∈
Msg,Set[Msg]→Bool

Int,Set[Int]→Bool

insert
Msg,Set[Msg]→Set[Msg]

Int,Set[Int]→Set[Int]

delete
Msg,Set[Msg]→Set[Msg]

Int,Set[Int]→Set[Int]

.contents
States[Channel,Node,Msg]→Set[Msg]

States[Channel,Int,Int]→Set[Int]

ρW

[]
T→Bool

Int→Bool

{ }
T→Set[T]

Int→Set[Int]

=
Set[T],Set[T]→Bool

Set[Int],Set[Int]→Bool

∈
T,Set[T]→Bool

Int,Set[Int]→Bool

∪
Set[T],Set[T]→Set[T]

Set[Int],Set[Int]→Set[Int]

.seen
States[Watch,T]→Array[T,Bool]

States[Watch,Int]→Array[Int,Bool]

.s2
Locals[Watch,T,overflow]→Set[T]

Locals[Watch,Int,overflow]→Set[Int]

Table 14.3: Mappings of operators by resortings in the composite automaton Sys. Resortings listed
on the left map domain operators to their right to the range operators on their far right.

196

14.2 Introducing canonical names for parameters

For each action name π in some component Ci of D, we pick a sequence varsD,π of variables to be

the canonical action parameters of π in D. Since the static checks ensure the number and sorts of

variables in ρi(varsÂi,π) are the same for all components Ci, we take varsD,π to be ρi(varsÂi,π) for

the smallest i such that π is the name of an action in Ci and this choice does not cause variables

to clash. In particular, no variable in varsD,π should be a parameter of D (i.e., varsD,π and varsD

should be disjoint) nor of any component Ci (i.e., varsD,π and varsD,Ci should be disjoint).2

If varsD,π cannot be defined in this fashion (without causing variables to clash), then we let

i be the smallest integer such that π is the name of an action in Ci, and we take varsD,π to be

ρi(varsÂi,π) with any clashing variables replaced by fresh variables, that is, with variables not in

varsD nor any varsD,Ci .

14.3 Substitutions

For each component Ci of a composite automaton D, we define a substitution σi (which we write as

σCi in contexts, such as σW, where it is more convenient to use the name of the component rather

than its position in the list of all components) to map the non-type parameters varsρi Âi = ρi(varsÂi)

of the component automaton ρiÂi to the corresponding actual parameters actualsD,Ci and to map

the aggregate state and post-state variables of ρiÂi to the appropriate state components in the

composite automaton. For each action π of Ci, we also define a substitution σi,π to be the same as

σi, except that it also maps the canonical action parameters varsρi Âi ,π = ρi(varsÂi) of ρiÂi to the

corresponding canonical action parameters varsD,π in D, and that it maps the aggregate local and

post-local variables for transition definitions in ρiÂi to the appropriate local and post-local values

in the composite automaton.

These substitutions3 are summarized in Table 14.4 and defined by rules 1–9 below.

1. If x is a non-type parameter of Âi (i.e., x ∈ varsρi Âi), then σiρi(x) is the corresponding

element of actualsD,Ci .

2. If Ci has no parameters and x is the variable Ai of sort States[Ai , actualTypesD,Ci] representing

the aggregate states of ρiÂi, then σi(x) is the state variable for the component Ci of D, which

has the same sort as Ai.

3. If Ci has parameters and x is the variable Ai of sort States[Ai , actualTypesD,Ci], then σi(x)

is the term Ci[varsD,Ci], where Ci is the state variable for the component Ci of D, which has

2It is not necessary to avoid clashes with the state variables ρi(stateVarsAi) or post-state variables ρi(postVarsAi)
of Ci, because desugaring has replaced references to such variables x by terms Ci.x.

3See Chapter 17 for a precise definition of substitutions, which ensures that they do not capture local, for,
choose, or quantified variables.

197

substitution domain range rule

σi

varsρi Âi actualsD,Ci rule 1

Ai:States[Ai , actualTypesD,Ci] Ci rule 2

Ai:States[Ai , actualTypesD,Ci] Ci[varsD,Ci] rule 3

σi,π

varsρi Âi actualsD,Ci rule 1

Ai:States[Ai , actualTypesD,Ci] Ci rule 2

Ai:States[Ai , actualTypesD,Ci] Ci[varsD,Ci] rule 3

A′
i:States[Ai , actualTypesD,Ci] C ′

i rule 4

A′
i:States[Ai , actualTypesD,Ci] C ′

i[vars
D,Ci] rule 5

varsρi Âi ,π varsD,π rule 7

Ai:Locals[Ai , actualTypesD,Ci , π] Ci rule 8

A′
i:Locals[Ai , actualTypesD,Ci , π] C ′

i rule 8

Ai:Locals[Ai , actualTypesD,Ci , π] Ci[varsD,Ci] rule 9

A′
i:Locals[Ai , actualTypesD,Ci , π] C ′

i[vars
D,Ci] rule 9

Table 14.4: Substitutions used in canonicalizing component automata. Substitutions listed on the
left map variables in the domains to their right to range variables according to the listed rules.

sort Map[typesD,Ci ,States[Ai , actualTypesD,Ci]].

4. If Ci has no parameters and x is the variable A′
i of sort States[Ai , actualTypesD,Ci] representing

the aggregate post-states of ρiÂi, then σi(x) is the post-state variable C ′
i for the component

Ci of D.

5. If Ci has parameters and x is the variable A′
i of sort States[Ai , actualTypesD,Ci], then σi(x) is

the term C ′
i[vars

D,Ci], where C ′
i is the post-state variable for the component Ci of D, which

has sort Map[typesD,Ci ,States[Ai , actualTypesD,Ci]].

6. There is no rule 6! [20]

7. If x is a canonical action parameter (i.e., x ∈ varsÂi ,π), then σi,πρi(x) is the corresponding

element of varsD,π.

8. If Ci has no parameters and x is the variable Ai of sort Locals[Ai , actualTypesD,Ci ,π] (or the

variable A′
i of the same sort) representing the aggregate local (or post-local) variables for a

transition definition, then σi(x) is the local variable Ci (or the post-local variable C ′
i) for the

transition definition in D, which has the same sort as Ai.

9. If Ci has parameters and x is the variable Ai of sort Locals[Ai , actualTypesD,Ci ,π] (or the vari-

able A′
i of the same sort), then σi(x) is the term Ci[varsD,Ci] (or the term C ′

i[vars
D,Ci]),

198

where Ci and C ′
i are the aggregate local and post-local variables in D, which have sort

Map[typesD,Ci ,Locals[Ai , actualTypesD,Ci , π]].

14.4 Canonical component automata

For each component Ci of D, we obtain a canonical automaton definition Ci for that component by

applying ρi and then σi to the desugared definition Âi of Ai. Figure 14.2 shows the general form

for such canonical component automata.

In the list of parameters for Ci, the type parameters typesD of D replace the type parameters

typesÂi of Âi, and the variables varsD and varsD,Ci that parameterize D and its component Ci

replace the individual parameters varsAi of Âi. The body of the automaton definition for Ci is

obtained by applying the resorting ρi to the body of the automaton definition for Âi, thereby

eliminating all references to the type parameters in typesÂi , to obtain a resorted definition for

an automaton ρiÂi and then by applying the substitution σi to this resorted definition, thereby

eliminating all references to the individual parameters in varsAi . We do not apply σi to stateVarsρiAi ,

because we wish to preserve the names of the state variables in stateVarsAi . No ambiguity arises,

because the desugaring described in Section 12.4 has replaced all references to state variables x in

the definition of Âi with terms of the form Ai.x. For each action π, we also apply σi,π to the where

clause Pρi Âi ,π
kind for π in the signature of ρiÂi and to the transition definition for π in ρiÂi.

Despite the absence of ambiguity, the automaton Ci may not pass the static semantic require-

ments in Section 11.3 that prohibit any clashes between state variables and automaton parameters.

Furthermore, if Ci has non-type parameters, the aggregate state variable for the automaton is a map

as specified in Section 13.2 rather than a tuple as specified for primitive automata in Section 11.2.

Table 14.8 shows the steps taken to expand canonical component automata. The “Original”

column lists the names for syntactic elements of automata introduced in Chapter 11. The notation

given in the “Desugared” column describes the result of desugaring such automata as described in

Chapter 12. The elements listed in the the “Resorted” column result from the resorting of desugared

component automata that Section 14.1 describes. Syntactic elements listed in the “Expanded”

column are derived in Section 14.3 from resorted automata. Finally, names that appear in the

“Component” column are just synonyms for the values in the previous column. We use these

simpler synonyms in Chapter 15.

Example 14.2 We derive the component automata C, P, and W of the composite automaton Sys

by applying the substitutions shown in Tables 14.5–14.7 to the resorted automata ρCChannel and

ρWWatch shown in Figure 14.1 and to the canonicalized automaton P shown in Figure 12.8. Since

the per-action substitutions (e.g., σC,send) are always extensions of the per-component substitutions

(e.g., σC), these tables show only the additional mappings that distinguish the per-action substi-

199

automaton Ci(typesD , varsD , varsD,Ci)

signature

kind π(varsD,π) where σi,π(Pρi Âi ,π
kind)

. . .

states stateVarsρiAi := σi(initValsρi Âi) initially σi(P
ρi Âi

init)

transitions

σi,π

kind π(varsρi Âi ,π; local localVarsρi Âi ,π) where Pρi Âi ,π

kind,t1

pre Preρi Âi ,π
kind

eff Progρi Âi ,π
kind ensuring ensuringρi Âi ,π

kind

. . .

Figure 14.2: General form of the expansion of the automaton for component Ci, obtained from the
desugared definition Âi of the automaton on which Ci is based

tutions from the per-component substitutions. We also omit from these tables identity mappings.

For example, we omit from Table 14.6 the identity mapping of i1:Int to itself due to rule 7 in

σP,overflow. The resulting component automata are shown in Figures 14.3–14.5.

automaton C(nProcesses:Int, n:Int)

signature
input send(n1, n2:Int, m:Int) where n1 = n ∧ n2 = n+1

output receive(n1, n2:Int, m:Int) where n1 = n ∧ n2 = n+1

states contents:Set[Int] := {}

transit ions
input send(n1, n2, m) where n1 = n ∧ n2 = n+1

e f f C[n]. contents := insert(m, C[n]. contents)

output receive(n1, n2, m) where n1 = n ∧ n2 = n+1

pre m ∈ C[n]. contents

e f f C[n]. contents := delete(m, C[n]. contents)

Figure 14.3: Sample instantiated component automaton C, obtained by applying the substitutions
in Table 14.5 to the resorted automaton Channel in Figure 14.1

200

substitution domain range rule

σC

Channel:States[Channel,Int,Int] C[n]:Map[Int,States[Channel,Int,Int]] rule 3

i:Int n:Int rule 1

j:Int (n+1):Int rule 1

σC,send No additional substitutions

σC,receive No additional substitutions

Table 14.5: Substitutions used to derive sample component automaton C. Substitutions listed on
the left map variables in the domain to their right to variables in the range their far right.

automaton P(nProcesses:Int, n:Int)

signature
input receive(n1, n2, m:Int) where n1 = n-1 ∧ n2 = n

output send(n1, n2, m:Int) where n1 = n ∧ n2 = n+1,

overflow(i1:Int, s:Set[Int]) where i1 = n

states
val:Int := 0,

toSend:Set[Int] := {}

transit ions
input receive(n1, n2, m) where n1 = n-1 ∧ n2 = n

e f f i f P[n].val = 0 then P[n].val := m

e l s e i f m < P[n].val then
P[n]. toSend := insert(P[n].val, P[n]. toSend);

P[n].val := m

e l s e i f P[n].val < m then
P[n]. toSend := insert(m, P[n]. toSend)

f i
output send(n1, n2, m) where n1 = n ∧ n2 = n+1

pre m ∈ P[n]. toSend

e f f P[n]. toSend := delete(m, P[n]. toSend)

output overflow(i1, s; loca l t:Set[Int]) where i1 = n

pre s = P[n]. toSend ∧ n < size(s) ∧ P[n].t ⊆ s

e f f P[n]. toSend := P[n].t

Figure 14.4: Sample instantiated component automaton P, obtained by applying the substitutions
in Table 14.6 to the automaton P in Figure 12.8

201

substitution domain range rule

σP P:States[P] P[n]:Map[Int,States[P]] rule 3

σP,send

i1:Int n1:int rule 7

i2:Int n2:int rule 7

x:Int m:int rule 7

σP,receive

i1:Int n1:int rule 7

i2:Int n2:int rule 7

x:Int m:int rule 7

σP,overflow P:Locals[P,overflow] P[n]:Map[Int,Locals[P,overflow]] rule 9

Table 14.6: Substitutions used to derive sample component automaton P. Substitutions listed on
the left map variables in the domain to their right to variables in the range their far right.

automaton W(nProcesses:Int)

signature
input overflow(i1:Int, s:Set[Int]) where i1 ∈ between (1, nProcesses)

output found(i1:Int) where i1 ∈ between (1, nProcesses)

states seen:Array[Int,Bool] := constant(false)

transit ions
input overflow(i1, s; loca l s2:Set[Int])

where s = W.s2 ∪ {i1} ∨ ¬(i1 ∈ s)

e f f i f s = W.s2 ∪ {i1} then W.seen[i1] := true

e l s e i f ¬(i1 ∈ s) then W.seen[i1] := false

f i
output found(i1)

pre W.seen[i1]

Figure 14.5: Sample instantiated component automaton W, obtained by applying the substitutions
in Table 14.7 to the resorted automaton Watch in Figure 14.1

substitution domain range rule

σW
Watch:States[Watch,Int] W:States[Watch,Int] rule 2

what:Set[Int] between(1, nProcesses) rule 1

σW,overflow Watch:Locals[Watch,Int,overflow] W:Locals[Watch,Int,overflow] rule 8

x:Int i1:int rule 7

σW,found x:Int i1:Int rule 7

Table 14.7: Substitutions used to derive sample component automaton W. Substitutions listed on
the left map variables in the domain to their right to variables in the range their far right.

202

Sy
nt

ac
ti

c
E

le
m

en
t

O
ri

gi
na

l
D

es
ug

ar
ed

R
es

or
te

d
E

xp
an

de
d

C
om

po
ne

nt

A
ut

om
at

on
A

i
Â

i
ρ

iÂ
i

σ
iρ

iÂ
i

C
i

G
en

er
al

fo
rm

F
ig

ur
e

11
.1

F
ig

ur
es

12
.3

,
12

.5
,
12

.7
F
ig

ur
e

14
.2

A
ut

om
at

on
pa

ra
m

et
er

s
ty

pe
sA

i
,
va

rs
A

i
ty

pe
sA

i
,
ρ

iv
ar

sA
i

ty
pe

sD
,
va

rs
D

,
va

rs
D

,C
i

A
ct

io
n

pa
ra

m
et

er
s

pa
ra

m
sA

i
,π

k
in

d
va

rs
Â

i
,π

ρ
iv

ar
sÂ

i
,π

σ
i,

π
ρ

iv
ar

sÂ
i
,π

va
rs

D
,π

Si
gn

at
ur

e
w

h
e
re

pr
ed

ic
at

es
P

A
i
,π

k
in

d
P

Â
i
,π

k
in

d
ρ

iP
Â

i
,π

k
in

d
σ

i,
π
ρ

iP
Â

i
,π

k
in

d
P

C
i
,π

k
in

d

St
at

e
va

ri
ab

le
s

st
at

eV
ar

sA
i

ρ
is

ta
te

V
ar

sA
i

st
at

eV
ar

sC
i

A
gg

re
ga

te
va

ri
ab

le
na

m
e

A
i

C
i

A
gg

re
ga

te
st

at
e

so
rt

St
at

es
[A

i
,t

yp
es

A
i
]

St
at

es
[A

i
,a

ct
ua

lT
yp

es
D

,C
i
]

A
gg

re
ga

te
lo

ca
l
so

rt
Lo

ca
ls

[A
i
,t

yp
es

A
i
,k

in
d
,π

,t
j
]

Lo
ca

ls
[A

i
,t

yp
es

A
i
,π

]
Lo

ca
ls

[A
i
,a

ct
ua

lT
yp

es
D

,C
i
,π

]

In
it

ia
l
st

at
e

va
ri

ab
le

s
va

lu
es

in
it
V
al

sA
i

ρ
ii
ni

tV
al

sA
i

σ
iρ

ii
ni

tV
al

sA
i

in
it
V
al

sC
i

in
it

ia
ll
y

pr
ed

ic
at

e
P

A
i

in
it

P
Â

i
in

it
ρ

iP
Â

i
in

it
σ

iρ
iP

Â
i

in
it

P
C

i
in

it

T
ra

ns
it

io
n

pa
ra

m
et

er
s

pa
ra

m
sA

i
,π

k
in

d
,t

j
va

rs
Â

i
,π

ρ
iv

ar
sÂ

i
,π

σ
i,

π
ρ

iv
ar

sÂ
i
,π

va
rs

D
,π

lo
c
a
l
va

ri
ab

le
s

lo
ca

lV
ar

sA
i
,π

k
in

d
,t

j
lo

ca
lV

ar
sÂ

i
,π

k
in

d
ρ

i
lo

ca
lV

ar
sÂ

i
,π

k
in

d
σ

i,
π
ρ

i
lo

ca
lV

ar
sÂ

i
,π

k
in

d
lo

ca
lV

ar
sC

i
,π

k
in

d

T
ra

ns
it

io
n

w
h
e
re

pr
ed

ic
at

es
P

A
i
,π

k
in

d
,t

j
P

Â
i
,π

k
in

d
,t

1
ρ

iP
Â

i
,π

k
in

d
,t

1
σ

i,
π
ρ

iP
Â

i
,π

k
in

d
,t

1
P

C
i
,π

k
in

d
,t

1

T
ra

ns
it

io
n

p
re

pr
ed

ic
at

es
P
re

A
i
,π

k
in

d
,t

j
P
re

Â
i
,π

k
in

d
ρ

iP
re

Â
i
,π

k
in

d
σ

i,
π
ρ

iP
re

Â
i
,π

k
in

d
P
re

C
i
,π

k
in

d

T
ra

ns
it

io
n

e
ff

pr
og

ra
m

s
P
ro

gA
i
,π

k
in

d
,t

j
P
ro

gÂ
i
,π

k
in

d
ρ

iP
ro

gÂ
i
,π

k
in

d
σ

i,
π
ρ

iP
ro

gÂ
i
,π

k
in

d
P
ro

gC
i
,π

k
in

d

T
ra

ns
it

io
n

e
ff

pr
ed

ic
at

es
en

su
ri

ng
A

i
,π

k
in

d
,t

j
en

su
ri

ng
Â

i
,π

k
in

d
ρ

ie
ns

ur
in

gÂ
i
,π

k
in

d
σ

i,
π
ρ

ie
ns

ur
in

gÂ
i
,π

k
in

d
en

su
ri

ng
C

i
,π

k
in

d

C
h
a
n
n
e
l

F
ig

ur
e

10
.1

F
ig

ur
e

12
.8

F
ig

ur
e

14
.1

F
ig

ur
e

14
.3

P
F
ig

ur
e

10
.2

F
ig

ur
e

12
.8

F
ig

ur
e

14
.4

W
a
t
c
h

F
ig

ur
e

10
.3

F
ig

ur
e

12
.8

F
ig

ur
e

14
.1

F
ig

ur
e

14
.5

T
ab

le
14

.8
:

St
ag

es
in

ex
pa

nd
in

g
co

m
po

ne
nt

s
C

i
of

a
co

m
po

si
te

au
to

m
at

on
D

.

203

204

Chapter 15

Expanding composite automata

Composition is, for the most part, an effort of slow dili-

gence and steady perseverance, to which the mind is

dragged by necessity or resolution, and from which the at-

tention is every moment starting to more delightful amuse-

ments.

— Samuel Johnson [63]

In this chapter, we present the main contribution of Part II of this dissertation. We show how to

expand a composite IOA program into an equivalent primitive IOA program. Section 15.1 reviews

our assumptions about the form of the components of the composite automaton, and Section 15.2

describes a simplification of the structure of hidden statements, obtained by combining all clauses

for a single action into a single clause.

In Section 15.3, we define the expansion of the signature of a composite automaton to primitive

form. Section 15.4 gives first-order logic formulas for the semantic proof obligations we introduced

in Section 13.4. These include compatibility requirements for component automata. In Section 15.5,

we define the expansion of the initially predicate on the states of a composite automaton. In

Sections 15.6–15.9, we define the expansion of the transitions of a composite automaton.

15.1 Expansion assumptions

We expand a composite automaton D into primitive form by combining elements of its components

C1, . . . , Cn. We assume each component automaton Ai has been desugared to satisfy the restrictions

in Section 12.5, resorted to produce an automaton ρiÂi as described in Section 13.2 and 14.1, and

transformed as described in Section 14.4 to produce an automaton σiρiÂi = Ci. In particular, for

205

each component automaton Ci, we assume the following.

• No const parameters appear in the signature.

• Each appearance of an action π in the signature is parameterized by the canonical action

parameters varsD,π.

• Each transition definition of an action π is parameterized by the canonical action parameters

varsD,π.

• Each transition definition of an action π is further parameterized by the canonical sequence

σi,πρi localVarsÂi ,π of local variables for that component.

• Each action has at most one transition definition of each kind.

• Every state, post-state, local variable, or post-local variable reference is of the unambiguous

form Ci.x, C ′
i.x, Ci[varsD,Ci].x, or C ′

i[vars
D,Ci].x.

15.2 Desugaring hidden statements of composite automata

The syntax for composite IOA programs as described in Chapter 13 provides programmers with

flexibility of expression that can complicate expansion into primitive form. Hence, as with primitive

automata, it is helpful to consider equivalent composite IOA programs that conform to a more limited

“desugared” syntax. As discussed later in this section, where clauses of composite automaton hidden

statements and of component transitions are combined during expansion. Thus, hidden statements

must be desugared into a form analogous to that of a desugared transition. In particular, we desugar

composite automata with hidden statements to have the following two properties.

• Each hidden clause for an action π is parameterized by the canonical action parameters

varsD,π.

• There is at most one hidden clause for each action π.

The static checks described in Section 13.3 ensure that the number and sorts of terms in paramsD,πp

hidep

are the same as the number and sorts of variables in varsD,πp . If no variable in varsD,πp occurs

freely in paramsD,πp

hidep
(i.e., if varsD,πp and varsD,πp

hidep
are disjoint), then we can desugar the clause

πp(paramsD,πp

hidep
) where H D,πp

hidep

by replacing paramsD,πp

hidep
by varsD,πp , reintroducing varsD,πp

hidep
as existentially quantified variables

in the where clause, and adding conjuncts to the where clause to equate varsD,πp with the old

206

parameters. This results in the desugaring

πp(varsD,πp) where ∃ varsD,πp

hidep

(
H D,πp

hidep
∧ varsD,πp = paramsD,πp

hidep

)
.

Notice that introducing varsD,πp

hidep
as existentially quantified variables is analogous to introducing

varsA,π
in,tj

as local variables when desugaring transition parameters, as described in Section 12.1.

If varsD,πp and varsD,πp

hidep
are not disjoint, we define a substitution σhide

p that maps the intersection

of these two sets to a set of fresh variables, and we desugar the hidden clause as

πp(varsD,πp) where ∃ σhide
p varsD,πp

hidep

(
σhide

p H D,πp

hidep
∧ varsD,πp = σhide

p paramsD,πp

hidep

)
.

We simplify each existentially qualified where clause produced by the above transformations

by dropping any existential quantifier, such as ∃ i:Int in the example, that introduces a variable

equated to a term, as in i = x in the example, in the conjunction varsD,πp = σhide
p paramsD,πp

hidep
, and

also by dropping the equating conjunct from that conjunction. We denote the resulting simplification

of the where clause by H D,π
hidep ,canon .

Following this clause-by-clause canonicalization, we combine all clauses in the hidden statement

that apply to a single action π into one disjunction. This step is analogous to the combining step

for transition definitions in Section 12.3. For example, if πp = πq = π, then the clauses

πp(varsD,πp) where H D,πp

hidep ,canon

πq(varsD,πq) where H D,πq

hideq ,canon

become the single clause

π(varsD,π) where H D,πp

hidep ,canon ∨ H D,πq

hideq ,canon .

We denote this combined where clause by H D,π.

15.3 Expanding the signature of composite automata

In the composite automaton D, actions that are internal to some component are internal actions of

the composition, actions that are outputs of some component and are not hidden are output actions

of the composition, and actions that are inputs to some components but outputs to none are input

actions of the composition. The where clause predicates PD,π
kind express these facts in the signature

of the expanded automaton DExpanded. We construct these predicates by defining subformulas,

PD,Ci ,π
kind and ProvD,π

kind , which describe the actions components contribute to the composition. We

207

automaton DExpanded(typesD , varsD)

signature

kind π(varsD,π) where PD,π
kind

. . .

Figure 15.1: General form of the signature in the expansion of a composite automaton

combine these formulas and the where predicate from any applicable hidden clause (i.e., H D,π), to

account for the subsumption of input actions by output actions and for hiding output actions. The

final result consists of the three predicates PD,π
in , PD,π

out , and PD,π
int .

All free variables that appear in these predicates are among the composite automaton parameters

varsD and the canonical action parameters varsD,π. Figure 15.1 shows the general form of the

expanded signature. Below, we explain how to construct these predicates. (See Section 16.2 for an

example application of the process to composite automaton Sys defined in Example 10.4.)

15.3.1 Subformulas for actions contributed by a component

In order for an action kind π(varsD,π) to be defined in D, it must be defined in some component. An

action is defined in a component Ci of D if, given action parameters varsD,π there are component

parameters varsD,Ci that satisfy both the component where clause PD,Ci and the action where

clause PCi ,π
kind for π in the signature of Ci. Hence we define

PD,Ci ,π
kind ::= ∃varsD,Ci (PD,Ci ∧ PCi ,π

kind),

which is satisfied by varsD,π if and only if π(varsD,π) is an action of type kind in component Ci of

D.

It is important to note that the type of the action π(varsD,π) in D may be different from the

type of π in some, or even all, the components contributing the action to the composition. Output

actions in one instance of one component may subsume inputs in another, and output actions may be

hidden as internal actions in the composition. We say that kind is the provisional kind of π(varsD,π)

in D when an action of that kind is contributed to the composition by some component. Hence we

define the predicate ProvD,π
kind as follows:

ProvD,π
kind ::=

∨
1≤i≤n

PD,Ci ,π
kind .

15.3.2 Signature predicates

We account for subsumed inputs and hidden outputs in the signature of DExpanded by appending

special case formulas to the predicates ProvD,π
kind to form the signature predicates PD,π

kind . The three

208

cases we must consider are:

• An action π(varsD,π) is an output action of D if and only if it is an output action in some

component Ci of D and is not hidden in D.

• An action π(varsD,π) is an input action of D if and only if it is an input action in some

component Ci of D, but not an output action in any component of D.

• An action π(varsD,π) is an internal action of D if and only if it is an internal action, or a

hidden output action, in some component Ci of D.

Translating these requirements into first-order logic, we derive the following definitions for the

signature predicates of DExpanded:

• PD,π
out ::= ProvD,π

out ∧ ¬H D,π

• PD,π
in ::= ProvD,π

in ∧ ¬ProvD,π
out

• PD,π
int ::= ProvD,π

int ∨
(
ProvD,π

out ∧ H D,π
)

.

15.4 Semantic proof obligations, revisited

We are now ready to formalize the following proof obligations on composite automata introduced in

Section 13.4.

X Only output actions may be hidden.

X The components of a composite automaton have disjoint sets of output actions.

X The set of internal actions for any component is disjoint from the set of all actions of every

other component.

Below we give corresponding formulas in first-order logic that must be verified for a compos-

ite IOA program to represent a valid I/O automaton. In order to express the latter two of these

obligations in first-order logic, we break each of them into two parts. First, we consider different

components from different clauses of the components statement (i.e., Ci 6= Cj). Second, we con-

sider instances of the same parameterized component distinguished only by parameter values (i.e.,

Ci[varsD,Ci] 6= Ci[vars′D,Ci]). We use these formulas to help construct the expansion of transitions

of composite automata in Sections 15.7–15.9.

15.4.1 Hidden actions

The first of these obligations is just the requirement that

X H D,π ⇒ ProvD,π
out .

209

15.4.2 Output actions

For output actions, we first require that different parameterized components have disjoint sets of

output actions. Formally, we say that for all distinct components Ci and Cj of D, all values of the

action parameters varsD,π for π, all values of the composite automaton parameters varsD , and all

values of the component parameters varsD,Ci and varsD,Cj , we require that

X ¬PD,Ci ,π
out ∨ ¬PD,Cj ,π

out (15.1)

Second, we require that different instances of the same parameterized component have disjoint

sets of output actions. That is, for each component Ci of D, all values of the action parameters

varsD,π for π, all values of the individual parameters varsD of the composite automaton, and all

pairs of values of the component parameters varsD,Ci and vars′D,Ci , we require that

X
(
PD,Ci ∧ P ′D,Ci ∧ PCi ,π

out ∧ P ′Ci ,π
out

)
⇒ varsD,Ci = vars′D,Ci (15.2)

where P ′Ci ,π
out is PCi ,π

out evaluated on vars′D,Ci .

In Example 10.4, these requirements are satisfied trivially, because the output actions in the

different components of Sys have different labels. However, the composition
automaton BadSys1

components P1[n:Int] where 0 < n ∧ n < 10;

P2: P(5)

would violate the first requirement, because components P1[5] and P2 share an output action, and

the composition
automaton BadSys2

components W[what:Set[Int]]: Watch(Int, what)

where what = between (1,1) ∨ what = between (1,2)

would violate the second requirement because components W[[1]] and W[[1,2]] both have found(1)

as an output action.

15.4.3 Internal actions

Similarly, we break the last of these semantic proof obligations, which concerns internal actions, into

two parts. We first require that internal actions are defined in one component only for parameter

values where no action is defined in any other component. Formally, we say that for all distinct

components Ci and Cj of D, all values of the action parameters varsD,π, and all values of the

composite automaton non-type parameters varsD , we require that

X PD,Ci ,π
int ⇒ ¬PD,Cj ,π

all (15.3)

where PD,Cj ,π
all is the disjunction of PD,Cj ,π

in , PD,Cj ,π
out , and PD,Cj ,π

int .

210

Second, we require that internal actions of one instance of a parameterized component are defined

only for parameter values where no action is defined in any other instance of that component. That

is, for each component Ci of D, all values of the action parameters varsD,π, all values of the composite

automaton non-type parameters varsD , and all pairs of values of component non-type parameters

varsD,Ci and vars′D,Ci , we require that

X
(
PD,Ci ∧ P ′D,Ci ∧ PCi ,π

int ∧ P ′Ci ,π
all

)
⇒ varsD,Ci = vars′D,Ci , (15.4)

where P ′Ci ,π
all is the disjunction of P ′Ci ,π

in , P ′Ci ,π
out , and P ′Ci ,π

int and where the primed form of each

predicate is the evaluation of the predicate on vars′D,Ci .

Note, although allowed by obligation 15.4, the cases where PCi ,π
int ∧ PCi ,π

in or PCi ,π
int ∧ PCi ,π

out

hold are already disallowed by semantic proof obligations 12.2 and 12.3, respectively.

Claim 15.1 (Signature compatibility) Semantic proof obligations 15.1–15.4 taken together with

the signature where predicates PD,π
kind imply that DExpanded fulfills the semantic proof obligations

for primitive automata 12.1–12.3.

In Sections 15.7–15.9, we argue that remaining obligations for primitive automata (12.4 and 12.5)

are discharged by the transition where clauses of DExpanded.

15.5 Expanding initially predicates of composite automata

In Section 13.2, we described the state variables of a composite automaton D. Corresponding to each

component Ci is a state variable Ci with sort States[Ai , actualTypesD,Ci] if Ci has no parameters and

with sort Map[typesD,Ci ,States[Ai , actualTypesD,Ci]] otherwise. Here, we describe the construction

of an initially predicate that constrains the initial values of these state variables. This predicate is a

conjunction of clauses, one per unparameterized component and two per parameterized component.

If a component Ci is not parameterized (i.e., the state variable Ci is a tuple, not a map), then

a single clause asserts that, for all values of the component parameters for which the component

is defined (i.e., when PD,Ci is true), each element of the tuple has an appropriate initial value.

Furthermore, the clause asserts that, when PD,Ci is true, the tuple as a whole satisfies the initially

predicate PCi
init of the component. In order to account for initial values specified as nondeterministic

choices, we proceed as follows. Let

• Xi be the set of indices k of state variable declarations of the form

xk:Tk := choose vk:Tk where PCi

init,k

in the definition of the component Ci,

211

• cVarsCi be a set of distinct fresh variables v′k:Tk, one for each k in Xi,

• ∗initValsCi be initValsCi with each of the above choose expressions replaced by the corre-

sponding v′k:Tk for each k in Xi, and

• ∗PCi

init,k be PCi

init,k with v′k substituted for vk when k ∈ Xi and the predicate true otherwise.

Then we formulate the clause (shown in Figure 15.2) corresponding to Ci in the initially predicate

of DExpanded by factoring out, and existentially qualifying, the variables (i.e., cVarsCi) used to

choose nondeterministic values for the state variables of the component automaton Ci.

When a component Ci is parameterized (i.e., the state variable Ci is a map, not a tuple), then

there are two clauses for the component. The first is analogous to the single clause for the simple

case in which the state variable is a tuple, but now it asserts that each element of each tuple in the

map has an appropriate initial value and that, when PD,Ci is true, the map as a whole satisfies the

initially predicate of the component. The second clause asserts that the map is defined exactly for

the values of the component parameters for which the component itself is defined (i.e., when PD,Ci

is true). This second clause is also asserted automatically as an invariant of the automaton. That

is, no transition either extends or reduces the domain over which the map is defined. Figure 15.2

summarizes these two cases and the invariant.

15.6 Combining local variables of composite automata

Just as it helped to collect the local variables from all transition definitions for an action π when

desugaring a primitive automaton (see Section 12.3), it helps to collect the local variables from

the transitions definitions from different components for an action π when expanding the definition

of a composite automaton. Hence, we parameterize every transition definition by n per-component

aggregate local variables that are named for the components C1, . . . , Cn just as the n per-component

aggregate state variables are named for those components (see Section 13.2).

The sort of each per-component local variable depends on the name of the action and the pa-

rameterization of the component. If the component Ci has no parameters, then the aggregate local

variable Ci has sort Locals[Ai , actualTypesD,Ci , π]. On the other hand, if the component Ci has pa-

rameters, then the aggregate local variable Ci has sort Map[typesD,Ci ,Locals[Ai , actualTypesD,Ci , π]],

where typesD,Ci is the sequence of types of the variables in varsD,Ci .

We define localVarsD,π to be the sequence of the per-component local variables C1, . . . , Cn. If

a transition π has no local variables in component Ci or if π is not a transition in component Ci,

we omit Ci from localVarsD,π. We also define the sort Locals[D , typesD , π] to be a tuple sort with

selection operators that are named, typed, and have values in accordance with the variables in

localVarsD,π.

212

states

. . . ,

Ci:States[Ai , actualTypesD,Ci], % if varsD,Ci is empty

. . . ,

Cj : Map[varsD,Cj ,States[Aj , actualTypesD,Cj]], % if varsD,Cj is not empty

. . .

initially

. . . ∧
PD,Ci ⇒ ∃cVarsCi

(
PCi

init ∧ Ci.stateVarsCi = ∗initValsCi ∧
∧

k∈Xi
∗PCi

init,k

)
∧

. . . ∧
∀varsD,Cj

(
PD,Cj ⇒ ∃cVarsCj (PCj

init ∧ Cj [varsD,Cj].stateVarsCj = ∗initValsCj

∧
∧

k∈Xj
∗PCj

init,k)
)
∧

∀varsD,Cj
(
PD,Cj ⇔ defined(Cj [varsD,Cj])

)
∧

. . .

invariant of DExpanded :

. . . ;

∀varsD,Cj
(
PD,Cj ⇔ defined(Cj [varsD,Cj])

)
;

. . .

Figure 15.2: General form of the states in the expansion of a composite automaton

213

15.7 Expanding input transitions

Composition combines the transitions for identical input actions in different component automata

into a single atomic transition. An input transition is defined for an action π exactly for those

values of varsD,π that satisfy the signature where predicate PD,π
in . Figure 15.3 shows the general

form for the definition of a combined input transition based on this observation. Below, we discuss

the definitions of the where, eff, and ensuring clauses which appear in that figure.

Each of these clauses also appears as part of the expanded transitions for output and internal

transitions, so we name them PD,π
in,t1

, ProgD,π
in , and ensuringD,π

in , respectively, and include them in the

figures for the output and internal transitions only by reference. In those transitions, PD,π
in,t1

refers

only to the predicate explicitly appearing in Figure 15.3. That is, without the implicitly conjoined

signature predicate PD,π
in .

transitions

. . .

input π(varsD,π; local localVarsD,π) where
∧

1≤i≤n PD,Ci ,π
in,t1

eff

. . .

% When varsD,Ci is empty

if PD,Ci ∧ PCi ,π
in then ProgCi ,π

in fi;

. . .

% When varsD,Cj is not empty

for varsD,Cj where PD,Cj ∧ PCj ,π
in do

ProgCj ,π
in

od;

. . .

ensuring
∧

1≤i≤n ensuringD,Ci ,π
in

Figure 15.3: General form of an input transition in the expansion of a composite automaton

15.7.1 where clause

Since there is only one input transition for the action π in DExpanded, the expanded transition

where clause trivially satisfies semantic proof obligation 12.5 and its only functional role is to define

the initial values of the local variables localVarsD,π that correspond to a given sequence of action

parameters varsD,π. While the signature where predicate PD,π
in need only establish that there exists

some instance of some component that contributes an input action π(varsD,π), the transition where

predicate must define local variable initial values for each contributing instance of all contributing

components.

214

We define the input transition where clause PD,π
in,t1

by constructing subformulas PD,Ci ,π
in,t1

. Each

such subformula constrains the initial value of one local variable Ci of contributing component Ci.

The where clause shown in Figure 15.3 is then just the conjunction of these predicates PD,Ci ,π
in,t1

for

all components.

The subformula PD,Ci ,π
in,t1

is the implication that for each instance of the component that con-

tributes to the transition, the local variable Ci satisfies the proper initial constraints. The initial

value of local variable Ci in localVarsD,π is properly constrained when it satisfies the where clause

PCi ,π
in,t1

for the input transition definition of π in component Ci (for the given values of the compo-

nent parameters varsD,Ci and action parameters varsD,π). Thus, the consequent of the subformula

implication is PCi ,π
in,t1

.

When the component is parameterized, the local variable Ci is a map and each entry Ci[varsD,Ci]

in that map corresponds to the aggregate local variable for one instance of the component. In this

case, the initial values for entries corresponding to all contributing instances must initialized. An

instance of component Ci contributes to the transition π(varsD,π) when component parameters

varsD,Ci satisfy both the component where clause PD,Ci and the signature where clause PCi ,π
in in

that component (for the given values of the action parameters varsD,π). Thus, the antecedent of

the implication is the conjunction of these two predicates. To cover all instances, the implication is

universally quantified over all values of the component parameters varsD,Ci . Hence, we define

PD,Ci ,π
in,t1

::= ∀ varsD,Ci

((
PD,Ci ∧ PCi ,π

in

)
⇒ PCi ,π

in,t1

)
.

Since component Ci satisfies the semantic proof obligation 12.4, there must exists a value for local

variable Ci that satisfies the above consequent whenever the antecedent holds. Thus, the implica-

tion is always true when read with the existential quantifier over the local variables localVarsD,π

that is implicit in the transition header. Thus, DExpanded also (trivially) satisfies semantic proof

obligation 12.4 for input transitions, since whenever the input action π(varsD,π) is defined in the

signature of DExpanded, the input transition π(varsD,π) is also defined.

Notice that for each distinct value of varsD,Ci the predicate PCi ,π
in,t1

mentions a distinct local

variable Ci or Ci[varsD,Ci] in localVarsD,π. So, the truth values of instantiations of the the impli-

cation are independent even though there is only one existential instantiation of the local variables

localVarsD,π.

However, the fact that the implication is always true does not mean that it is equivalent to

omit the expanded transition where clause. It is a consequence of the expanded signature where

clause PD,π
in that some value of varsD,Ci satisfies the above implication antecedent. In that case the

where clause asserts that the initial value of the relevant local variable must satisfy the contributing

component transition where predicate PCi ,π
in,t1

.

215

When the component is not parameterized, PD,Ci ,π
in,t1

reduces to PCi ,π
in,t1

. To see this, first, note that

the universal quantifier simplifies away for lack of variables to quantify. Second, note that PD,Ci

and PCi ,π
in are true whenever PD,π

in is true. So the implication reduces to just the consequent.

Since the only functional role of the where clause is to define the initial values of the local

variables localVarsD,π, when there are no local variables or when no local variable appears in any

PCi ,π
in , the where clause can be omitted altogether.

15.7.2 eff clause

The eff clause performs the effects of all input transitions of each contributing instance of all con-

tributing components. It contains a conditional statement for each unparameterized component Ci

of D and a loop statement for each parameterized component Ci of D.

The predicate in the conditional statement for an unparameterized component Ci (when implic-

itly conjoined with the where clause for the entire transition and where clause for the action in the

automaton signature) is true if Ci contributes an input transition for π to the composite automaton

D. In that case, the body of the conditional statement executes the program in the eff clause in the

transition definition for π in Ci.

The situation is slightly more complicated when the component Ci is parameterized, because the

transition must execute the effects of all instances of the component that contribute to the action.

Thus, the eff clause loops over all the different values of the component parameters varsD,Ci that

satisfy the component where clause PD,Ci and the signature where clause PCi ,π
in in that component

to execute the program in the eff clause in the transition for π in that instance of component Ci.

Notice that each instance of a contributing component Ci (corresponding to one iteration of the loop

for Ci) manipulates a distinct tuple of local variables Ci[varsD,Ci].1

If only one unparameterized component Ci contributes to the input transition definition, the con-

ditional statement for that component may be replaced by the eff clause in the transition definition

for π in Ci itself because the guard is implied by PD,π
in .

15.7.3 ensuring clause

The ensuring predicate must be true if and only if the ensuring predicate from each contributing

instance of all contributing components is true. That is, given the parameters varsD,π, for each

1Currently, IOA syntax permits only a single single loop variable in for statements. However, if V is a sequence
of variables v1, v2, v3, . . . , then it is simple to rewrite multi-variable loops such as the ones used in Figure 15.3

for V where p do g od

as nested single-variable loops using the inductive step

for v1 where ∃V ′p do

for V ′ where p do g od

od

where is the variable sequence V ′ = v2, v3 . . . , p is a predicate and g is a program.

216

sequence of values of component parameters varsD,Ci of each component Ci that satisfies both the

component where clause PD,Ci and the signature where clause PCi ,π
in in that component, the value

of the local variable Ci in localVarsD,π must also satisfy the ensuring clause ensuringCi ,π
in for the

input transition definition of π in Ci. Thus, we define the predicate ensuringD,Ci ,π
in analogously to

the the predicate PD,Ci ,π
in,t1

:

ensuringD,Ci ,π
in ::= ∀ varsD,Ci

((
PD,Ci ∧ PCi ,π

in

)
⇒ ensuringCi ,π

in,t1

)
.

15.8 Expanding output transitions

We build up to the general form of expanded output transitions by first considering three specialized

cases. The simplest case we consider is an output transition that appears in exactly one unparame-

terized component and in no component as an input transition. Second, we consider the expansion

of an output transition when that sole contributing component is parameterized. Third, we extend

our definitions to apply output transitions contributed by multiple components. Finally, the fully

general expansion of output transitions covers the case where output actions and input actions share

a name.

15.8.1 Output-only transition contributed by a single unparameterized

component

We begin by considering the simplest case of an output transition π(varsD,π) that appears in exactly

one unparameterized component Ci and in no component as an input transition. That is, there is

no component Cj , whose signature contains an input action π(varsD,π). In this case, the expanded

output transition does not need to be performed atomically with any input transition.

As there is only one transition contributing to the expansion, there is only one transition for

the action π(varsD,π) in DExpanded. Thus, the expanded transition where clause trivially satisfies

semantic proof obligation 12.5 and its only functional role is to define the initial values of the local

variable Ci that corresponds to a given sequence of parameters varsD,π. In this case, simply reusing

the component transition where clause PCi ,π
out,t1 as the expanded transition where clause gives the

correct definition. In fact, the only difference between the expanded transition and the component

transition in this simplest case is the way locals variables are declared in transition header. The

aggregate local variable of the component transition becomes the sole local variable of the expanded

transition. The resulting form is show in Figure 15.4.

217

transitions

. . .

output π(local varsD,Ci , Ci:Locals[Ci , actualTypesD,Ci , π])

where PCi ,π
out,t1

pre PreCi ,π
out

eff ProgCi ,π
out

ensuring ensuringCi ,π
out

Figure 15.4: Expanded transition for an output action with no matching input actions, derived
uniquely from a component Ci with no parameters.

15.8.2 Output-only transition contributed by a single parameterized com-

ponent

When the component Ci has parameters the expansion is slightly more complicated. As in the

previous case, no like-named input transitions exist in any component and, therefore, the expanded

output transition does not need to be performed atomically with any input transition. Also like the

previous case, there is only one transition definition for π(varsD,π) in the expanded automaton, so

the transition where clause trivially satisfies semantic proof obligation 12.5 and its only functional

role is to define the initial values of the local variables. Unlike the previous case, the state and

local variables Ci are maps rather than simple tuples and the contributing component parameters

varsD,Ci are introduced as local variables.

The initial values of varsD,Ci need to be the correct indices for the relevant entry in the state and

local variable maps. That is, Ci[varsD,Ci] should evaluate to the tuple derived from the aggregate

variable of the contributing instance of the component. Note, the semantic proof obligation 15.2

requires that at most one instance of a component may contribute an output action π(varsD,π). In

fact, proof obligation 15.2 provides the formula for selecting the correct indices. The component

parameters of the sole contributing instance uniquely satisfy both the component where clause

PD,Ci and the signature where clause PCi ,π
out . Thus, these two predicates appear as conjuncts in the

where clause.

Since at most one instance of component Ci contributes to the expanded transition, at most

one entry in each of state and local variable maps Ci, corresponding to the aggregate variable of

the contributing instance of the component, has any relevance to the transition. The other entries

are completely ignored.2 The initial values for that entry Ci[varsD,Ci] are those that satisfy the

component transition where clause PCi ,π
out,t1 . Thus, this predicate forms the last conjunct in the

expanded where clause.

2In this special case, the references to local variable maps (rather than simple tuples) introduced by substitution
σi,π rule 9 in Section 14.3 are actually an unnecessary complication. However, they are required in the more general
cases discussed below.

218

transitions

. . .

output π(varsD,π; local varsD,Ci , Ci:Map[typesD,Ci ,Locals[Ci , actualTypesD,Ci , π]])

where PD,Ci ∧ PCi ,π
out ∧ PCi ,π

out,t1

pre PreCi ,π
out

eff ProgCi ,π
out

ensuring ensuringCi ,π
out

Figure 15.5: Expanded transition for an output action with no matching input actions, derived
uniquely from a parameterized component Ci.

The fact that at most one instance of component Ci contributes to the expanded transition also

means the expanded definition for the transition of an output action π need not use a for statement,

as does the expanded definition for the transition of an input action. Instead, the expanded definition

simply reuses the eff clause of the sole contributing component transition. Similarly, the pre and

ensuring clauses of the expanded transition are the same as those of the sole contributing component

transition, as shown in Figure 15.5.

15.8.3 Output-only transitions contributed by multiple components

When an output action name appears in several components, it would be valid for the expanded

composite automaton to include a separate output transition derived from each contributing com-

ponent transition using the above definitions. Unfortunately, as we see below, this approach yields

a code-size explosion multiplicative in the number of like-named input and output transitions. To

avoid this code explosion, we define the expanded composite automaton to combine all like-named

output transitions into a single output transition, as shown in Figure 15.6. An additional advantage

of combining all like-named output transitions is that, once again, the expanded transition where

clause trivially satisfies semantic proof obligation 12.5 and its only functional role is to define the

initial values of the local variables.

In the expansion, we declare as local variables the parameters of each (contributing) component

and the local variable Ci from each (contributing) component. As in the previous case, the semantic

proof obligations for output actions given in Section 15.4 provide the key to defining the where

clause. Obligation 15.1 requires that for any value of parameters varsD,π, at most one disjunct of

∨
1≤i≤n

PD,Ci ,π
out =

∨
1≤i≤n

∃varsD,Ci (PD,Ci ∧ PCi ,π
out)

can be true. That is, at most one component may contribute an output transition π(varsD,π). Since,

all the component parameters varsD,Ci appear as local variables in the expanded transition header,

219

transitions

. . .

output π(varsD,π; local varsD,C1 , . . . , varsD,Cn , localVarsD,π)

where
∨

1≤i≤n

(
PD,Ci ∧ PCi ,π

out ∧ PCi ,π
out,t1

)
pre

∨
1≤i≤n

(
PD,Ci ∧ PCi ,π

out ∧ PreCi ,π
out

)
eff

if . . .

elseif PD,Ci ∧ PCi ,π
out then ProgCi ,π

out

elseif . . .

fi

ensuring
∧

1≤i≤n

(
PD,Ci ∧ PCi ,π

out,t1 ⇒ ensuringA,π
out

)
Figure 15.6: Expanded transition for an output action with no matching input actions, contributed
by several components

these variables are implicitly existentially quantified in the where clause. Therefore, in the expanded

transition, the above obligation can be expressed simply as

∨
1≤i≤n

(PD,Ci ∧ PCi ,π
out).

Similarly, obligation 15.2 requires that at most one set of values for the component parameters

varsD,Ci of that contributing component Ci satisfies the conjunction

PD,Ci ∧ PCi ,π
out .

That is, at most one instance of that component may contribute an output transition π(varsD,π).

Notice that this conjunction appears exactly in the previous obligation. In fact, we use the conjunc-

tion of the component where clause PD,Ci of the contributing component and the signature where

clause PCi ,π
out as a “guarding conjunction” for selecting the contributing instance of the contributing

component throughout the expanded output transition.

In the where clause the guarding conjunction is paired with the corresponding component tran-

sition where clause and that triple conjunct is disjoined over all the components. Doing so has the

effect that the initial values of the relevant local variable Ci (or its relevant map entry Ci[varsD,Ci])

satisfies the component transition where clause whenever Ci is the contributing component.

Notice, it is a consequence of the expanded signature where clause PD,π
out that some value of

varsD,Ci satisfies the guarding conjunction. Furthermore, since component Ci satisfies the semantic

proof obligation 12.4, there must exists a value for local variable Ci that satisfies the consequent

whenever the guarding conjunction is true. Therefore, whenever the output action π(varsD,π) is

220

defined in the signature of DExpanded, the output transition π(varsD,π) is also defined. Thus,

DExpanded also satisfies semantic proof obligation 12.4 for output transitions.

In the precondition, the guarding conjunction is paired with the corresponding component precon-

dition and that triple conjunct is disjoined over all the components. Thus, the expanded transition is

enabled when there is a component for which all three of the transition precondition, the transition

where clause, and the component where clause are true for the given parameters and initial local

variable values. Checking the conjunction of all three predicates avoids enabling the transition when

the where clause is satisfied by the transition from one component while the pre clause is satisfied

by the transition of another component.

In the eff clause, the guarding conjunction selects the conditional branch containing the effects

of the single contributing output transition that is defined for the given parameters. Similarly, the

ensuring clause of the contributing output transition must be satisfied.

15.8.4 Output transitions subsuming input transitions (general case)

When both input and output transitions are defined and (the output transition is) enabled, the

output transition subsumes the input transitions. That is, the input actions execute atomically

with the output action. Just as we cannot statically decide that two input actions will never be

simultaneously executed, we cannot, in general, statically decide that an input transition can never

be subsumed by a like-named output transition. Therefore, each expanded output transition must

include the effects of all like-named input transitions (appropriately guarded). (It is this fact that

would cause the code-size explosion mentioned in the previous section were we to include a separate

output transition derived from each contributing component transition.) Figure 15.7 shows the

general form for expanding output transitions of composite automata.

In the cases where the output transition subsumes one or more input transition, the local variables

from the instance(s) of the component(s) contributing the input transition(s) must be initialized by

the expanded transition where clause. On the other hand, the where clause must still always be

satisfiable when an output action is defined. As we argue in Section 15.7, the expanded input

transition where predicate PD,π
in,t1

does exactly these two things. First, it requires the local variables

derived from contributing input transitions to satisfy the where clauses of those transitions. Second,

PD,π
in,t1

is satisfiable by some choice of values for localVarsD,π. Thus, we simply conjoin PD,π
in,t1

to the

where clause developed in the previous case.

The eff clause selects the effects of the single contributing output transition that is defined

for the given parameters and then performs all the effects of the subsumed input transitions by

executing ProgD,π
in . Each effect in ProgD,π

in is already guarded so as to occur only when the source

transition contributes. Therefore, we simply append ProgD,π
in to the eff clause from the previous

case. Similarly, the ensuring clause ensuringD,π
in can also be simply conjoined with the the ensuring

221

transitions

. . .

output π(varsD,π; local varsD,C1 , . . . , varsD,Cn , localVarsD,π)

where
∨

1≤i≤n

(
PD,Ci ∧ PCi ,π

out ∧ PCi ,π
out,t1

)
∧ PD,π

in,t1

pre
∨

1≤i≤n

(
PD,Ci ∧ PCi ,π

out ∧ PreCi ,π
out

)
eff

if . . .

elseif PD,Ci ∧ PCi ,π
out then ProgCi ,π

out

elseif . . .

fi;

ProgD,π
in

ensuring
∧

1≤i≤n

(
PD,Ci ∧ PCi ,π

out ⇒ ensuringA,π
out

)
∧ ensuringD,π

in

Figure 15.7: General form of an output transition in the expansion of a composite automaton

clause from the previous case.

Note that, ProgD,π
in may, in fact, amount to a no-op in all executions. However, in general, this

cannot be statically decided. Also note that the order of execution of the subsumed input transitions

with respect to each other or to the enabled output transition does not matter. The semantic checks

require that each conditional branch or for body executed in either the subsumed input transition

or the remainder of the clause must be derived from distinct automata. These effects can alter only

the value of state, local, or choose variables derived from the automaton contributing that effect.

Furthermore, the effects can depend only on those same set of state, local, and choose variables or

on the parameters of the transition. No effect can change a parameter value.

We define ProgD,π
out to be the program in the eff clause that combines the effects of output

transitions and subsumed input transitions. Similarly, we define ensuringD,π
out to be the predicate

that appears in the ensuring clause.

15.9 Expanding internal transitions

The basic form of expanded internal transitions is analogous to that of output actions. The most

significant difference is that the internal transition expansion must account for output actions that

are (potentially) hidden. So before we consider the general expansion for internal transitions, we

build on the discussion of the expansion of output transitions above to consider the the simpler case

of expanding transitions for internal actions when there are no hidden clauses for those actions. We

then discuss how to generalize this construction to account for hidden output transitions.

222

transitions

. . .

internal π(varsD,π; local varsD,C1 , . . . , varsD,Cn , localVarsD,π)

where
∨

1≤i≤n

(
PD,Ci ∧ PCi ,π

int ∧ PCi ,π
int,t1

)
pre∨

1≤i≤n

(
PD,Ci ∧ PCi ,π

int ∧ PreCi ,π
int

)
eff

if . . .

elseif PD,Ci ∧ PCi ,π
int ∧ then ProgCi ,π

int

elseif . . .

fi

ensuring
∧

1≤i≤n

(
PD,Ci ∧ PCi ,π

int,t1
⇒ ensuringA,π

int

)
Figure 15.8: Expanded transition for an internal action with no matching hidden clause

15.9.1 Internal-only transitions

The expanded form of the transition for an internal action when there is no hidden clause for that

action follows a pattern similar to that of output transitions when there are no like-named input

transitions. In that expansion, shown in Figure 15.8, we introduce local variables for the parameters

of each contributing automaton as well as all the local variables from all the contributing transitions.

Following reasoning analogous to the output case, we use the conjunction of the component where

clause PD,Ci of the contributing component and the signature where clause PCi ,π
int as the guarding

conjunction for selecting the contributing instance of the contributing component throughout the

expanded internal transition.

In the where clause, the guarding conjunction is paired with the component where clause for the

contributing transition PCi ,π
int,t1

to initialize the local variable values. In the precondition, the guard-

ing conjunction is paired with the pre predicate of the contributing transition. In the eff clause, the

guarding conjunction selects the conditional branch containing the effects of the single contribut-

ing transition that is defined for the given parameters. In, the ensuring clause, the contributing

transition ensuring clause must be satisfied when the guarding conjunction holds.

15.9.2 Internal transitions with hiding (general case)

The most important difference between the expansion for internal transitions and that for out-

put transitions is that the internal transition expansions must account for output actions that are

(potentially) hidden. We cannot, in general, statically decide whether the hidden predicate H D,π

covers the output signature predicate PD,π
out . Nor can we, in general, statically decide whether H D,π

covers the where clause for any contributing transition PCi ,π
out,t1 . Thus, each transition for each ac-

223

tion π(varsD,π) mentioned by a hidden clause must be incorporated into the expanded composite

automaton twice, once in an output transition and once in an internal transition.

One way to do this, would be to include two internal transitions for each transition π(varsD,π).

The first transition would be derived as in the previous section, ignoring any hidden output actions.

The second transition would be a second copy of the expanded output transition π(varsD,π). This

transition would be identical to the general case output transition expansion except it would be

labeled internal.

An alternative expansion is shown in Figure 15.9. This expansion follows the pattern of including

just one transition of each kind. An advantage of having just one transition is that the expanded

transition where clause trivially satisfies semantic proof obligation 12.5 and its only functional role

is to define the initial values of the local variables.

Proof obligations 15.3 and 15.4 imply that, over all components, at most one of the conjunctions

PD,Ci ∧ PCi ,π
int and PD,Ci ∧ PCi ,π

out can be true. So these conjunctions are used as the guarding con-

junctions for the expanded transition. The former guards elements derived from internal component

transitions. The latter guards elements derived from output component transitions.

In the where clause, each guarding conjunction is paired with the component where clause for the

contributing transition PCi ,π
kind,t1

of matching kind to initialize the local variable values. Since a hidden

output transition might also subsume a like-named input action, the where predicate also asserts

PD,π
in .3 In the precondition, the guarding conjunction selects the appropriate component transition

precondition PreCi ,π
int or PreCi ,π

out to satisfy. These latter disjuncts are abbreviated by referencing the

expanded output pre predicate PreD,π
out . The eff clause selects the effects of the single contributing

internal or output transition that is defined for the given parameters and then performs all the

effects of the subsumed input transitions. The conditional selecting the effects of an internal action

is shown in the figure. Effects derived from hidden output and hidden subsumed inputs are executed

in the appended program ProgD,π
out . Similarly, the ensuring clause from the previous case can be

simply conjoined with expanded output transition ensuring clause ensuringD,π
out

Notice, it is a consequence of the expanded signature where clause PD,π
int that some value of

varsD,Ci satisfies one of the guarding conjunctions. Furthermore, since component Ci satisfies

the semantic proof obligation 12.4, there must exists a value for local variable Ci that satisfies

the consequent whenever a guarding conjunction is true. Therefore, whenever the internal action

π(varsD,π) is defined in the signature of DExpanded, the internal transition π(varsD,π) is also

defined. Thus, DExpanded also satisfies semantic proof obligation 12.4 for internal transitions.

3We cannot simply conjoin PD,π
out to the transition where clause because PD,π

in would not distribute correctly.

224

transitions

. . .

internal π(varsD,π; local varsD,C1 , . . . , varsD,Cn , localVarsD,π)

where
∨

1≤i≤n

((
PD,Ci ∧ PCi ,π

int ∧ PCi ,π
int,t1

)
∨

(
PD,Ci ∧ PCi ,π

out ∧ PCi ,π
out,t1

))
∧ PD,π

in,t1

pre∨
1≤i≤n

(
PD,Ci ∧ PCi ,π

int ∧ PreCi ,π
int

)
∨ PreD,π

out

eff

if . . .

elseif PD,Ci ∧ PCi ,π
int ∧ then ProgCi ,π

int

elseif . . .

fi;

ProgD,π
out

ensuring
∧

1≤i≤n

(
PD,Ci ∧ PCi ,π

int,t1
⇒ ensuringA,π

int

)
∧ ensuringD,π

out

Figure 15.9: General form of an internal transition in the expansion of a composite automaton

225

226

Chapter 16

Expansion of an example

composite automaton

A good preparation takes longer than the delivery.

— E. Kim Nebeuts [93]

In this chapter, we detail the expansion the composite automaton introduced in Example 10.4.

In this expansion, we apply the techniques described in Chapter 15 to the composite automaton Sys

shown in Figure 10.4 and to the canonical versions of its component automata shown in Figures 14.3–

14.5. In Section 16.2, we derive the signature of SysExpanded in three stages. In Section 16.3, we

describe the state of the expanded automaton, including its initial values, and an invariant about

the scope of definition for its state variables.

Where convenient, we recapitulate definitions developed in previous sections in summary tables

to save the reader (and the authors!) from having to flip back to look up definitions.

16.1 Desugared hidden statement of Sys

Following the procedure described in Section 15.2, we eliminate terms other than variable references

from the parameters of the hidden statement of automaton Sys by replacing paramsSys,send
hide1

=

〈nProcesses, nProcesses+1, x:Int〉 with varsSys,send = 〈n1:Int, n2:Int, m:Int〉, defining σhide
1 to

map m:Int to a fresh variable i:Int, and rewriting the where clause in the hidden statement to

produce
hidden send(n1, n2, m)

where ∃ i:Int (i = m ∧ n1 = nProcesses ∧ n2 = nProcesses +1)

which simplifies to

227

hidden send(n1, n2, m) where n1 = nProcesses ∧ n2 = nProcesses +1

Thus, we define H Sys,send to be n1 = nProcesses ∧ n2 = nProcesses+1.

16.2 Signature of SysExpanded

To expand the signature of composite automaton Sys as described in Section 15.3, we first calculate

the per-kind, per-action, per-component predicates PSys,Ci ,π
kind . Then we combine these by component

to form the provisional kind predicates ProvSys,π
kind . Finally, we combine these predicates with the

hidden statement predicate to derive the signature predicates PSys,π
in , PSys,π

out , and PSys,π
int .

In computing these predicates it is helpful to remember the component predicates and canonical

variables of the sample composite automaton Sys. Table 16.1 collects the former from Example 10.4.

Table 16.2 recalls the latter as they were defined in Example 14.2. The local variables shown are

derived from Example 14.2 as described in Section 15.6.

predicate value

PSys,C j = i+1 ∧ 1 ≤ i ∧ i < nProcesses

PSys,P 1 ≤ n ∧ n ≤ nProcesses

PSys,W true

Table 16.1: Component predicates of the sample composite automaton Sys

16.2.1 Actions per component

First, we define predicates for each kind of each action for each component. Sys has three components

and four action names, each of up to three kinds. Thus, there are thirty-six possible per-kind, per-

action, per-component predicates PSys,Ci ,π
kind . Table 16.3 shows the seven of these predicates that are

not trivially false. All the existential quantifiers have been eliminated from the predicates shown in

the table.

We can simplify such a predicate by dropping existential quantifiers and conjuncts that are

superfluous. A quantifier is superfluous if the predicate equates the quantified variable directly with

a term not involving a quantified variable. The conjunct that equates the quantified variable to a

defining term is also superfluous. The simplification proceeds in four steps:

1. Define a substitution that maps any superfluous existential variables to the corresponding

term.

2. Apply the substitution to the predicate.

3. Delete identity conjuncts from the where clause.

228

canonical sequence variables

varsSys nProcesses:Int

varsC n:Int

varsP n:Int

varsSys,send n1:Int, n2:Int, m:Int

varsSys,receive n1:Int, n2:Int, m:Int

varsSys,overflow i1:Int, s:Set[Int]

varsSys,found i1:Int

localVarsSys,overflow P:Map[Int, Locals[P, overflow]],

W:Locals[Watch, Int, overflow]

Table 16.2: Canonical variables used to expand the sample composite automaton Sys

Predicate value

PSys,C,send
in (1 ≤ n1 ∧ n1 < nProcesses) ∧ (n2 = n1+1)

PSys,P,send
out (1 ≤ n1 ∧ n1 ≤ nProcesses) ∧ (n2 = n1+1)

PSys,C,receive
out (1 ≤ n1 ∧ n1 < nProcesses) ∧ (n2 = n1+1)

PSys,P,receive
in (1 ≤ n2 ∧ n2 ≤ nProcesses) ∧ (n1 = n2-1)

PSys,P,overflow
out 1 ≤ i1 ∧ i1 ≤ nProcesses

PSys,W,overflow
in i1 ∈ between(1, nProcesses)

PSys,W,found
out i1 ∈ between(1, nProcesses)

Table 16.3: Simplified predicates defining contributions to the signature of Sys

4. Delete the existential quantifiers for variables that no longer appear in the predicate.

For example, by the definition given in Section 15.3,

PSys,C,send
in ::= ∃varsSys,C (PSys,C ∧ PC,send

in)

= ∃ n:Int (1 ≤ n ∧ n < nProcesses ∧ n1 = n ∧ n2 = n+1)

We simplify this predicate by defining and applying a substitution that maps n:Int to n1:Int, delete

the resulting identity conjunct, the quantified variable, and the quantifier, resulting in the predicate

shown in Table 16.3.

229

Predicate value

ProvSys,send
in PSys,C,send

in

ProvSys,send
out PSys,P,send

out

ProvSys,receive
out PSys,C,receive

out

ProvSys,receive
in PSys,P,receive

in

ProvSys,overflow
out PSys,P,overflow

out

ProvSys,overflow
in PSys,W,overflow

in

ProvSys,found
out PSys,W,found

out

Table 16.4: Provisional where predicates for the signature of Sys

16.2.2 Provisional action kinds

Since no two components of Sys share the same kind of any action, it is simple to define the provisional

kind predicates ProvSys,π
kind . Seven of the twelve possible predicates are not trivially false. Each

of these has exactly one nontrivial disjunct—the corresponding predicate PSys,Ci ,π
kind , as shown in

Table 16.4

16.2.3 Signature predicates

We now compute the nontrivial signature predicates PSys,π
in , PSys,π

out , and PSys,π
int for the four action

labels send, receive, overflow, and found of automaton SysExpanded.

Output actions

We compute the signature predicate for output action send, by applying the formula

PSys,send
out = ProvSys,P,send

out ∧ ¬H Sys,send.

Using the desugared form of the hidden predicate shown in Example 15.2, we find that PSys,send
out

is
1 ≤ n1 ∧ n1 ≤ nProcesses ∧ n2 = n1+1

∧ ¬(n1 = nProcesses ∧ n2 = nProcesses +1)

Computing the predicates for output actions receive, found, and overflow is simple because there

is no hidden clause applying to them (i.e., H Sys,π is false) and the action predicate is, in fact, just

the provisional kind predicate, as shown in Figure 16.1.

230

Input actions

We compute the signature predicate for input action send by applying the formula

PSys,send
in = ProvSys,send

in ∧ ¬ProvSys,send
out .

Thus, PSys,send
in evaluates to

1 ≤ n1 ∧ n1 < nProcesses ∧ n2 = n1+1 ∧

¬((1 ≤ n1 ∧ n1 ≤ nProcesses) ∧ (n2 = n1+1))

The signature predicates for input actions receive, and overflow are computed similarly and

appear in Figure 16.1.

Internal actions

In Example 10.4, the component automata have no internal actions. Therefore, the only internal

action in Sys is the hidden action send. Thus, the predicate PSys,send
int is equivalent to

ProvSys,send
out ∧ H Sys,send,

which evaluates to

1 ≤ n1 ∧ n1 ≤ nProcesses ∧ n2 = n1+1 ∧ n1=nProcesses ∧ n2=nProcesses+1

The complete expanded signature of automaton Sys is given in Figure 16.1.

16.3 States and initially predicates of SysExpanded

The complete expanded state of automaton Sys is given in Figure 16.1. Since each component of the

desugared composite automaton has non-type parameters, all three state variables are maps. Three

of the initially subclauses (and the subsequent invariant) assert the well-formedness requirement

that each map is defined only for values of the component parameters on which the component itself

is defined. The other three initially subclauses assert that the contents of each channel is initially

empty, the watch process is looking for values between 1 and nProcesses and that each process P

initially has value 0 and nothing to send. The type declaration appearing at the beginning of the

figure is the automatically generated sort for the state of the composite automaton.

16.4 Input Transition Definitions of SysExpanded

We compute the input transitions of SysExpanded by following the pattern of Figure 15.3 for each of

the input actions in its signature (receive, send, and overflow) and simplifying. Figure 16.2 shows

231

type States[Sys] = tuple of C:Map[Int, States[Channel,Int,Int]],

P:Map[Int, States[P]],

W:States[Watch,Int]

automaton SysExpanded(nProcesses:Int)

signature
output send(n1, n2, m:Int)

where 1 ≤ n1 ∧ n1 ≤ nProcesses ∧ n2 = n1+1

∧ ¬(n1 = nProcesses ∧ n2 = nProcesses +1),

receive(n1, n2, m:Int)

where 1 ≤ n1 ∧ n1 < nProcesses ∧ n2 = n1+1,

overflow(i1:Int, s:Set[Int]) where 1 ≤ i1 ∧ i1 ≤ nProcesses,

found(i1:Int) where i1 ∈ between (1, nProcesses)

input send(n1, n2, m:Int)

where 1 ≤ n1 ∧ n1 < nProcesses ∧ n2 = n1+1

∧ ¬(1 ≤ n1 ∧ n1 < nProcesses ∧ n2 = n1+1),

receive(n1, n2, m:Int)

where 1 ≤ n2 ∧ n2 ≤ nProcesses ∧ n1 = n2-1

∧ ¬(1 ≤ n1 ∧ n1 < nProcesses ∧ n2 = n1+1),

overflow(i1:Int, s:Set[Int])

where i1 ∈ between (1, nProcesses)

∧ ¬(1 ≤ i1 ∧ i1 ≤ nProcesses)

internal send(n1, n2, m:Int)

where 1 ≤ n1 ∧ n1 ≤ nProcesses ∧ n2 = n1+1

∧ n1 = nProcesses ∧ n2 = nProcesses +1

states C:Map[Int, States[Channel , Int, Int]],

P:Map[Int, States[P]],

W:States[Watch , Int]

i n i t i a l l y
∀ n:Int ((1 ≤ n ∧ n < nProcesses) ⇒ C[n]. contents = {})

∧ ∀ n:Int ((1 ≤ n ∧ n < nProcesses) ⇔ defined(C, n))

∧ ∀ n:Int ((1 ≤ n ∧ n ≤ nProcesses) ⇒ P[n].val = 0 ∧ P[n]. toSend = {})

∧ ∀ n:Int ((1 ≤ n ∧ n ≤ nProcesses) ⇔ defined(P, n))

∧ W.seen = constant(false)

...

invariant of SysExpanded:

∀ n:Int (1 ≤ n ∧ n < nProcesses ⇔ defined(C[n]));

∀ n:Int (1 ≤ n ∧ n ≤ nProcesses ⇔ defined(P[n]))

Figure 16.1: Expanded signature and states of the sample composite automaton Sys

232

the three resulting forms.

In that figure, each input transition is formed from only a single contributing component. Thus,

the conjunctions in the where over the contributing components in Figure 15.3 each resolves to a

single term. Furthermore, we omit the where clauses for the receive and send transitions because the

transition definitions have no local variables. In each of the three transitions, we omit the ensuring

predicate altogether because the sole contributing predicate for each transition (ensuringP,receive
in ,

ensuringC,send
in , and ensuringW,overflow

in) is trivially true. The eff clause of each transition resolves

to a single for loop or conditional. In the overflow transition, the conditional is replaced by its body

because there is only a single contributing transition.

Figure 16.3 shows the final text of the expanded input transitions. In that figure, we omit

the local variable P:Map[Int, Locals[P, overflow]] from the overflow transition because it does

not appear in the transition precondition or effects. The where clause predicate PSys,W,overflow
in,t1

reduces to the implication shown in Table 16.5 because varsSys,W is empty and PSys,W is trivially

true.

The for loops in the receive and send transitions have been eliminated by the following simplifi-

cation. Filling in the specified variables from Tables 16.2, predicates from Tables 16.1 and 16.5 and

statements from Example 14.2 in the receive transition for loop yields the loop
for n:Int where (1 ≤ n ∧ n ≤ nProcesses ∧ n1 = n-1 ∧ n2 = n) do

i f P[n].val = 0 then P[n].val := m

e l s e i f m < P[n2].val then

P[n]. toSend := insert(P[n].val, P[n]. toSend);

P[n].val := m

e l s e i f P[n].val < m then

P[n]. toSend := insert(m, P[n]. toSend)

f i

od.

Since the last conjunct of the loop where clause limits the loop variable to a single value, the

transition parameter n2, we can eliminate the loop altogether. Thus, in Figure 16.3, we replace the

loop with its body after applying to the body a substitution that maps the loop variable n to its

value n2. Similarly, the for loop in the send transition is eliminated using a substitution that maps

its loop variable n to the transition parameter n1.

16.5 Output Transition Definitions of SysExpanded

We compute the output transitions of SysExpanded by following the pattern of Figure 15.7 for each of

the output actions in its signature (receive, send, overflow, and found) and simplifying. Figure 16.4

shows the four resulting forms.

233

predicate value

PP,receive
in n1 = n-1 ∧ n2 = n

PC,send
in n1 = n ∧ n2 = n+1

PW,overflow
in i1 ∈ between(1, nProcesses)

PW,overflow
in,t1

s = W.s2 ∪ {i1} ∨ ¬(i1 ∈ s)

PSys,W,overflow
in,t1

i1 ∈ between(1, nProcesses) ⇒ (s = W.s2 ∪ {i1} ∨ ¬(i1 ∈ s))

Table 16.5: Nontrivial predicates used in expanding input transition definitions of the sample com-
posite automaton Sys derived from Figures 14.3, 14.4 and 14.5

input receive(varsSys,receive)

eff for varsSys,P where PSys,P ∧ PP,receive
in do ProgP,receive

in od

input send(varsSys,send)

eff for varsSys,C where PSys,C ∧ PC,send
in do ProgC,send

in od

input overflow(varsSys,overflow; local localVarsSys,overflow) where PSys,W,overflow
in,t1

eff ProgW,overflow
in

Figure 16.2: Form of input transitions of SysExpanded

input receive(n1, n2, m)

e f f i f P[n2].val = 0 then P[n2].val := m

e l s e i f m < P[n2].val then
P[n2]. toSend := insert(P[n2].val, P[n2]. toSend);

P[n2].val := m

e l s e i f P[n2].val < m then
P[n2]. toSend := insert(m, P[n2]. toSend)

f i

input send(n1, n2, m)

e f f C[n1]. contents := insert(m, C[n1]. contents)

input overflow(i,s; locals W:Locals[W,int,overflow])

where i1 ∈ between (1, nProcesses) ⇒ (s = W.s2 ∪ {i1} ∨ ¬(i1 ∈ s))

e f f i f s = W.s2 ∪ {i1} then W.seen[i1] := true

e l s e i f ¬(i1 ∈ s) then W.seen[i1] := false

f i

Figure 16.3: Input transition definitions of SysExpanded

234

predicate value

PC,receive
out n1 = n ∧ n2 = n+1

PC,receive
out,t1 n1 = n ∧ n2 = n+1

PreC,receive
out m ∈ C[n].contents

PP,send
out n1 = n ∧ n2 = n+1

PP,send
out,t1 n1 = n ∧ n2 = n+1

PreP,send
out m ∈ P[n].toSend

PP,overflow
out i1 = n

PP,overflow
out,t1 i1 = n

PreP,overflow
out s = P[n].toSend ∧ n < size(s) ∧ P[n].t ⊆ s

PW,found
out i1 ∈ between(1, nProcesses)

PreW,found
out W.seen[i1]

Table 16.6: Nontrivial predicates used in expanding output transition definitions of the sample
composite automaton Sys derived from Figures 14.3, 14.4 and 14.5

Notice that only one component contributes an output transition to each expanded output transi-

tion. Therefore, only syntactic elements from the sole contributing component and the corresponding

expanded input action appear in each transition. Each local variable list contains of the compo-

nent variables for that contributing component. Since, localVarsSys,receive, localVarsSys,send, and

localVarsSys,found are empty, they are omitted from their respective transitions. Since component

W is unparameterized, the found transition has no local variables at all.

The where clause of each transition resolves to a single term rather than being a disjunction

over the contributing components. Furthermore, we omit the where clauses for the receive, send,

and found transitions because the transition definitions have no local variables. Similarly, the en-

suring clause is only a single conjunction. In each of the four transitions, we omit the ensuring

predicate altogether because the consequent for each transition (ensuringC,receive
out , ensuringP,send

out ,

ensuringP,overflow
out , and ensuringW,found

out) is trivially true. Furthermore, the conditional and guard-

ing conjunction can be omitted from the eff clause because only one output contributes. So each

effect is just the effect of the contributing output transition followed by the effect of the corre-

sponding expanded input transition. Since the output transition definition for the found action in

component W has no effect and there is no found input action, the expanded found transition has no

effect either.

Filling in the specified variables from Tables 16.2, predicates from Tables 16.1 and 16.6 and

statements from Example 14.2 and Figure 16.3 yields the complete the complete text of the expanded

output transitions shown in Figure 16.5. We simplify the transition definitions using two techniques.

First, we eliminating unneeded local variables. Second, we use the fact that the signature where

235

predicate for an action (e.g., PSys,receive
out) is implicitly conjoined to the corresponding transition

where predicate (e.g., PSys,receive
out,t1) and precondition (PreSys,receive

out) to eliminate redundant

assertions in the transition where predicate and precondition. The resulting final form of output

transitions is shown in Figure 16.6.

To eliminate unneeded local variables, we follow the four step process to eliminate unneeded

local variables described in Section 12.2. For example, we note that the where clause of the receive

transiting equates n with parameter n1. Furthermore, there is no assignment to n in the effects of

that transition. Thus, the local variable n is extraneous. So, we define a substitution that maps

the local variable n to the parameter n1 and apply it to the where, pre, and eff clauses. We then

delete the resulting identity conjunct from the where clause and the declaration of the local variable

n. Similarly simplifications eliminate the local variable n from the send and overflow transition

definitions. Since the resulting receive and send transitions no longer have any local variables, we

omit their where clauses altogether.

After this simplification, the precondition for the receive transition is
pre 1 ≤ n1 ∧ n1 < nProcesses ∧ n2 = n1+1 ∧ m ∈ C[n1]. contents

However, the first three conjuncts are also asserted by the the signature where clause for the receive

output action PSys,receive
out and, therefore, are redundant. Similarly simplifications to the where

and pre clauses of the other transitions result in the final text of the expanded output transitions

shown in Figure 16.6.

16.6 Internal Transition Definitions of SysExpanded

Since no component has any internal transitions, the only internal transitions in SysExpanded is the

hidden output send transitions. In the case where no component contributes an internal transition,

the form in Figure 15.9 reduces exactly that in Figure 15.7. That is, the internal send transition

definition is identical to the output transition definition except for its label. The two actions are

distinguished exactly by the assertion or negation of H Sys,send in the signature of SysExpanded. The

final transition of SysExpanded is shown in Figure 16.7.

236

output receive(varsSys,receive; local varsSys,C)

where PSys,C ∧ PC,receive
out ∧ PC,receive

out,t1 ∧ PSys,receive
in,t1

pre PSys,C ∧ PC,receive
out ∧ PreC,receive

out

eff ProgC,receive
out ;

ProgSys,receive
in

output send(varsSys,send; local varsSys,P)

where PSys,P ∧ PP,send
out ∧ PP,send

out,t1 ∧ PSys,send
in,t1

pre PSys,P ∧ PP,send
out ∧ PreP,send

out

eff ProgP,send
out ;

ProgSys,send
in

output overflow(varsSys,overflow; local varsSys,C, varsSys,P, localVarsSys,overflow)

where PSys,P ∧ PP,overflow
out ∧ PP,overflow

out,t1 ∧ PSys,overflow
in,t1

pre PSys,P ∧ PP,overflow
out ∧ PreP,overflow

out

effProgP,overflow
out ;

ProgSys,overflow
in

output found(varsSys,found)

pre PSys,W ∧ PW,found
out ∧ PreW,found

out

Figure 16.4: Form of output transitions of SysExpanded

237

output receive(n1, n2, m; loca l n:Int)

where 1 ≤ n1 ∧ n1 < nProcesses ∧ n1 = n ∧ n2 = n1+1

pre 1 ≤ n ∧ n1 < nProcesses ∧ n1 = n ∧ n2 = n+1

∧ m ∈ C[n]. contents

e f f
C[n]. contents := delete(m, C[n]. contents)

i f P[n2].val = 0 then P[n2].val := m

e l s e i f m < P[n2].val then
P[n2]. toSend := insert(P[n2].val, P[n2]. toSend);

P[n2].val := m

e l s e i f P[n2].val < m then
P[n2]. toSend := insert(m, P[n2]. toSend)

f i

output send(n1, n2, m; loca l n:Int)

where 1 ≤ n ∧ n ≤ nProcesses ∧ n1 = n ∧ n2 = n+1

∧ n1 = n ∧ n2 = n+1

pre 1 ≤ n ∧ n ≤ nProcesses ∧ n1 = n ∧ n2 = n+1 ∧ m ∈ P[n]. toSend

e f f
P[n]. toSend := delete(m, P[n]. toSend)

C[n1]. contents := insert(m, C[n1]. contents)

output overflow(i1, s; loca l n:Int,

P:Map[Int, Locals[P, overflow]],

W:Locals[Watch , Int, overflow])

where 1 ≤ n ∧ n ≤ nProcesses ∧ i1 = n ∧
i1 ∈ between (1, nProcesses) ⇒ (s = W.s2 ∪ {i1} ∨ ¬(i1 ∈ s))

pre 1 ≤ n ∧ n ≤ nProcesses ∧ i1 = n ∧
s = P[n]. toSend ∧ n < size(s) ∧ P[n].t ⊆ s

e f f P[n]. toSend := P[n].t

i f s = W.s2 ∪ {i1} then W.seen[i1] := true

e l s e i f ¬(i1 ∈ s) then W.seen[i1] := false

f i

output found(i1)

pre i1 ∈ between (1, nProcesses) ∧ W.seen[i1]

Figure 16.5: Output transition definitions of SysExpanded

238

output receive(n1, n2, m)

pre m ∈ C[n1]. contents

e f f
C[n1]. contents := delete(m, C[n1]. contents)

i f P[n2].val = 0 then P[n2].val := m

e l s e i f m < P[n2].val then
P[n2]. toSend := insert(P[n2].val, P[n2]. toSend);

P[n2].val := m

e l s e i f P[n2].val < m then
P[n2]. toSend := insert(m, P[n2]. toSend)

f i

output send(n1, n2, m)

pre m ∈ P[n1]. toSend

e f f
P[n1]. toSend := delete(m, P[n1]. toSend)

C[n1]. contents := insert(m, C[n1]. contents)

output overflow(i1, s; loca l P:Map[Int, Locals[P, overflow],

W:Locals[Watch , Int, overflow])

where s = W.s2 ∪ {i1} ∨ ¬(i1 ∈ s)

pre s = P[i1]. toSend ∧ i1 < size(s) ∧ P[i1].t ⊆ s

e f f P[i1]. toSend := P[i1].t

i f s = W.s2 ∪ {i1} then W.seen[i1] := true

e l s e i f ¬(i1 ∈ s) then W.seen[i1] := false

f i

output found(i1)

pre W.seen[i1]

Figure 16.6: Simplified output transition definitions of SysExpanded

internal send(n1, n2, m)

pre m ∈ P[n1]. toSend

e f f
P[n1]. toSend := delete(m, P[n1]. toSend)

C[n1]. contents := insert(m, C[n1]. contents)

Figure 16.7: Internal transition definitions of SysExpanded

239

240

Chapter 17

Renamings, Resortings, and

Substitutions

One man’s constant is another man’s variable.

— Alan J. Perlis [99]

In this section, we give formal definitions for resortings and variable substitutions in IOA.

17.1 Sort renamings

A sort renaming or resorting is a map from simple sorts to sorts.1 Any resorting ρ extends naturally

to a map ρ̇ defined for all simple sorts by letting ρ̇ be the identity on elements not in the domain of

ρ. In turn, ρ̇ extends further to a map ρ̈ from sorts to sorts by the following recursive definition:

ρ̈(u) ::=

ρ̇(T) if u is a simple sort T , and

T [ρ̈(T1), . . . , ρ̈(Tn)] if u is a compound sort T [T1, . . . , Tn].

Let ρS→T denote a resorting that maps the sort S to sort T and is otherwise the same as ρ (even

if S is already in the domain of ρ).

1In IOA, sorts are divided into simple or primitive sorts, such as Int and T, and compound or constructed sorts,
such as Set[T] and WeightedGraph[Node,Nat].

241

17.2 Variable renamings

A variable renaming ρq is an extension of a resorting ρ that maps variables in a sequence q to distinct

variables. If v is a variable i:T in q, then ρq(v) is defined to be j:ρ̈(T) where j is an identifier (i

itself, if possible) such that j:ρ̈(T) 6= ρq(v′) for all variables v′ that precede v in q. We say that ρq

is a variable renaming with respect to precedence sequence q.

If ρr is a variable renaming where r = q‖p then we say ρr is an extension of ρq with respect to

precedence sequence p and we write that ρr = ρq ` p.

17.3 Operator renamings

An operator renaming ω is a map from operators to operators that preserves signatures. Any

operator renaming ω extends naturally to a map ω̇ defined for all operators by letting ω̇ map each

operator not in the domain of ω to itself.

We extend any operator renaming ω further to a map ω̈ on some syntactic elements of an IOA

automaton (terms to terms, statements to statements, etc.) We now define ω̈ for each type of IOA

syntax to which it may apply.

17.3.1 Terms and sequences of terms

If u is a term, then ω̈(u) is

• v, if u is a variable v,

• ω̇(f)(ω̈(u1), . . . , ω̈(un)), if u is a term f(u1, . . . , un) for some operator f and terms u1, . . . , un,

• ∀v ω̈(u′), if u is a term ∀v (u′) for some variable v and term u′, and

• ∃v ω̈(u′), if u is a term ∃v (u′) for some variable v and term u′.

If q is a sequence of terms {u1, u2, . . . , un}, then ω̈(q) is {ω̈(u1), ω̈(u2), . . . , ω̈(un)}.

17.3.2 Values

If l is a value, then ω̈(l) is

• ω̈(t), if l is a term t

• choose v where ω̈(p), if l is a choice choose v where p for some variable v and predicate p.

242

17.3.3 Statements and programs

If s is a statement, then ω̈(s) is

• ω̈(lhs) := ω̈(rhs), if s is an assignment lhs := rhs for some lvalue lhs and some value rhs,

• if ω̈(p1) then ω̈(s1) elseif ω̈(p2) then . . . else ω̈(sn) fi, if s is a conditional statement

if p1 then s1 elseif p2 . . . else sn fi for some predicates p1, . . . , pn−1 and statements s1, . . . , sn,

and

• for v where ω̈(p) do ω̈(g) od, if s is a loop statement for v where p do g od for some

variable v, predicate p, and program g.

If g is a program s1; s2; . . . , then ω̈(g) is ω̈(s1); ω̈(s2);

17.3.4 Shorthand tuple sort declarations

If ω is an operator renaming and d1 and d2 are two shorthand tuple sort declarations:

d1 ::= T tuple of i1:T1, i2:T2, . . . , and

d2 ::= T tuple of j1:T1, j2:T2, . . . ,

where i1, i2, . . . , and j1, j2, . . . , are identifiers and T , T1, T2, . . . , are sorts then we write ωd1→d2 or

ωT,{i1,i2,... }→{j1,j2,... } for the operator renaming that maps

1. tuple selection operators .ik:T → Tk to .jk:T → Tk, and

2. tuple set operators set ik:T, Tk → T to set jk:T, Tk → T .

17.4 Renamings for automata

In Chapter 13 we defined resortings that map typesA to actualTypesD,A for some desugared automa-

ton A with formal type parameters typesA instantiated with actual type parameters actualTypesD,A.

Let ρ be such a resorting and % be the variable renaming ρ{}. We extend % to a map %̇ on

some syntactic elements of an IOA automaton (terms to terms, statements to statements, etc.) by

defining %̇ for each type of IOA syntax to which it may apply.

17.4.1 Automata

If A is desugared primitive automaton with syntax as given in Chapter 12 and shown in Figure 12.5,

then %̇(A) is2

2Strictly speaking, the definition of the automaton %̇(A) is not a legal definition of a primitive IOA automaton. Its
type parameters, shown as typesA, should really consist of the non-built-in types that appear in sorts in %̇(typesA).
Furthermore, the declared state variables may not match the aggregate state variable selectors that appear in terms
in signature where clauses, in the initially clause, or in transition definitions.

243

automaton A(%̇A(varsA); typesA)

signature

. . .

kind π(%̇A,π(varsA,π)) where %̇A,π(PA,π
kind)

. . .

states ρ(stateVarsA) := %̇A(initValsA) initially %̇A(PA
init)

transitions

. . .

%̇A,π
kind,t1

kind π(varsA,π; local localVarsA,π

kind) where PA,π
kind,t1

pre PreA,π
kind,t1

eff ProgA,π
kind,t1

ensuring ensuringA,π
kind,t1

. . . .

where

1. %̇A is a variable renaming %̇ ` ({A,A′:States[A, typesA]}‖ varsA‖ stateVarsA‖ postVarsA).3

2. %̇A,π is a variable renaming %̇A ` varsA,π.

3. %̇A,π
kind,t1

is a variable renaming

%̇A,π ` ({A,A′:Locals[A, typesA, kind , π]}‖ localVarsA,π
kind‖ localPostVarsA,π

kind).4

3Even though variables in stateVarsA and postVarsA do not appear in any terms in a desugared automaton
definition, we include those variables in the precedence sequence to ensure that selectors for local variables do not
clash with selectors for state variables in transition definitions (see below).

4Like state variables, variables in localVarsA,π
kind and localPostVarsA,π

kind do not appear in any terms in a desugared
automaton definition. We include those variables in the precedence sequence only to ensure that selectors for local
variables do not clash with each other. (see below).

244

17.4.2 Transition definitions

Let t be a transition definition in automaton A as given above. That is, t is

kind π(varsA,π; local localVarsA,π
kind) case c where p1

pre p2

eff g ensuring p3

where varsA,π is a sequence of variables, localVarsA,π
kind = {i1:T1, i2:T2, . . . , } is a sequence of vari-

ables, p1, p2, and p3 are predicates, and g is a program. Let S be the aggregate local sort

Locals[A, typesA, kind , π] of t, and %̇ be the variable renaming %̇A,π
kind,t1

given above. That is, %̇ is an ex-

tension of ρ with respect to the precedence sequence {A,A′:States[A, typesA]}‖ varsA‖ stateVarsA‖

postVarsA‖ varsA,π‖ {A,A′:Locals[A, typesA, kind , π]}‖ localVarsA,π
kind‖ localPostVarsA,π

kind .

We define %̇(t) to be

kind π(%̇(varsA,π); %̇(localVarsA,π
kind)) case c where ω̈ρ(S),{i1,i2,... }→{j1,j2,... }(%̇(p1))

pre ω̈ρ(S),{i1,i2,... }→{j1,j2,... }(%̇(p2))

eff ω̈ρ(S),{i1,i2,... }→{j1,j2,... }(%̇(g)) ensuring ω̈ρ(S),{i1,i2,... }→{j1,j2,... }(%̇(p3)).

where %̇(localVarsA,π
kind) is a variable sequence {j1:ρ(T1), j2:ρ(T2), . . . , }. Note that if localVarsA,π

kind =

%̇(localVarsA,π
kind), then ωρ(S),{i1,i2,... }→{j1,j2,... } is the identity operator renaming.

17.4.3 Statements and programs

If s is a statement and % is some variable renaming, then %̇(s) is

• %̇(lhs) := %̇(rhs), if s is an assignment lhs := rhs for lvalue lhs and value rhs,

• if %̇(p1) then %̇(s1) elseif %̇(p2) then . . . else %̇(sn) fi, if s is a conditional statement if p1 then s1 elseif p2 . . . else sn fi

for some predicates p1, . . . , pn−1and statements s1, . . . , sn, and

• for %̇′(v) where %̇′(p)do %̇′(g) od, if s is a loop for v where p do g od for some variable v,

predicate p, and program g, where %̇′ = %̇ ` {v}.

If g is a program s1; s2; . . . , then %̇(g) is %̇(s1); %̇(s2);

17.4.4 Values

If l is a value and % is some variable renaming, then %̇(l) is

245

• %̇(t), if l is a term t, and

• choose %̇′(v) where %̇′(p), if l is a choice choose v where p for some variable v and predicate

p, where %̇′ = %̇ ` {v}.

17.4.5 Terms and sequences of terms

If u is a term and % is some variable renaming, then %̇(u) is

• %(v), if u is a variable v,

• f(%̇(u1), . . . , %̇(un)), if u is a term f(u1, . . . , un) for some operator f and terms u1, . . . , un,

• ∀%̇′(v) %̇′(u′), if u is a term ∀v (u′) for some variable v and term u′, where %′ = % ` {v}, and

• ∃%̇′(v) %̇′(u′), if u is a term ∃v (u′) for some variable v and term u′, where %′ = % ` {v}.

If q is a sequence of terms {u1, u2, . . . , un}, then %̇(q) is {%̇(u1), %̇(u2), . . . , %̇(un)}.

17.5 Substitutions

A substitution is a map from variables to terms such that the image of any variable has the same sort

as the variable. Any substitution σ extends naturally to a map σ̇ defined for all variables by letting

σ̇ map each variable not in the domain of σ to a term that is a simple reference to the variable itself.

Let σv→t denote a substitution that maps the variable v to the term t and is otherwise the same

as σ (even if v is already in the domain of σ). We extend any substitution σ further to a map σ̈ on

some syntactic elements of an IOA automaton (terms to terms, statements to statements, etc.). We

now define σ̈ for each type of IOA syntax to which it may apply.

17.5.1 Terms and sequences of terms

If u is a term, then σ̈(u) is

• σ̇(v), if u is a variable v,

• f(σ̈(u1), . . . , σ̈(un)), if u is a term f(u1, . . . , un) for some operator f and terms u1, . . . , un,

• ∀w σ̈v→w(u′), if u is a term ∀v (u′) for some variable v and term u′, where w is a variable (v

itself, if possible) with the same sort as v, where w 6∈ FV(σ̈(v′)) for all variables v′ ∈ FV(u),

and

• ∃w σ̈v→w(u′), if u is a term ∃v (u′) for some variable v and term u′, where w is as above.

If q is a sequence of terms {u1, u2, . . . , un}, then σ̈(q) is {σ̈(u1), σ̈(u2), . . . , σ̈(un)}.

246

17.5.2 Values

If l is a value, then σ̈(l) is

• σ̈(t), if l is a term t

• choose w where σ̈v→w(p), if l is a choice choose v where p for some variable v and predicate

p, where w is a variable (v itself, if possible) with the same sort as v, and where w 6∈ FV(σ̈(v′))

for all variables v′ ∈ FV(l).

17.5.3 Statements and programs

If s is a statement, then σ̈(s) is

• σ̈(lhs) := σ̈(rhs), if s is an assignment lhs := rhs for some lvalue lhs and some value rhs,

• if σ̈(p1) then σ̈(s1) elseif σ̈(p2) then . . . else σ̈(sn) fi, if s is a conditional statement

if p1 then s1 elseif p2 . . . else sn fi for some predicates p1, . . . , pn−1 and statements s1, . . . , sn,

• for w where σ̈v→w(p) do σ̈v→w(g) od, if s is a loop statement for v where p do g od for

some variable v, predicate p, and program g, where w is a variable (v itself, if possible) with

the same sort as v, where w 6∈ FV(σ̈(v′)) for all variables v′ ∈ FV(s).

If g is a program s1; s2; . . . , then σ̈(g) is σ̈(s1); σ̈(s2);

17.5.4 Transition definitions

If, in automaton A parameterized by type parameters typesA, t is a transition definition

kind π(paramsπ; local v1, v2, . . .) case c where p1

pre p2

eff g ensuring p3

247

where paramsπ is a sequence of terms, v1, v2, . . . is a sequences of variables i1:T1, i2:T2, . . . , p1, p2,

and p3 are predicates, g is a program, and S is the aggregate local sort of t, then σ̈(t) is

kind π(σ̈{v1,v2,... }→{w1,w2,... }(paramsπ); local w1, w2, . . .)

case c where ω̈S,{i1,i2,... }→{j1,j2,... }(σ̈{v1,v2,... }→{w1,w2,... }(p1)))

pre ω̈S,{i1,i2,... }→{j1,j2,... }(σ̈{v1,v2,... }→{w1,w2,... }(p2)))

eff ω̈S,{i1,i2,... }→{j1,j2,... }(σ̈{v1,v2,... }→{w1,w2,... }(g)))

ensuring ω̈S,{i1,i2,... }→{j1,j2,... }(σ̈{v1,v2,... }→{w1,w2,... }(p3)))

where

1. wk is a variable jk:Tk (vk itself, if possible), and

2. wk 6∈ FV(σ̈(v′)), for all variables v′ ∈ {A,A′:States[A, typesA]} ∪ stateVarsA ∪ postVarsA ∪

varsA ∪ FV(paramsπ) ∪ {A,A′:Locals[A, typesA, kind , π, c]} ∪ {vl, v
′
l | l < k}.

Note that if ik = jk for all k, then ωS,{i1,i2,... }→{j1,j2,... } is the identity operator renaming.

17.5.5 Hidden clauses

If c is a clause in a hidden statement

π(paramsπ) where p

where paramsπ is a sequence of terms and p is a predicate, then σ̈(c) is

π(σ̈{v1,v2,... }→{w1,w2,... }(paramsπ) . . .where σ̈{v1,v2,... }→{w1,w2,... }(p)

where

1. vk is a variable ik:Tk ∈ FV(paramsπ)

2. wk is a variable (vk itself, if possible) with sort Tk

3. wk 6∈ FV(σ̈(v′)) for all variables v′ ∈ FV(paramsπ) ∪ FV(p) ∪ {vl | l 6= k}.

17.6 Notation

Except in definitions such as these, we do not employ separate notations for the extensions ρ̇, ρ̈, ρω,

ρq, and %̇ of a resorting ρ. In particular, when applying a resorting ρ to an IOA automaton A, we

write ρ for %̇. Similarly, we do not distinguish σ̇ and σ̈ from a substitution σ and we write σ for σ̈.

248

Chapter 18

Conclusions

It feels terrible, it’s all my own stuff and I don’t want to

look at it anymore.

— Frank Gehry [61]

18.1 Summary

The IOA compiler is a novel tool key to producing verified running code for distributed systems.

The compiler enables programmers to transform IOA specifications of distributed algorithms into

Java programs running on a collection of networked workstations. Other tools in and connected to

the IOA toolkit allow programmers to formally verify the correctness of the same IOA specifications.

The compiler overcomes the previous disconnect between correctness claims for formal specifications

and actual system implementations.

We prove that under precisely stated conditions the compilation method preserves the safety

properties of the program in the running system. The compiler takes an automaton as input and

produces Java code as output. We prove the correctness of our compilation strategy by modeling

the target Java code as another IOA automaton. That is, we treat the IOA compiler as a syntactic

transformer from one kind of IOA automaton to another. We prove that the the target automaton

implements the source automaton in the sense of trace inclusion.

Algorithm automata are connected to external system services by mediator automata. Proofs of

correctness about IOA systems can be performed using models of these external system services that

make all our assumptions about the behaviors of these systems explicit. To simplify these proofs we

present simplified models of the system services that are implemented by the composition of these

services with the mediator automata.

249

Our strategy for compilation is dependent on the ability to expand composite automata into

primitive form. We have presented a series of syntactic transformations to perform this expansion.

As part of this definition we have defined a desugared core IOA language and shown syntactic

transformations to produce desugared automata from arbitrary primitive automata.

18.2 Assessment

In the context of the IOA toolkit project, the IOA compiler can be a key component in a software

development environment. We demonstrate that it is feasible for programmers to write their specifi-

cations at a high level of abstraction, in terms of input/output automata; validate the specification

using a variety of tools; refine the specification to a low-level design; and then automatically trans-

late the design into code that runs on a collection of workstations communicating using standard

networking protocols.

We are not aware of any previous system that integrates specification, light-weight validation

tools, automated proof assistance, and automated code-generation. While specifications can conform

closely to actual system code, a disconnect has existed in all previous systems. A human must

translate the specification into an imperative language description. This disconnect between the

formal specification of a distributed system and the actual implementation of that system creates

several problems.

Bridging the existing disconnect between formal specification and system implementation solves

several existing problems and create many new opportunities for distributed system work. At a

minimum, coding the system in a programming language distinct from the specification language

requires a duplication of effort. The task of the system implementor has significant overlaps with

that of the specification writer. They are, after all, both striving to construct descriptions of the

same system.

The separation of the specification and implementation processes allows for the introduction of

transcription and interpretive errors or the failure to notice modeling errors. Transcription errors

are simple copying errors that result because humans do not perform copying reliably. Interpretive

errors are errors of understanding of one sort or another. The formal specification may contain

ambiguous abstractions. The system implementer, less familiar with the specification language than

the specification writer, may misinterpret the intent of said writer. Alternatively, the implementer

may introduce “optimizations” that cause errors. (The optimizations may either be to the coding

process or to the code itself.) Modeling errors occur when the specification does not adequately

reflect the behavior of the real world. The overhead of the specification process may discourage

the system implementer from pointing out such errors in the specification model. As a result,

any confidence in the correctness of the specification transfers to the implemented system only in

250

substantially diminished form.

Automating the process of translating IOA specifications into running code has power beyond

eliminating errors and duplicated effort. By substantially increasing the automation in the speci-

fication process, the IOA toolkit will substantially lower the barriers between formal methods and

system building work. With the addition of the IOA compiler, the IOA toolkit becomes a testbed

for distributed system designers. Algorithm writers will have a relatively simple path to create and

measure running prototypes of high-level designs. As a result, we hope to lower the implementation

expertise necessary to create even a simple prototype of a distributed system. Similarly, the formal

IOA language, automated validation assistants, and clear connection to running code decrease the

amount of mathematical sophistication needed to perform basic validation work. Ultimately, we hope

tools like these research prototypes will lower the barriers and increase the amount of cooperation

and cross-fertilization between these two aspects of the distributed systems field.

By decreasing the costs involved, the IOA toolkit should promote the iterative nature of the

formal specification and system building process. Changes to the specification become easier to

make. Where previously any change required tediously revisiting each step of hand proofs and hand

translations, in many cases we can revalidate the design automatically by reusing automated proof

scripts. This should raise the level of abstraction at which system design takes place and should

result in more maintainable designs.

18.3 Future Work

While the IOA compiler and composer prototypes are fully functional, a great deal of work can be

done to explore and extend the capabilities of both. Areas of inquiry for the compiler include some

fixes to and extensions of the underlying IOA language, further analysis of the existing prototypes,

support for a variety of network services, better handling of schedules, improved performance of

datatype implementations, and direct compilation of composite automata. The composer could be

extended to simplify its output and to handle nested composition.

18.3.1 IOA Language Extensions

Currently, variables in IOA can be introduced in the state of an automaton, local to transitions, or

in an NDR schedule block. (Values may also be given names as automaton or action parameters.)

There are a number of additional contexts in which it will be helpful to be able to declare or access

variables. First, variables introduced in the schedule should be usable in the initially det block.

In our spanning tree and broadcast case studies, we were forced to add dummy state variables to

the automaton to work around this shortcoming. Second, it should be possible to declare derived

or history variables outside primitive automata. In Chapter 4, we resorted to defining the auxiliary

251

toSend LSL trait because we were not able to declare variables in a simulation relation. Similarly,

it would be useful to allow composite automata to declare additional history variables that are not

part of the state of any one component.

A substantially more ambitious goal would be to support compilation of the extended TIOA

language for timed I/O automata [66]. Among the substantial challenges in such an extension would

be to include support for functions of continuous variables and real time deadlines.

18.3.2 Case studies

Further investigation of the current prototype is warranted. In particular, further studies of the

effects of scaling on our implementation should be taken. Our current testbed encompasses only

ten nodes due to incompatibilities among our MPI installations. At such a small scale we already

observed some behavior that was difficult to understand. It is not at all clear why the LCR system

exhibited bimodal runtimes. Once the cause for this behavior has been identified and fixed, scaling

studies should investigate the behavior of the system on the networks orders of magnitude larger

than our original testbed. We are optimistic that such studies will find that the system scales well

due to the absence of global synchronization in our implementation.

Simple changes to the code such as forcing threads to sleep have already improved performance

by orders of magnitude. Further measurements should be performed to help tune the system. It is

currently not clear where where the system is spending most of its execution time. Identifying the

bottlenecks will be the key to obtaining better performance.

18.3.3 Alternative network services

The choice to use reliable, one-way, FIFO channels as our abstract network model and MPI as our

concrete channel implementation was fairly arbitrary. Expanding our model of MPI behavior and the

number of MPI procedure calls supported would be one way to enhance the capabilities of the system.

Alternatively, an entirely different network service could be used. Obvious possible choices include

TCP, Java Remote Method Invocation (RMI), and the Java Message Service [101, 111, 116, 117]. To

use a new network interconnect a designer would need to write IOA automata to model both the new

concrete service being used and the new abstract channel programmers should expect. The designer

would then write new mediator automata to bridge any gap between those models. A simulation

proof similar to that in Chapter 4 would show that the composition of the concrete channel and

mediator automata implement the abstract channel. Finally, the designer would need to alter the

compiler to handle IOA actions that model calls to the network service as special cases.

It is possible one might even develop a network interface implementation registry (analogous

to the current datatype implementation registry) that specifies the implementation methods for

252

state initialization and for pairs of network call and return actions. Such a registry would allow

programmers to design their own network interconnects without substantial changes to the compiler.

Changing the network interconnect would allow programmers to explore important features of

distributed systems not supported by MPI. In particular, MPI has no failure model. If one node fails,

the whole system shuts down. Other network interconnects would allow the study of fault-tolerant

algorithms. Similarly, MPI has a static network model. Nodes may neither join nor leave a running

system. Other network models would be useful for the investigation and implementation of dynamic

algorithms.

Note that abstract service correctness proofs are concerned with a higher level of abstraction than

the general compiler correctness proof given in Chapter 7. The general node-by-node correctness

proof is concerned only with the concrete service interface and does not assume any special properties

about the transitions that implement the MPI service interface. Therefore, as long as the automaton

that models the new concrete service uses pairs of input and output transitions to model method

invocations and returns, Theorem 7.2 will still apply to the compiler design.

18.3.4 NDR and Schedules

For any particular algorithm, writing a better schedules may improve performance by executing

fewer transitions. It would be particularly worthwhile to find the correct balance point between

probing for messages too often and not probing often enough. It might be possible to develop a

general characterization of such schedules.

A review of the schedules for the three case studies we performed shows many commonalities

among them. For example, all three follow similar patterns when scheduling transitions derived from

the mediator automata. It should be possible to schedule the mediator automata automatically.

Other parts of the schedules might be generated more automatically with some minimal guidance

from the programmer. For example, most fire statements are guarded by predicates that resemble

the precondition of the transition to be executed. Identifying the correct abstraction to allow

programmers to supply the minimum critical information would be key to removing much of the

manual drudgery from writing schedules. Certainly the schedules for many common cases could be

generated automatically.

The possible elimination of NDR annotations altogether is another alternative worth investigat-

ing. Using a scheme similar to our external representations for action invocations, each automaton

could implicitly declare sorts for its action labels and parameter patterns. The automaton could

then explicitly assign values to a program counter and next-parameter variable. Programs would

be admissible for compilation only if next-action and next-state deterministic, as given in [120].

Alternatively, formal semantics for NDR could be given by desugaring NDR programs into such a

next-action deterministic form. The result would be a new IOA automaton that implements the

253

original nondeterministic one.

18.3.5 Mutable datatypes

One way to improve performance would be to optimize our datatype implementations. The standard

library implements every instance of a datatype as an immutable object. Even collections such as

arrays, maps, sets, and sequences are implemented this way. Thus, in the current implementation

every change to a variable that stores a collection entails copying all the unchanged parts of the

collection to generate the new instance. Our broadcast case study exhibited the dramatic effects

such inefficiencies cause when the state gets large. We chose this naıv̈e implementation of collec-

tion datatypes for our initial implementation to avoid semantic errors than can result from shared

references to mutable objects. Standard static analysis techniques should be used at compile time

to detect the (usual) cases when there is no potential for shared references. In such cases, mutable

collections should be used.

18.3.6 Composition

The IOA compiler could be extended to emit code for composite automata. Solovey extended IOA

to support NDR schedule blocks for composite automata and the IOA simulator to simulate such

automata [114]. A similar approach could work for the IOA compiler. Alternatively, each component

could run in its own thread. Shared input and output actions can be compiled into a single action

in the thread controlling the output action. Variables accessed by the input action would then have

to be protected by locks. Such a multithreaded implementation would follow the pattern we used

to implement the composition of a buffer automaton with an algorithm automaton.

A proof of correctness for such a multithreaded implementation could also follow the pattern of

our proof of Theorem 7.1. Now there would be multiple macro- and micro-node automata. Since each

micro-component automaton would run in a separate thread, the proof would have to be generalized

to account for an arbitrary number of threads. On the other hand, because each thread would belong

to a different micro-component automaton, there would be no variables (other than locks) shared

across threads. Therefore, the proof of a precondition stability invariant analogous to Invariant 7.7

would not rely on assumptions about the behavior of the shared actions. (The input and output

threads would still remain and would have to be treated as special cases using the logic of the proofs

in Chapter 7.)

Many systems described with I/O automata are specified at several levels of abstraction. An

algorithm may depend on a network service which in turn be distributed over several nodes. As

a result, IOA systems may be defined as a composition of composite automata. While our defini-

tion for the expansion of composite automata into primitive form can be applied iteratively (from

the inside out) in such situations, currently the composer tool does not support nested composite

254

automata. Implementing an iterative approach to expanding nested composite automata should be

straightforward. A more direct expansion should also be investigated.

Treating the aggregate states of component automata as tuples gives rise to the “dotted form”

of variable references (e.g., A.v). Support for nested composite automata would simply increase the

depth and complexity of such dotted forms (e.g., C[i].B[x,y].A.v). In the literature, such forms are

often abbreviated when no ambiguity results. For example, if A is the only component in the entire

system to have a state variable v then referring to the v would be unambiguous. The static semantic

checker should support such abbreviations.

The current definition of composition specifies initally det blocks as part of the expanded

primitive automaton in almost all cases. Worse, these predicates contain universal quantifiers if any

component is parameterized. Currently, the compiler cannot even generate runtime checks to verify

that a value satisfies such a quantified predicate. Also, such universal quantifiers make any attempt

to automatically generate schedules for automata very difficult. It may be possible to rework the

definition of composition to eliminate such quantified terms. At the very least, it should be possible

to identify classes of composite automata for which such quantified terms are either unnecessary or

easy to check.

Finally, while our definition of composition in Part II is quite detailed, it remains to prove that

the definition is necessarily correct. Our definition gives a syntactic manipulation of IOA programs.

To prove the correctness of these manipulations one would show that the I/O automata denoted

by the expanded IOA program produced by the syntactic manipulations is equivalent to the I/O

automaton that results from applying the I/O automaton composition operator to the I/O automata

denoted by the component automata.

Separately, proving the signature compatibility claim (Claim 15.1) and the analogous transition

compatibility claims alluded to in Chapter 15 would verify that applying our syntactic manipulations

to compatible automata always results in some valid primitive automaton.

255

256

Appendix A

Expanded and scheduled automata

This appendix contains the expanded primitive form of several composite automata mentioned in

the text. The IOA specifications shown here were produced automatically by the composer tool

from the composite node specifications given. For the three latter automata the initially det block

and schedule NDR annotations were written by hand and added after composition. These schedules

were used to in the measurements reported in Chapter 8.

A.1 LCRNode

axioms Infinite(Handle for T)

automaton LCRNode(MPIrank , MPIsize , name: Int)

signature

output receive(N6: Int, N7: Int)

where N7 = MPIrank ∧ N6 = mod(MPIrank - 1, MPIsize)

internal SEND(m: Int, N10: Int, N11: Int)

where N11 = mod(MPIrank + 1, MPIsize) ∧ N10 = MPIrank

input resp_Iprobe(flag: Bool, N4: Int, N5: Int)

where N5 = MPIrank ∧ N4 = mod(MPIrank - 1, MPIsize)

input resp_test(flag: Bool, N18: Int, N19: Int)

where N19 = mod(MPIrank + 1, MPIsize) ∧ N18 = MPIrank

input resp_receive(m: Int, N8: Int, N9: Int)

where N9 = MPIrank ∧ N8 = mod(MPIrank - 1, MPIsize)

internal vote(I0: Int) where I0 = MPIrank

output test(handle : Handle , N16: Int, N17: Int)

where N17 = mod(MPIrank + 1, MPIsize) ∧ N16 = MPIrank

output Iprobe(N2: Int, N3: Int)

where N3 = MPIrank ∧ N2 = mod(MPIrank - 1, MPIsize)

257

internal RECEIVE(m: Int, I1: Int, I2: Int)

where I2 = MPIrank ∧ I1 = mod(MPIrank - 1, MPIsize)

internal leader(I5: Int) where I5 = MPIrank

input resp_Isend(handle : Handle , N14: Int, N15: Int)

where N15 = mod(MPIrank + 1, MPIsize) ∧ N14 = MPIrank

output Isend(m: Int, N12: Int, N13: Int)

where N13 = mod(MPIrank + 1, MPIsize) ∧ N12 = MPIrank

states

P: _States[LCRProcess],

RM: Map[Int, _States[ReceiveMediator , Int, Int]],

SM: Map[Int, _States[SendMediator , Int, Int]],

I: _States[LCRProcessInterface]

i n i t i a l l y

(true ⇒ P.pending = {name} ∧ P.status = idle)

∧

∀ j: Int

((j = mod(MPIrank - 1, MPIsize)

⇒

RM[j]. status = idle

∧ RM[j]. toRecv = {}

∧ RM[j]. ready = false)

∧ (j = mod(MPIrank - 1, MPIsize) ⇔ defined(RM, j)))

∧

∀ j: Int

((j = mod(MPIrank + 1, MPIsize)

⇒

SM[j]. status = idle

∧ SM[j]. toSend = {}

∧ SM[j].sent = {}

∧ SM[j]. handles = {})

∧ (j = mod(MPIrank + 1, MPIsize) ⇔ defined(SM, j)))

∧ (true ⇒ I.stdin = {} ∧ I.stdout = {})

transit ions

output receive(N6, N7)

pre RM[mod(MPIrank - 1, MPIsize)]. ready = true

∧ RM[mod(MPIrank - 1, MPIsize)]. status = idle

e f f RM[mod(MPIrank - 1, MPIsize)]. status := receive

internal SEND(m, N10, N11)

pre P.status 6= idle ∧ m ∈ (P.pending)

258

e f f SM[mod(MPIrank + 1, MPIsize)]. toSend :=

(SM[mod(MPIrank + 1, MPIsize)]. toSend) ` m;

P.pending := delete(m, P.pending)

input resp_Iprobe(flag, N4, N5)

e f f RM[mod(MPIrank - 1, MPIsize)]. ready := flag;

RM[mod(MPIrank - 1, MPIsize)]. status := idle

input resp_test(flag, N18, N19)

e f f i f flag then

SM[mod(MPIrank + 1, MPIsize)]. handles :=

tail(SM[mod(MPIrank + 1, MPIsize)]. handles);

SM[mod(MPIrank + 1, MPIsize)]. sent :=

tail(SM[mod(MPIrank + 1, MPIsize)]. sent)

f i ;

SM[mod(MPIrank + 1, MPIsize)]. status := idle

input resp_receive(m, N8, N9)

e f f RM[mod(MPIrank - 1, MPIsize)]. toRecv :=

(RM[mod(MPIrank - 1, MPIsize)]. toRecv) ` m;

RM[mod(MPIrank - 1, MPIsize)]. ready := false;

RM[mod(MPIrank - 1, MPIsize)]. status := idle

internal vote(I0)

pre head(I.stdin). action = vote

∧ len(head(I.stdin). params) = 1

∧ tag(head(I.stdin). params [0]) = Int

∧ head(I.stdin). params [0]. Int = I0

e f f P.status := voting;

I.stdin := tail(I.stdin)

output test(handle , N16, N17)

pre SM[mod(MPIrank + 1, MPIsize)]. status = idle

∧ handle = head(SM[mod(MPIrank + 1, MPIsize)]. handles)

e f f SM[mod(MPIrank + 1, MPIsize)]. status := test

output Iprobe(N2, N3)

pre RM[mod(MPIrank - 1, MPIsize)]. status = idle

∧ RM[mod(MPIrank - 1, MPIsize)]. ready = false

e f f RM[mod(MPIrank - 1, MPIsize)]. status := Iprobe

internal RECEIVE(m, I1, I2) where m > name ∨ m < name ∨ m = name

pre m = head(RM[mod(MPIrank - 1, MPIsize)]. toRecv)

e f f i f m > name then P.pending := insert(m, P.pending)

e l s e i f m = name then P.status := elected

f i ;

259

RM[mod(MPIrank - 1, MPIsize)]. toRecv :=

tail(RM[mod(MPIrank - 1, MPIsize)]. toRecv)

internal leader(I5)

pre P.status = elected

e f f I.stdout := (I.stdout) ` [leader , {} ` Int(I5)];

P.status := announced

input resp_Isend(handle , N14, N15)

e f f SM[mod(MPIrank + 1, MPIsize)]. handles :=

(SM[mod(MPIrank + 1, MPIsize)]. handles) ` handle;

SM[mod(MPIrank + 1, MPIsize)]. status := idle

output Isend(m, N12, N13)

pre head(SM[mod(MPIrank + 1, MPIsize)]. toSend) = m

∧ SM[mod(MPIrank + 1, MPIsize)]. status = idle

e f f SM[mod(MPIrank + 1, MPIsize)]. toSend :=

tail(SM[mod(MPIrank + 1, MPIsize)]. toSend);

SM[mod(MPIrank + 1, MPIsize)]. sent :=

(SM[mod(MPIrank + 1, MPIsize)]. sent) ` m;

SM[mod(MPIrank + 1, MPIsize)]. status := Isend

type Status = enumeration of idle, voting , elected , announced

type rCall = enumeration of idle, receive , Iprobe

type sCall = enumeration of idle, Isend, test

type Status = enumeration of idle, voting , elected , announced

type IOA_Invocation = tuple of action : IOA_Action , params:

Seq[IOA_Parameter]

type IOA_Parameter = union of Int: Int

type IOA_Action = enumeration of RECEIVE , SEND, leader , vote

type _States[LCRProcess] = tuple of pending : Mset[Int], status : Status

type _States[ReceiveMediator , Int, Int] = tuple of status : rCall, toRecv:

Seq[Int], ready : Bool

260

type _States[SendMediator , Int, Int] = tuple of status : sCall, toSend:

Seq[Int], sent: Seq[Int], handles : Seq[Handle]

type _States[LCRProcessInterface] = tuple of stdin : LSeqIn[IOA_Invocation],

stdout : LSeqOut[IOA_Invocation]

261

A.2 TerminatingLCR

axioms Infinite(Handle for T)

axioms ChoiceMset(Int)

automaton TerminatingLCRNode(MPIrank , MPIsize , name: Int)

signature

output receive(N6: Int, N7: Int)

where N7 = MPIrank ∧ N6 = mod(MPIrank - 1, MPIsize)

internal SEND(m: Int, I3: Int, I4: Int)

where I4 = mod(MPIrank + 1, MPIsize) ∧ I3 = MPIrank

input resp_Iprobe(flag: Bool, N4: Int, N5: Int)

where N5 = MPIrank ∧ N4 = mod(MPIrank - 1, MPIsize)

input resp_test(flag: Bool, N18: Int, N19: Int)

where N19 = mod(MPIrank + 1, MPIsize) ∧ N18 = MPIrank

input resp_receive(m: Int, N8: Int, N9: Int)

where N9 = MPIrank ∧ N8 = mod(MPIrank - 1, MPIsize)

internal vote(I0: Int) where I0 = MPIrank

output test(handle : Handle , N16: Int, N17: Int)

where N17 = mod(MPIrank + 1, MPIsize) ∧ N16 = MPIrank

output Iprobe(N2: Int, N3: Int)

where N3 = MPIrank ∧ N2 = mod(MPIrank - 1, MPIsize)

internal RECEIVE(m: Int, I1: Int, I2: Int)

where I2 = MPIrank ∧ I1 = mod(MPIrank - 1, MPIsize)

internal leader(I5: Int) where I5 = MPIrank

input resp_Isend(handle : Handle , N14: Int, N15: Int)

where N15 = mod(MPIrank + 1, MPIsize) ∧ N14 = MPIrank

output Isend(m: Int, N12: Int, N13: Int)

where N13 = mod(MPIrank + 1, MPIsize) ∧ N12 = MPIrank

states

P: _States[LCRProcess],

RM: Map[Int, _States[ReceiveMediator , Int, Int]],

SM: Map[Int, _States[SendMediator , Int, Int]],

I: _States[LCRProcessInterface]

i n i t i a l l y

(true ⇒ P.pending = {name} ∧ P.status = idle)

∧

∀ j: Int

((j = mod(MPIrank - 1, MPIsize)

⇒

262

RM[j]. status = idle

∧ RM[j]. toRecv = {}

∧ RM[j]. ready = false)

∧ (j = mod(MPIrank - 1, MPIsize) ⇔ defined(RM, j)))

∧

∀ j: Int

((j = mod(MPIrank + 1, MPIsize)

⇒

SM[j]. status = idle

∧ SM[j]. toSend = {}

∧ SM[j].sent = {}

∧ SM[j]. handles = {})

∧ (j = mod(MPIrank + 1, MPIsize) ⇔ defined(SM, j)))

∧ (true ⇒ I.stdin = {} ∧ I.stdout = {})

det do

P := [{ name }, idle];

RM := update(empty, mod(MPIrank -1, MPIsize), [idle , {}, false]);

SM := update(empty, mod(MPIrank +1, MPIsize), [idle , {}, {}, {}]);

I := [{}, {}]

od

transit ions

output receive(N6, N7)

pre RM[mod(MPIrank - 1, MPIsize)]. ready = true

∧ RM[mod(MPIrank - 1, MPIsize)]. status = idle

e f f RM[mod(MPIrank - 1, MPIsize)]. status := receive

internal SEND(m, I3, I4)

pre P.status 6= idle ∧ m ∈ (P.pending)

e f f SM[mod(MPIrank + 1, MPIsize)]. toSend :=

(SM[mod(MPIrank + 1, MPIsize)]. toSend) ` m;

P.pending := delete(m, P.pending)

input resp_Iprobe(flag, N4, N5)

e f f RM[mod(MPIrank - 1, MPIsize)]. ready := flag;

RM[mod(MPIrank - 1, MPIsize)]. status := idle

input resp_test(flag, N18, N19)

e f f i f flag then

SM[mod(MPIrank + 1, MPIsize)]. handles :=

tail(SM[mod(MPIrank + 1, MPIsize)]. handles);

SM[mod(MPIrank + 1, MPIsize)]. sent :=

tail(SM[mod(MPIrank + 1, MPIsize)]. sent)

263

f i ;

SM[mod(MPIrank + 1, MPIsize)]. status := idle

input resp_receive(m, N8, N9)

e f f RM[mod(MPIrank - 1, MPIsize)]. toRecv :=

(RM[mod(MPIrank - 1, MPIsize)]. toRecv) ` m;

RM[mod(MPIrank - 1, MPIsize)]. ready := false;

RM[mod(MPIrank - 1, MPIsize)]. status := idle

internal vote(I0)

pre head(I.stdin). action = vote

∧ len(head(I.stdin). params) = 1

∧ tag(head(I.stdin). params [0]) = Int

∧ head(I.stdin). params [0]. Int = I0

e f f P.status := voting;

I.stdin := tail(I.stdin)

output test(handle , N16, N17)

pre SM[mod(MPIrank + 1, MPIsize)]. status = idle

∧ handle = head(SM[mod(MPIrank + 1, MPIsize)]. handles)

e f f SM[mod(MPIrank + 1, MPIsize)]. status := test

output Iprobe(N2, N3)

pre RM[mod(MPIrank - 1, MPIsize)]. status = idle

∧ RM[mod(MPIrank - 1, MPIsize)]. ready = false

e f f RM[mod(MPIrank - 1, MPIsize)]. status := Iprobe

internal

RECEIVE(m, I1, I2)

where m > name ∨ (0 ≤ m ∧ m < name) ∨ m < 0 ∨ m = name

pre m = head(RM[mod(MPIrank - 1, MPIsize)]. toRecv)

e f f i f m > name then P.pending := insert(m, P.pending)

e l s e i f m < 0 then

i f P.status 6= announced then

P.pending := insert(m, P.pending)

f i ;

P.status := over

e l s e i f m = name then P.status := elected

f i ;

RM[mod(MPIrank - 1, MPIsize)]. toRecv :=

tail(RM[mod(MPIrank - 1, MPIsize)]. toRecv)

internal leader(I5)

pre P.status = elected

e f f I.stdout := (I.stdout) ` [leader , {} ` Int(I5)];

264

P.status := announced;

P.pending := insert (-1, P.pending)

input resp_Isend(handle , N14, N15)

e f f SM[mod(MPIrank + 1, MPIsize)]. handles :=

(SM[mod(MPIrank + 1, MPIsize)]. handles) ` handle;

SM[mod(MPIrank + 1, MPIsize)]. status := idle

output Isend(m, N12, N13)

pre head(SM[mod(MPIrank + 1, MPIsize)]. toSend) = m

∧ SM[mod(MPIrank + 1, MPIsize)]. status = idle

e f f SM[mod(MPIrank + 1, MPIsize)]. toSend :=

tail(SM[mod(MPIrank + 1, MPIsize)]. toSend);

SM[mod(MPIrank + 1, MPIsize)]. sent :=

(SM[mod(MPIrank + 1, MPIsize)]. sent) ` m;

SM[mod(MPIrank + 1, MPIsize)]. status := Isend

schedule

do

while ¬(P.status = over ∧

size(P.pending) = 0 ∧

SM[mod(MPIrank + 1, MPIsize)]. toSend = {} ∧

SM[mod(MPIrank + 1, MPIsize)]. handles = {}) do

i f P.status = elected then f i r e internal leader(MPIrank) f i ;

i f len(I.stdin) > 0

∧ head(I.stdin). action = vote

∧ len(head(I.stdin). params) = 1

∧ tag(head(I.stdin). params [0]) = Int

∧ head(I.stdin). params [0]. Int = MPIrank then

f i r e internal vote(MPIrank)

f i ;

i f P.status 6= idle ∧ size(P.pending) 6= 0 then

f i r e internal SEND(chooseRandom(P.pending), MPIrank,

mod(MPIrank + 1, MPIsize))

f i ;

i f SM[mod(MPIrank + 1, MPIsize)]. status = idle ∧

SM[mod(MPIrank + 1, MPIsize)]. toSend 6= {} then

f i r e output Isend(head(SM[mod(MPIrank + 1, MPIsize)]. toSend),

MPIrank , mod(MPIrank + 1, MPIsize))

f i ;

i f SM[mod(MPIrank + 1, MPIsize)]. status = idle ∧

SM[mod(MPIrank + 1, MPIsize)]. handles 6= {} then

265

f i r e output test(head(SM[mod(MPIrank + 1, MPIsize)]. handles),

MPIrank , mod(MPIrank + 1, MPIsize))

f i ;

i f RM[mod(MPIrank - 1, MPIsize)]. status = idle ∧

RM[mod(MPIrank - 1, MPIsize)]. ready = false then

f i r e output Iprobe(MPIrank , mod(MPIrank - 1, MPIsize))

f i ;

i f RM[mod(MPIrank - 1, MPIsize)]. status = idle ∧

RM[mod(MPIrank - 1, MPIsize)]. ready = true then

f i r e output receive(MPIrank , mod(MPIrank - 1, MPIsize))

f i ;

i f RM[mod(MPIrank - 1, MPIsize)]. toRecv 6= {} then

f i r e internal RECEIVE(head(RM[mod(MPIrank - 1, MPIsize)]. toRecv),

mod(MPIrank - 1, MPIsize), MPIrank)

f i

od

od

type Status = enumeration of idle, voting , elected , announced , over

type rCall = enumeration of idle, receive , Iprobe

type sCall = enumeration of idle, Isend, test

type Status = enumeration of idle, voting , elected , announced , over

type IOA_Invocation = tuple of action : IOA_Action , params:

Seq[IOA_Parameter]

type IOA_Parameter = union of Int: Int

type IOA_Action = enumeration of RECEIVE , SEND, leader , vote

type _States[LCRProcess] = tuple of pending : Mset[Int], status : Status

type _States[ReceiveMediator , Int, Int] = tuple of status : rCall, toRecv:

Seq[Int], ready : Bool

266

type _States[SendMediator , Int, Int] = tuple of status : sCall, toSend:

Seq[Int], sent: Seq[Int], handles : Seq[Handle]

type _States[LCRProcessInterface] = tuple of stdin : LSeqIn[IOA_Invocation],

stdout : LSeqOut[IOA_Invocation]

267

A.3 spanNode

axioms Infinite(Handle for T)

axioms ChoiceSet(Int for E)

automaton spanNode(MPIrank , MPIsize : Int, neighbors : Set[Int])

signature

output receive(N6: Int, N7: Int) where N6 = MPIrank

internal SEND(m: Message , N10: Int, N11: Int) where N10 = MPIrank

input resp_Iprobe(flag: Bool, N4: Int, N5: Int) where N4 = MPIrank

input resp_test(flag: Bool, N18: Int, N19: Int) where N18 = MPIrank

input resp_receive(m: Message , N8: Int, N9: Int) where N8 = MPIrank

output test(handle : Handle , N16: Int, N17: Int) where N16 = MPIrank

output Iprobe(N2: Int, N3: Int) where N2 = MPIrank

internal RECEIVE(m: Message , N0: Int, N1: Int) where N0 = MPIrank

input resp_Isend(handle : Handle , N14: Int, N15: Int)

where N14 = MPIrank

internal parent(I3: Int, j6: Int) where I3 = MPIrank

output Isend(m: Message , N12: Int, N13: Int) where N12 = MPIrank

internal search(I0: Int) where I0 = MPIrank

states

P: _States[spanProcess],

RM: Map[Int, _States[ReceiveMediator , Message , Int]],

SM: Map[Int, _States[SendMediator , Message , Int]],

I: _States[spanProcessInterface]

i n i t i a l l y

(true

⇒

∀ k: Int (defined(P.send, k) ⇔ k ∈ neighbors)

∧

∀ k: Int

(defined(P.send, k) ∧ P.send[k] = search

⇔ MPIrank = 0)

∧ P.searching = false

∧ P.reported = false

∧ P.parent = -1)

∧

∀ j: Int

(RM[j]. status = idle

268

∧ RM[j]. toRecv = {}

∧ RM[j]. ready = false

∧ defined(RM, j))

∧

∀ j: Int

(SM[j]. status = idle

∧ SM[j]. toSend = {}

∧ SM[j].sent = {}

∧ SM[j]. handles = {}

∧ defined(SM, j))

∧ (true ⇒ I.stdin = {} ∧ I.stdout = {})

det

do

I := [{}, {}];

P := [false, false , -1, empty , neighbors , -1];

RM := empty;

SM := empty;

while ¬isEmpty(P.nbrs) do

P.nbr := chooseRandom(P.nbrs);

P.nbrs := rest(P.nbrs);

i f 0 ≤ P.nbr ∧ P.nbr < MPIsize then % Sanity check neighbors set

P.send[P.nbr] := i f MPIrank = 0 then search else nil;

RM[P.nbr] := [idle , {}, false];

SM[P.nbr] := [idle , {}, {}, {}]

f i

od

od

transit ions

output receive(N6, N7)

pre RM[N7]. ready = true ∧ RM[N7]. status = idle

e f f RM[N7]. status := receive

internal SEND(m, N10, N11) where N10 = MPIrank

pre P.searching ∧ P.send[N11] = search ∧ m = search

e f f SM[N11]. toSend := (SM[N11]. toSend) ` m;

P.send[N11] := nil

input resp_Iprobe(flag, N4, N5)

e f f RM[N5]. ready := flag;

RM[N5]. status := idle

269

input resp_test(flag, N18, N19)

e f f i f flag then

SM[N19]. handles := tail(SM[N19]. handles);

SM[N19].sent := tail(SM[N19].sent)

f i ;

SM[N19]. status := idle

input resp_receive(m, N8, N9)

e f f RM[N9]. toRecv := (RM[N9]. toRecv) ` m;

RM[N9]. ready := false;

RM[N9]. status := idle

output test(handle , N16, N17)

pre SM[N17]. status = idle ∧ handle = head(SM[N17]. handles)

e f f SM[N17]. status := test

output Iprobe(N2, N3)

pre RM[N3]. status = idle ∧ RM[N3]. ready = false

e f f RM[N3]. status := Iprobe

internal RECEIVE(m, N0, N1) where MPIrank = 0 ∨ MPIrank 6= 0

pre m = head(RM[N1]. toRecv)

e f f i f MPIrank 6= 0 then

i f P.parent = -1 then

P.parent := N1;

for k: Int in neighbors - {N1} do

P.send[k] := search

od

f i

f i ;

RM[N1]. toRecv := tail(RM[N1]. toRecv)

input resp_Isend(handle , N14, N15)

e f f SM[N15]. handles := (SM[N15]. handles) ` handle;

SM[N15]. status := idle

internal parent(I3, j6)

pre (P.parent = j6

∧ (P.parent) ≥ 0

∧ ¬(P.reported)

∧ P.searching

∧ MPIrank 6= 0)

∨ (¬(P.reported) ∧ P.searching ∧ MPIrank = 0)

e f f I.stdout := (I.stdout) ` [parent , {} ` Int(I3) ` Int(j6)];

i f MPIrank 6= 0 then P.reported := true

270

e l s e i f MPIrank = 0 then P.reported := true

f i

output Isend(m, N12, N13)

pre head(SM[N13]. toSend) = m ∧ SM[N13]. status = idle

e f f SM[N13]. toSend := tail(SM[N13]. toSend);

SM[N13].sent := (SM[N13].sent) ` m;

SM[N13]. status := Isend

internal search(I0)

pre head(I.stdin). action = search

∧ len(head(I.stdin). params) = 1

∧ tag(head(I.stdin). params [0]) = Int

∧ head(I.stdin). params [0]. Int = I0

e f f P.searching := true;

I.stdin := tail(I.stdin)

schedule

states

ngbrs : Set[Int],

ngbr: Int,

flooding : Bool := true

do

while ¬P.reported ∨ flooding do

i f P.searching ∧ ¬P.reported ∧ (P.parent ≥ 0 ∨ MPIrank = 0) then

f i r e internal parent(MPIrank , P.parent)

f i ;

i f len(I.stdin) > 0

∧ head(I.stdin). action = search

∧ len(head(I.stdin). params) = 1

∧ tag(head(I.stdin). params [0]) = Int then

∧ head(I.stdin). params [0]. Int = MPIrank then

f i r e internal search(MPIrank)

f i ;

ngbrs := neighbors;

while ¬isEmpty(ngbrs) do

ngbr := chooseRandom(ngbrs);

ngbrs := rest(ngbrs);

i f 0 ≤ ngbr ∧ ngbr < MPIsize then % Sanity check neighbors set

i f P.searching ∧ P.send[ngbr] = search then

f i r e internal SEND(search , MPIrank , ngbr)

271

f i ;

i f SM[ngbr]. status = idle ∧ SM[ngbr]. toSend 6= {} then

f i r e output Isend(head(SM[ngbr]. toSend), MPIrank , ngbr)

f i ;

i f SM[ngbr]. status = idle ∧ SM[ngbr]. handles 6= {} then

f i r e output test(head(SM[ngbr]. handles), MPIrank , ngbr)

f i ;

i f RM[ngbr]. status = idle ∧ RM[ngbr]. ready = false then

f i r e output Iprobe(MPIrank , ngbr)

f i ;

i f RM[ngbr]. status = idle ∧ RM[ngbr]. ready = true then

f i r e output receive(MPIrank , ngbr)

f i ;

i f RM[ngbr]. toRecv 6= {} then

f i r e internal RECEIVE(head(RM[ngbr]. toRecv), MPIrank , ngbr)

f i

f i

od;

ngbrs := neighbors;

flooding := false;

while ¬isEmpty(ngbrs) do

ngbr := chooseRandom(ngbrs);

ngbrs := rest(ngbrs);

i f 0 ≤ ngbr ∧ ngbr < MPIsize then % Sanity check neighbors set

flooding := flooding ∨ P.send[ngbr] = search ∨

SM[ngbr]. toSend 6= {} ∨ SM[ngbr]. handles 6= {}

f i

od

od

od

type Message = enumeration of search , nil

type rCall = enumeration of idle, receive , Iprobe

type sCall = enumeration of idle, Isend, test

type Message = enumeration of search , nil

272

type IOA_Invocation = tuple of action : IOA_Action , params:

Seq[IOA_Parameter]

type IOA_Parameter = union of Int: Int, Message : Message

type IOA_Action = enumeration of RECEIVE , SEND, parent , search

type _States[spanProcess] = tuple of searching : Bool, reported : Bool,

parent : Int, send: Map[Int, Message], nbrs: Set[Int], nbr: Int

type _States[ReceiveMediator , Message , Int] = tuple of status : rCall,

toRecv : Seq[Message], ready : Bool

type _States[SendMediator , Message , Int] = tuple of status : sCall, toSend:

Seq[Message], sent: Seq[Message], handles : Seq[Handle]

type _States[spanProcessInterface] = tuple of stdin:

LSeqIn[IOA_Invocation], stdout : LSeqOut[IOA_Invocation]

273

A.4 bcastNode

axioms Infinite(Handle for T)

axioms ChoiceSet(Int for E)

automaton bcastNode(MPIrank , MPIsize : Int, neighbors : Set[Int], last: Int)

signature

output receive(N6: Int, N7: Int) where N6 = MPIrank

internal SEND(m: Message , N10: Int, N11: Int) where N10 = MPIrank

input resp_Iprobe(flag: Bool, N4: Int, N5: Int) where N4 = MPIrank

internal report(I7: Int, v: Int) where I7 = MPIrank

input resp_test(flag: Bool, N18: Int, N19: Int) where N18 = MPIrank

input resp_receive(m: Message , N8: Int, N9: Int) where N8 = MPIrank

internal queue(I1: Int, v: Int) where I1 = MPIrank

output test(handle : Handle , N16: Int, N17: Int) where N16 = MPIrank

output Iprobe(N2: Int, N3: Int) where N2 = MPIrank

internal RECEIVE(m: Message , N0: Int, N1: Int) where N0 = MPIrank

internal bcast(I0: Int, v: Int) where I0 = MPIrank

input resp_Isend(handle : Handle , N14: Int, N15: Int)

where N14 = MPIrank

internal parent(I6: Int, j: Null[Int]) where I6 = MPIrank

internal ackLast(I3: Int) where I3 = MPIrank

output Isend(m: Message , N12: Int, N13: Int) where N12 = MPIrank

internal ackInit(I2: Int) where I2 = MPIrank

states

P: _States[bcastProcess],

RM: Map[Int, _States[ReceiveMediator , Message , Int]],

SM: Map[Int, _States[SendMediator , Message , Int]],

I: _States[bcastProcessInterface]

i n i t i a l l y

(true

⇒

∀ k: Int (defined(P.send, k) ⇔ k ∈ neighbors)

∧

∀ k: Int

(MPIrank = 0

⇒

defined(P.send, k)

∧ head(P.send[k]) = [bcast, nil])

274

∧ P.status = idle

∧ P.parent = nil

∧ P.children = {}

∧ P.acked = {}

∧ P.outgoing = {}

∧ P.incomming = {})

∧

∀ j: Int

(RM[j]. status = idle

∧ RM[j]. toRecv = {}

∧ RM[j]. ready = false

∧ defined(RM, j))

∧

∀ j: Int

(SM[j]. status = idle

∧ SM[j]. toSend = {}

∧ SM[j].sent = {}

∧ SM[j]. handles = {}

∧ defined(SM, j))

∧ (true ⇒ I.stdin = {} ∧ I.stdout = {})

det

do

I := [{}, {}];

P := [idle, nil , {}, {}, {}, {}, empty , neighbors , -1];

RM := empty;

SM := empty;

while ¬isEmpty(P.nbrs) do

P.nbr := chooseRandom(P.nbrs);

P.nbrs := rest(P.nbrs);

i f 0 ≤ P.nbr ∧ P.nbr < MPIsize then % Sanity check neighbors set

P.send[P.nbr] := {};

RM[P.nbr] := [idle , {}, false];

SM[P.nbr] := [idle , {}, {}, {}]

f i

od

od

transit ions

output receive(N6, N7)

275

pre RM[N7]. ready = true ∧ RM[N7]. status = idle

e f f RM[N7]. status := receive

internal SEND(m, N10, N11) where N10 = MPIrank

pre P.send[N11] 6= {} ∧ m = head(P.send[N11])

e f f SM[N11]. toSend := (SM[N11]. toSend) ` m;

P.send[N11] := tail(P.send[N11])

input resp_Iprobe(flag, N4, N5)

e f f RM[N5]. ready := flag;

RM[N5]. status := idle

internal report(I7, v)

pre P.incomming 6= {} ∧ v = head(P.incomming)

e f f I.stdout := (I.stdout) ` [report , {} ` Int(I7) ` Int(v)];

P.incomming := tail(P.incomming)

input resp_test(flag, N18, N19)

e f f i f flag then

SM[N19]. handles := tail(SM[N19]. handles);

SM[N19].sent := tail(SM[N19].sent)

f i ;

SM[N19]. status := idle

input resp_receive(m, N8, N9)

e f f RM[N9]. toRecv := (RM[N9]. toRecv) ` m;

RM[N9]. ready := false;

RM[N9]. status := idle

internal queue(I1, v)

e f f i f MPIrank = 0 then

P.outgoing := tail(P.outgoing);

for k: Int in P.children do

P.send[k] := P.send[k] ` [bcast, embed(v)]

od;

i f v = last then

P.status := finalizing;

P.acked := {}

f i

f i

output test(handle , N16, N17)

pre SM[N17]. status = idle ∧ handle = head(SM[N17]. handles)

e f f SM[N17]. status := test

output Iprobe(N2, N3)

pre RM[N3]. status = idle ∧ RM[N3]. ready = false

276

e f f RM[N3]. status := Iprobe

internal

RECEIVE(m, N0, N1)

where m.kind = nack

∨ m.kind = ack

∨ (m.kind = bcast ∧ m.payload = nil)

∨ (m.kind = bcast ∧ m.payload 6= nil)

pre m = head(RM[N1]. toRecv)

e f f i f m.kind = nack then P.acked := (P.acked) ∪ {N1}

e l s e i f m.kind = ack then

P.acked := (P.acked) ∪ {N1};

i f P.status = initializing then

P.children := (P.children) ∪ {N1}

f i

e l s e i f m.kind = bcast ∧ m.payload = nil then

i f P.parent = nil ∧ MPIrank 6= 0 then

P.parent := embed(N1);

P.status := initializing;

P.acked := {(P.parent).val};

for k: Int in neighbors - {(P.parent).val} do

P.send[k] := P.send[k] ` m

od

else P.send[N1] := P.send[N1] ` [nack, nil]

f i

e l s e i f m.kind = bcast ∧ m.payload 6= nil then

P.incomming := (P.incomming) ` ((m.payload).val);

for k: Int in P.children do

P.send[k] := P.send[k] ` m

od;

i f (m.payload).val = last then

P.status := finalizing;

P.acked := {}

f i

f i ;

RM[N1]. toRecv := tail(RM[N1]. toRecv)

internal bcast(I0, v)

pre head(I.stdin). action = bcast

∧ len(head(I.stdin). params) = 2

∧ tag(head(I.stdin). params [0]) = Int

277

∧ head(I.stdin). params [0]. Int = I0

∧ tag(head(I.stdin). params [1]) = Int

∧ head(I.stdin). params [1]. Int = v

e f f i f MPIrank = 0 then

i f P.status = idle then

P.status := initializing;

for k: Int in neighbors do

P.send[k] := P.send[k] ` [bcast, nil]

od

f i ;

P.outgoing := (P.outgoing) ` v

f i ;

I.stdin := tail(I.stdin)

input resp_Isend(handle , N14, N15)

e f f SM[N15]. handles := (SM[N15]. handles) ` handle;

SM[N15]. status := idle

internal parent(I6, j)

pre P.status = initializing ∧ P.acked = neighbors ∧ P.parent = j

e f f I.stdout :=

(I.stdout) ` [parent , {} ` Int(I6) ` Null ′ _Int_ ′ (j)];

P.status := announced

internal ackLast(I3)

e f f P.status := done;

i f MPIrank 6= 0 then

P.send[(P.parent).val] := P.send[(P.parent).val] ` [ack, nil]

f i

output Isend(m, N12, N13)

pre head(SM[N13]. toSend) = m ∧ SM[N13]. status = idle

e f f SM[N13]. toSend := tail(SM[N13]. toSend);

SM[N13].sent := (SM[N13].sent) ` m;

SM[N13]. status := Isend

internal ackInit(I2)

e f f P.status := bcasting;

i f MPIrank 6= 0 then

P.send[(P.parent).val] := P.send[(P.parent).val] ` [ack, nil]

f i

schedule

states

278

ngbrs : Set[Int],

ngbr: Int,

sending : Bool := true

do

while P.status 6= done ∨ sending do

i f P.status = initializing ∧ P.acked = neighbors then

f i r e internal parent(MPIrank , P.parent)

f i ;

i f P.incomming 6= {} then

f i r e internal report(MPIrank , head(P.incomming))

f i ;

i f len(I.stdin) > 0

∧ head(I.stdin). action = bcast

∧ len(head(I.stdin). params) = 2

∧ tag(head(I.stdin). params [0]) = Int

∧ head(I.stdin). params [0]. Int = MPIrank

∧ tag(head(I.stdin). params [1]) = Int then

f i r e internal bcast(MPIrank , head(I.stdin). params [1]. Int)

f i ;

i f P.status = announced then

f i r e internal ackInit(MPIrank)

f i ;

i f P.status = finalizing ∧ P.acked = P.children then

f i r e internal ackLast(MPIrank)

f i ;

ngbrs := neighbors;

while ¬isEmpty(ngbrs) do

ngbr := chooseRandom(ngbrs);

ngbrs := rest(ngbrs);

i f 0 ≤ ngbr ∧ ngbr < MPIsize then % Sanity check neighbors set

i f P.status = bcasting ∧ P.outgoing 6= {} then

f i r e internal queue(MPIrank , head(P.outgoing))

f i ;

i f P.send[ngbr] 6= {} then

f i r e internal SEND(head(P.send[ngbr]), MPIrank , ngbr)

f i ;

i f SM[ngbr]. status = idle ∧ SM[ngbr]. toSend 6= {} then

f i r e output Isend(head(SM[ngbr]. toSend), MPIrank , ngbr)

f i ;

279

i f SM[ngbr]. status = idle ∧ SM[ngbr]. handles 6= {} then

f i r e output test(head(SM[ngbr]. handles), MPIrank , ngbr)

f i ;

i f RM[ngbr]. status = idle ∧ RM[ngbr]. ready = false then

f i r e output Iprobe(MPIrank , ngbr)

f i ;

i f RM[ngbr]. status = idle ∧ RM[ngbr]. ready = true then

f i r e output receive(MPIrank , ngbr)

f i ;

i f RM[ngbr]. toRecv 6= {} then

f i r e internal RECEIVE(head(RM[ngbr]. toRecv), MPIrank , ngbr)

f i

f i

od;

ngbrs := neighbors;

sending := false;

while ¬isEmpty(ngbrs) do

ngbr := chooseRandom(ngbrs);

ngbrs := rest(ngbrs);

i f 0 ≤ ngbr ∧ ngbr < MPIsize then % Sanity check neighbors set

sending := sending ∨ P.send[ngbr] 6= {} ∨

SM[ngbr]. toSend 6= {} ∨ SM[ngbr]. handles 6= {}

f i

od

od

od

type Status = enumeration of idle, initializing , announced , bcasting,

finalizing , done

type Kind = enumeration of bcast , ack, nack

type Message = tuple of kind: Kind, payload : Null[Int]

type rCall = enumeration of idle, receive , Iprobe

type sCall = enumeration of idle, Isend, test

280

type Message = tuple of kind: Kind, payload : Null[Int]

type Kind = enumeration of bcast , ack, nack

type Status = enumeration of idle, initializing , announced , bcasting,

finalizing , done

type IOA_Invocation = tuple of action : IOA_Action , params:

Seq[IOA_Parameter]

type IOA_Parameter = union of Int: Int, Message : Message , Null ′ _Int_ ′ :

Null[Int]

type IOA_Action = enumeration of RECEIVE , SEND, bcast , parent , report

type _States[bcastProcess] = tuple of status : Status , parent : Null[Int],

children : Set[Int], acked: Set[Int], outgoing : Seq[Int], incomming:

Seq[Int], send: Map[Int, Seq[Message]], nbrs: Set[Int], nbr: Int

type _States[ReceiveMediator , Message , Int] = tuple of status : rCall,

toRecv : Seq[Message], ready : Bool

type _States[SendMediator , Message , Int] = tuple of status : sCall, toSend:

Seq[Message], sent: Seq[Message], handles : Seq[Handle]

type _States[bcastProcessInterface] = tuple of stdin:

LSeqIn[IOA_Invocation], stdout : LSeqOut[IOA_Invocation]

281

282

Bibliography

[1] INMOS Ltd: occam Programming Manual, 1984.

[2] INMOS Ltd: occam 2 Reference Manual, 1988.

[3] Myla M. Archer, Constance L. Heitmeyer, and Elvinia Riccobene. Using TAME to prove

invariants of automata models: Two case studies. In Proceedings of Third ACM Workshop on

Formal Methods in Software Practice (FMSP’00), August 2000.

[4] Mark Baker, Bryan Carpenter, Sung Hoon Ko, and Xinying Li. mpiJava: A Java interface to

MPI. Submitted to First UK Workshop on Java for High Performance Network Computing,

Europar 1998.

[5] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A language for parallel programming

of distributed systems. IEEE Transactions on Software Engineering, 18(3):190–205, March

1992.

[6] A. Biere. Effiziente Modellprüfung des µ-Kalküls mit binären Entscheidungsdiagrammen. PhD

thesis, Universität Karlsruhe, 1997.

[7] A. Biere. µcke — efficient µ-calculus model checking. In O. Grumberg, editor, Proceedings

of the 9th International Conference on Computer Aided Verification, volume 1254 of Lecture

Notes in Computer Science, pages 468–471. Springer Verlag, 1997.

[8] Nikolaj Bjørner, Anca Browne, Eddie Chang, Michael Colon, Arjun Kapur, Zohar Manna,

Henny Sipma, and Tomás Uribe. STeP: Deductive-algorithmic verification of reactive and

real-time systems. In 8th International Conference on Computer-Aided Verification, volume

1102 of Lecture Notes in Computer Science, pages 415–418. Springer-Verlag, July 1996.

[9] Nikolaj Bjørner, Anca Browne, Michael A. Colón, Bernd Finkbeiner, Zohar Manna, Henny

Sipma, and Tomás Uribe. Verifying temporal properties of reactive systems: A STeP tutorial.

Formal Methods in System Design, pages 1–45, 1999.

283

[10] Nikolaj Bjørner, Zohar Manna, Henny Sipma, and Tomás Uribe. Deductive verification of

real-time systems using STeP. Technical Report STAN-CS-TR-98-1616, Computer Science

Department, Stanford University, December 1998.

[11] Andrej Bogdanov. Formal verification of simulations between I/O automata. Master’s the-

sis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, Cambridge, MA, September 2001.

[12] Andrej Bogdanov, Stephen Garland, and Nancy Lynch. Mechanical translation of I/O au-

tomaton specifications into first-order logic. In Doron Peled and Moshe Y. Vardi, editors,

Formal Techniques for Networked and Distributed Systems (22nd International Conference on

Formal Techniques for Networked and Distributed Systems - FORTE 2002, Houston, Texas,

November 2002), volume 2529 of Lecture Notes in Computer Science, pages 364–368. Springer,

2002.

[13] Elizabeth Borowsky, Eli Gafni, Nancy Lynch, and Sergio Rajsbaum. The BG distributed

simulation algorithm. Distributed Computing, 14:127–146, 2001. Also, Technical Memo

MIT/LCS/TM-573, Laboratory for Computer Science, Massachusetts Institute of Technol-

ogy, Cambridge, MA, December, 1997.

[14] R. Braden. Extending TCP for transactions — concepts. Internet RFC-1379, July 1994.

[15] Edmund Burke. Two letters addressed to a member of the present parliament, on the propos-

als for peace with the regicide directory of france, letter I. In Edward John Payne and Francis

Canavan, editors, Edmund, Select Works of Edmund Burke, and Miscellaneous Writings, vol-

ume 3. Liberty Fund, Inc., 1999.

[16] Lewis Carroll. Alice’s Adventures In Wonderland. Project Gutenberg, May 1997.

[17] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation. Addison-Wesley

Publishing Co., Reading, MA, 1988.

[18] Ernest Chang and Rosemary Roberts. An improved algorithm for decentralized extrema-

finding in circular configurations of processes. Communications of the ACM, 22(5):281–283,

May 1979.

[19] Ernest J. H. Chang. Echo algorithms: Depth parallel operations on general graphs. IEEE

Transactions on Software Engineering, SE-8(4):391–401, July 1982.

[20] G. Chapman, J. Cleese, E. Idle, T. Jones, T. Gilliam, and M. Palin. Drinking philosophers.

University of Woolloomooloo, November 1970.

284

[21] S. Chaudhuri and P. Reiners. Understanding the set consensus partial order using the

Borowsky-Gafni simulation. In 10th International Workshop on Distributed Algorithms, Oc-

tober 1996. To appear in Lecture Notes in Computer Science, Springer Verlag.

[22] Anna E. Chefter. A simulator for the IOA language. Master’s thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA,

May 1998.

[23] Oleg Cheiner. Implementation and evaluation of an eventually-serializable data service. Mas-

ter’s thesis, Department of Electrical Engineering and Computer Science, Massachusetts In-

stitute of Technology, Cambridge, MA, September 1997.

[24] Oleg Cheiner and Alex Shvartsman. Implementing an eventually-serializable data service as

a distributed system building block. In M. Mavronicolas, M. Merritt, and N. Shavit, editors,

Networks in Distributed Computing, volume 45 of DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, pages 43–72. American Mathematical Society, 1999.

[25] Oleg Cheiner and Alex A. Shvartsman. Implementation of an eventually serializable data

service. In Proceedings of the 17th Annual ACM Symposium on the Principles of Distributed

Computing, Puerta Vallarta, Mexico, June 1998. (Short paper).

[26] G. Chockler, N. Huleihel, and D. Dolev. An adaptive totally ordered multicast protocol

that tolerates partitions. In Proceedings of the 17th ACM Annual Symposium on Distributed

Computing, June 1998.

[27] R. Cleaveland, J. N. Gada, P. M. Lewis, S. A. Smolka, O. Sokolsky, and S. Zhang. The

Concurrency Factory — practical tools for specification, simulation, verification and imple-

mentation of concurrent systems. In Specification of Parallel Algorithms. DIMACS Workshop,

pages 75–89. American Mathematical Society, 1994.

[28] R. Cleaveland, J. Parrow, and B. U. Steffen. The concurrency workbench: A semantics-based

tool for the verification of concurrent systems. ACM TOPLAS, 15(1), 1993.

[29] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented Proof Methods

and their Comparison. Cambridge University Press, 1998.

[30] Laura G. Dean. Improved simulation of Input/Output automata. Master’s thesis, Depart-

ment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, MA, September 2001.

[31] Piotr Dembinski. Semantics of timed concurrent systems. Fundamenta Informaticae, 29:27–50,

1997. IOS Press.

285

[32] Roberto DePrisco, Alan Fekete, Nancy Lynch, and Alex Shvartsman. A dynamic view-oriented

group communication service. In Proceedings of the 17th Annual ACM SIGACT-SIGOPS

Symposium on Principles of Distributed Computing, pages 227–236, Puerto Vallarta, Mexico,

June-July 1998.

[33] M.C.A. Devillers. Translating IOA automata to PVS. Preliminary Research Report CSI-

R9903, Computing Science Institute, University of Nijmegen, the Netherlands, feb 1999.

[34] M.C.A. Devillers, W.O.D. Griffioen, J.M.T. Romijn, and F.W. Vaandrager. Verification of a

leader election protocol — formal methods applied to IEEE 1394. Formal Methods in System

Design, 16(3):307–320, June 2000.

[35] Urban Engberg, Peter Grønning, and Leslie Lamport. Mechanical verification of concurrent

systems with TLA. In G. V. Bochmann and D. K. Probst, editors, Proceedings of the Fourth In-

ternational Conference on Computer Aided Verification CAV’92, volume 663 of Lecture Notes

in Computer Science, pages 44–55, Berlin, June 1992. Springer-Verlag.

[36] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically discov-

ering likely program invariants to support program evolution. IEEE Transactions on Software

Engineering, 27(2):1–25, February 2001.

[37] Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and Alex Shvartsman.

Eventually-serializable data services. In Proceedings of the Fifteenth Annual ACM Sympo-

sium on Principles of Distributed Computing, pages 300–309, Philadelphia, PA, May 1996.

[38] Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and Alex Shvartsman.

Eventually-serializable data service. Theoretical Computer Science, 220(1):113–156, June 1999.

Special Issue on Distributed Algorithms.

[39] Alan Fekete, M. Frans Kaashoek, and Nancy Lynch. Implementing sequentially consistent

shared objects using broadcast and point-to-point communication. Journal of the ACM,

45(1):35–69, January 1998.

[40] Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using a partitionable group

communication service. ACM Transactions on Computer Systems, 19(2):171–216, May 2001.

[41] Message Passing Interface Forum. MPI: A message-passing interface standard. International

Journal of Supercomputer Applications, 8(3/4), 1994.

[42] Benjamin Franklin. When we launch our little fleet of barques. The Federal Gazette, March

1790.

286

[43] Stephen Garland, Nancy Lynch, Joshua Tauber, and Mandana Vaziri. IOA user guide and

reference manual. Technical Report MIT/LCS/TR-961, Laboratory for Computer Science,

Massachusetts Institute of Technology, Cambridge, MA, July 2004. URL http://theory.

lcs.mit.edu/tds/ioa/manual.ps.

[44] Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover. Research Report 82,

Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, December 1991.

[45] Stephen J. Garland and Nancy A. Lynch. The IOA language and toolset: Support for de-

signing, analyzing, and building distributed systems. Technical Report MIT/LCS/TR-762,

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA,

August 1998. URL http://theory.lcs.mit.edu/tds/papers/Lynch/IOA-TR-762.ps.

[46] Stephen J. Garland and Nancy A. Lynch. Using I/O automata for developing distributed

systems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations of Component-Based

Systems, chapter 13, pages 285–312. Cambridge University Press, USA, 2000.

[47] Kenneth J. Goldman. Distributed Algorithm Simulation using Input/Output Automata. PhD

thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute

of Technology, Cambridge, MA, July 1990. Also,[48].

[48] Kenneth J. Goldman. Distributed algorithm simulation using input/output automata. Tech-

nical Report MIT/LCS/TR-490, MIT Laboratory for Computer Science, Cambridge, MA,

September 1990. Also, PhD Thesis [47].

[49] Kenneth J. Goldman. Highly concurrent logically synchronous multicast. Distributed Com-

puting, 6(4):189–207, 1991.

[50] Kenneth J. Goldman, Bala Swaminathan, T. Paul McCartney, Michael D. Anderson, and Ram

Sethuraman. The Programmers’ Playground: I/O abstraction for user-configurable distributed

applications. IEEE Transactions on Software Engineering, 21(9):735–746, September 1995.

[51] John V. Guttag, James J. Horning, Stephen J. Garland, Kevin D. Jones, Andrés Modet, and

Jeannette M. Wing, editors. Larch: Languages and Tools for Formal Specification. Springer-

Verlag Texts and Monographs in Computer Science, 1993.

[52] J.V. Guttag, J.J Horning, and J.M. Wing. The Larch family of specification languages. IEEE

Software, pages 24 –35, September 1985.

[53] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming, 8:231–274, 1987.

287

http://theory.lcs.mit.edu/tds/ioa/manual.ps
http://theory.lcs.mit.edu/tds/ioa/manual.ps
http://theory.lcs.mit.edu/tds/papers/Lynch/IOA-TR-762.ps

[54] M. Hayden and R. van Renesse. Optimizing layered communication protocols. Technical

Report TR96-1613, Dept. of Computer Science, Cornell University, Ithaca, NY 14850, USA,

November 1996.

[55] Mark Hayden. Ensemble Reference Manual. Cornell University, 1996.

[56] L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof-checking a data link protocol.

In H. Barendregt and T. Nipkow, editors, Proceedings of the International Workshop on

TYPES’93, volume 806 of Lecture Notes in Computer Science, pages 127–165, Nijmegen,

The Netherlands, 1994. Springer-Verlag. Full version available as Report CS-R9420, CWI,

Amsterdam, March 1994.

[57] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages

and Systems, 13(1):124–149, January 1991.

[58] Jason Hickey, Nancy Lynch, and Robbert van Renesse. Specifications and proofs for Ensemble

layers. In Rance Cleaveland, editor, Tools and Algorithms for the Construction and Analysis of

Systems, Fifth International Conference, (TACAS’99), Amsterdam, the Netherlands, March

1999, volume 1579 of Lecture Notes in Computer Science, pages 119–133. Springer-Verlag,

1999.

[59] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International, United

Kingdom, 1985.

[60] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall Software

Series, New Jersey, 1991.

[61] Carter B. Horsley. ”frank gehry, architect” at the solomon r. guggenheim museum. The City

Review, may 01. http://www.thecityreview.com/gehgug.html.

[62] Information Processing Systems Open Systems Interconnection. ESTELLE — A formal de-

scription technique based on an extended state transition model, 1989.

[63] Samuel Johnson. Adventurer 138. In The Works of Samuel Johnson, volume 11. F. C. and J.

Rivington, 1823.

[64] S. Kalvala. A formulation of TLA in Isabelle. In E. T. Schubert, P. J. Windley, and J. Alves-

Foss, editors, 8th International Workshop on Higher Order Logic Theorem Proving and its

Applications, volume 971, pages 214–228, Aspen Grove, Utah, USA, 1995. Springer-Verlag.

[65] Dilsun Kırlı Kaynar, Anna Chefter, Laura Dean, Stephen Garland, Nancy Lynch, Toh Ne Win,

and Antonio Ramırez-Robredo. The IOA simulator. Technical Report MIT-LCS-TR-843, MIT

Laboratory for Computer Science, Cambridge, MA, July 2002.

288

http://www.thecityreview.com/gehgug.html

[66] Dilsun Kırlı Kaynar, Nancy Lynch, Sayan Mitra, and Christine Robson. Design for TIOA

modeling language. Manuscript in progress, 2004.

[67] Dilsun Kırlı Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The theory of timed

I/O automata. Technical Report MIT-LCS-TR-917a, MIT Laboratory for Computer Science,

Cambridge, MA, April 2004.

[68] Donald Knuth. Notes on the van Emde Boas construction of priority deques: An instructive

use of recursion, March 1977. Manuscript.

[69] Leslie Lamport. Specifying concurrent program modules. ACM Transactions on Programming

Languages Systems, 5(2):190–222, April 1983.

[70] Leslie Lamport. How to write a long formula. Formal Aspects of Computing Journal, 6(5):580–

584, September/October 1994.

[71] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Languages

and Systems, 16(3):872–923, May 1994.

[72] Leslie Lamport. Specifying concurrent systems with TLA, pages 183–247. Number 173 in

Computer and Systems Sciences. IOS Press, 1999.

[73] Leslie Lamport, 2000. personal communicaton.

[74] Leslie Lamport. How to write a proof. American Mathematical Monthly, 102(7):600–608,

December August-September.

[75] Gérard Le Lann. Distributed systems - towards a formal approach. In Bruce Gilchrist, editor,

Information Processing 77 (Toronto, August 1977), volume 7 of Proceedings of IFIP Congress,

pages 155–160. North-Holland Publishing Co., 1977.

[76] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. In Springer International

Journal of Software Tools for Technology Transfer, pages 1(1+2), 1997.

[77] Aldo Leopold. Round River: From the Journals of Aldo Leopold. Oxford University Press,

1993.

[78] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert. Abstraction mechanisms

in CLU. Communications of the ACM, 20(8):564–576, August 1977.

[79] Victor Luchangco. Using simulation techniques to prove timing properties. Master’s the-

sis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, Cambridge, MA, June 1995.

289

[80] Victor Luchangco, Ekrem Söylemez, Stephen Garland, and Nancy Lynch. Verifying timing

properties of concurrent algorithms. In Dieter Hogrefe and Stefan Leue, editors, Formal De-

scription Techniques VII: Proceedings of the 7th IFIP WG6.1 International Conference on

Formal Description Techniques (FORTE’94, Berne, Switzerland, October 1994), pages 259–

273. Chapman and Hall, 1995.

[81] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Mateo, CA,

March 1996.

[82] Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. Atomic Transactions. Morgan

Kaufmann Publishers, San Mateo, CA, 1994.

[83] Nancy Lynch and Frits Vaandrager. Forward and backward simulations — Part I: Untimed

systems. Information and Computation, 121(2):214–233, September 1995.

[84] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms.

In Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing,

pages 137–151, Vancouver, British Columbia, Canada, August 1987.

[85] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI-

Quarterly, 2(3):219–246, September 1989. Centrum voor Wiskunde en Informatica, Amster-

dam, The Netherlands. Technical Memo MIT/LCS/TM-373, Laboratory for Computer Sci-

ence, Massachusetts Institute of Technology, Cambridge, MA, November 1988.

[86] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-

Verlag, New York, 1995.

[87] Panayiotis Mavrommatis, July 2004. personal communication.

[88] Panayiotis Mavrommatis and Chryssis Georgiou. Running distributed algorithms using the

IOA toolkit. Manuscript, July 2004.

[89] José Meseguer. Conditional rewriting logic as an unified model of concurrency. Theoretical

Computer Science, 96:73–155, 1992.

[90] Robin Milner. Communication and Concurrency. Prentice-Hall International, United King-

dom, 1989.

[91] Olaf Müller. A Verification Environment for I/O Automata Based on Formalized Meta-Theory.

PhD thesis, Technishen Universität München, June 1998.

[92] Olaf Müller and Tobias Nipkow. Traces of I/O automata in Isabelle/HOLCF. In M. Bidoit and

M. Dauchet, editors, TAPSOFT’97: Theory and Practice of Software Development, volume

1214 of Lecture Notes in Computer Science, pages 580–594. Springer, 1997.

290

[93] E. Kim Nebeuts. H. Eves Return to Mathematical Circles. Prindle, Weber and Schmidt, 1988.

[94] Atish Dev Nigam. Enhancing the IOA code generator’s abstract data types. Manuscript, 2001.

[95] Tobias Nipkow and Konrad Slind. I/O automata in Isabelle/HOL. In P. Dybjer, B. Nordström,

and J. Smith, editors, Proceedings of the International Workshop on Types for Proofs and

Programs, pages 101–119, B̊astad, Sweden, 1995. Springer-Verlag LNCS 996.

[96] Jonathan S. Ostroff. A visual toolset for the design of real-time discrete event systems. IEEE

Transactions on Control Systems Technology, 5(3), May 1997.

[97] Susan Owicki and David Gries. An axiomatic proof technique for parallel programs, I. Acta

Informatica, 6(4):319–340, 1976.

[98] Lawrence C. Paulson. The Isabelle reference manual. Technical Report 283, University of

Cambridge, Computer Laboratory, 1993.

[99] Alan J. Perlis. Epigrams on programming. ACM SIGPLAN Notices, 17(9):7–13, September

1982.

[100] Tsvetomir P. Petrov, Anna Pogosyants, Stephen J. Garland, Victor Luchangco, and Nancy A.

Lynch. Computer-assisted verification of an algorithm for concurrent timestamps. In Rein-

hard Gotzhein and Jan Bredereke, editors, Formal Description Techniques IX: Theory, Appli-

cations, and Tools (FORTE/PSTV’96: Joint International Conference on Formal Description

Techniques for Distributed Systems and Communication Protocols, and Protocol Specification,

Testing, and Verification, Kaiserslautern, Germany, October 1996), pages 29–44. Chapman &

Hall, 1996.

[101] J. Postel. Transmission Control Protocol — DARPA Internet Program Specification (Internet

Standard STC-007). Internet RFC-793, September 1981.

[102] J. Antonio Ramırez-Robredo. Paired simulation of I/O automata. Master’s thesis, Depart-

ment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, MA, September 2000.

[103] Henry Reed. Naming of parts. New Statesman and Nation, 1942.

[104] Elvinia Riccobene, Myla M. Archer, and Constance L. Heitmeyer. Applying TAME to I/O

automata: A user’s perspective. Technical Report NRL.MR.5540–00-8848, Naval Research

Laboratory, April 2000.

[105] Christine Margaret Robson. TIOA and UPPAAL. Master’s thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA,

May 2004.

291

[106] A.W. Roscoe, P. H. B. Gardiner, M. H. Goldsmith, J. R. Hulance, D. M. Jackson, and J. B.

Scattergood. Hierarchical compression for model-checking CSP or how to check 1020 din-

ing philosophers for deadlock. In Ed Brinksma, Rance Cleaveland, Kim Guldstrand Larsen,

Tiziana Margaria, and Bernhard Steffen, editors, Tools and Algorithms for the Construction

and Analysis of Systems (TACAS ’95), volume 1019 of Lecture Notes in Computer Science,

pages 133–152. Springer-Verlag, 1995.

[107] Adrian Segall. Distributed network protocols. IEEE Transactions on Information Theory,

IT-29(1):23–35, January 1983.

[108] N. Shankar, Sam Owre, and John Rushby. The PVS proof checker: A reference manual.

Technical report, Computer Science Lab, SRI Intl., Menlo Park, CA, 1993.

[109] Richard M. Sherman and Robert B. Sherman. A spoonful of sugar. Mary Poppins, 1964.

[110] Mark Smith. Formal verification of communication protocols. In Reinhard Gotzhein and

Jan Bredereke, editors, Formal Description Techniques IX: Theory, Applications, and Tools

FORTE/PSTV’96: Joint International Conference on Formal Description Techniques for Dis-

tributed Systems and Communication Protocols, and Protocol Specification, Testing, and

Verification, Kaiserslautern, Germany, October 1996, pages 129–144. Chapman & Hall, 1996.

[111] Mark Smith. Formal Verification of TCP and T/TCP. PhD thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA,

September 1997.

[112] Mark Smith. Reliable message delivery and conditionally-fast transactions are not possible

without accurate clocks. In Proceedings of the 17th Annual ACM Symposium on the Principles

of Distributed Computing, pages 163–171, June 1998.

[113] Jørgen F. Søgaard-Andersen, Stephen J. Garland, John V. Guttag, Nancy A. Lynch, and Anna

Pogosyants. Computer-assisted simulation proofs. In Costas Courcoubetis, editor, Computer-

Aided Verification (5th International Conference, CAV’93, Elounda, Greece, June/July 1993),

volume 697 of Lecture Notes in Computer Science, pages 305–319. Springer-Verlag, 1993.

[114] Edward Solovey. Simulation of composite I/O automata. Master’s thesis, Department of Elec-

trical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge,

MA, September 2003.

[115] Ekrem Söylemez. Automatic verification of the timing properties of MMT automata. Master’s

thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute

of Technology, Cambridge, MA, February 1994.

292

[116] Sun Microsystems, Inc. Java remote method invocation specification, February 1997.

[117] Sun Microsystems, Inc. Java message service specification, November 1999.

[118] Joshua A. Tauber and Stephen J. Garland. Definition and expansion of composite automata in

IOA. Technical Report MIT/LCS/TR-959, Laboratory for Computer Science, Massachusetts

Institute of Technology, Cambridge, MA, July 2004. URL http://theory.lcs.mit.edu/tds/

papers/Tauber/MIT-LCS-TR-959.pdf.

[119] Michael J. Tsai. Code generation for the IOA language. Master’s thesis, Department of Elec-

trical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge,

MA, June 2002.

[120] Mandana Vaziri, Joshua A. Tauber, Michael J. Tsai, and Nancy Lynch. Systematic removal of

nondeterminism for code generation in I/O automata. Technical Report MIT/LCS/TR-960,

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA,

July 2004. URL http://theory.lcs.mit.edu/tds/papers/Tauber/MIT-LCS-TR-960.ps.

[121] Toh Ne Win. Theorem-proving distributed algorithms with dynamic analysis. Master’s the-

sis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, Cambridge, MA, May 2003.

[122] Toh Ne Win, Michael Ernst, Stephen Garland, Dilsun Kirli, and Nancy Lynch. Using simulated

execution in verifying distributed algorithms. International Journal on Software Tools for

Technology Transfer (STTT), 4:1–10, 2003.

[123] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+ specifications.

In Laurence Pierre and Thomas Kropf, editors, Conference on Correct Hardware Design and

Verification Methods (CHARME’99), volume 1703 of Lecture Notes in Computer Science,

pages 54–66, 1999.

293

http://theory.lcs.mit.edu/tds/papers/Tauber/MIT-LCS-TR-959.pdf
http://theory.lcs.mit.edu/tds/papers/Tauber/MIT-LCS-TR-959.pdf
http://theory.lcs.mit.edu/tds/papers/Tauber/MIT-LCS-TR-960.ps

	List of Figures
	List of Tables
	I IOA Compiler
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.2.1 Structuring programs for compilation
	1.2.2 Connecting programs to system services
	1.2.3 Modeling procedure calls
	1.2.4 Composing automata
	1.2.5 Resolving nondeterminism
	1.2.6 Implementing datatypes

	1.3 Correctness
	1.3.1 Abstract Channel Correctness
	1.3.2 Compiler Correctness

	1.4 Performance
	1.5 Overview

	2 IOA Language and Toolkit
	2.1 Input/Output Automata
	2.1.1 Execution of I/O Automata
	2.1.2 Proof Techniques
	2.1.3 Using I/O automata

	2.2 Successes with the I/O Automaton Model
	2.3 Related Models
	2.4 Related Tool-Based Work
	2.5 Related I/O Automata-Based Tools
	2.5.1 Theorem Provers
	2.5.2 Simulators and Code Generators

	2.6 IOA Language
	2.7 Example: LCR Leader Election
	2.8 IOA Toolkit
	2.8.1 Checker
	2.8.2 Composer
	2.8.3 Simulator
	2.8.4 Theorem Provers
	2.8.5 Model checkers
	2.8.6 Invariant discovery tools
	2.8.7 IOA Compiler

	3 Structuring the Design
	3.1 Imperative IOA programs
	3.2 Node-Channel Form
	3.2.1 Abstract Channels

	3.3 Handshake Protocols
	3.4 Console Interface
	3.4.1 Buffer Automata
	3.4.2 Interface Generator

	3.5 Composition

	4 Implementing Abstract Channels with MPI
	4.1 MPI
	4.1.1 Method descriptions
	4.1.2 Resource limitations

	4.2 MPI Specification Automaton
	4.3 MPI Client Specification Automata
	4.4 Abstract Channel Specification Automaton
	4.5 Mediator Automaton
	4.5.1 Send Mediator Automaton
	4.5.2 Receive Mediator Automaton

	4.6 Composite Channel Automaton
	4.7 Channel Correctness Theorem
	4.7.1 Sequence properties
	4.7.2 F is a refinement mapping

	4.8 Other network services

	5 Resolving Nondeterminism
	5.1 Scheduling
	5.1.1 LCR Schedule
	5.1.2 Schedule actions

	5.2 Choosing
	5.3 Initialization
	5.4 Safety

	6 Translating IOA into Java
	6.1 Translating Datatypes
	6.2 Translating State
	6.3 Translating Automaton Parameters
	6.4 Translating Transitions
	6.4.1 Translating MPI Transitions
	6.4.2 Translating Buffer Transitions

	6.5 Translating Schedules

	7 Translation Correctness
	7.1 [language=bigIOALang]'MacroSystem'
	7.2 [language=bigIOALang]'System'
	7.2.1 Deriving a micro-node from a macro-node

	7.3 Compilation Correctness Theorems
	7.3.1 Node Correctness Theorem
	7.3.2 Global System Correctness Theorem
	7.3.3 History variables
	7.3.4 i
	7.3.5 Invariants
	7.3.6 Refinement Mapping

	7.4 Handshake Theorem

	8 Experimental Evaluation
	8.1 Testbed
	8.2 LCR Leader Election
	8.2.1 Results

	8.3 Spanning Tree
	8.3.1 Results

	8.4 Asynchronous Broadcast/Convergecast
	8.4.1 Results

	8.5 Observations

	II IOA Composer
	9 Introduction
	10 Illustrative examples
	11 Definitions for primitive automata
	11.1 Syntax
	11.1.1 Notations and writing conventions
	11.1.2 Syntactic elements of primitive IOA programs
	11.1.3 Parameters
	11.1.4 Variables
	11.1.5 Predicates
	11.1.6 Programs and values

	11.2 Aggregate sorts for state and local variables
	11.2.1 State variables
	11.2.2 Local variables

	11.3 Static semantic checks
	11.4 Semantic proof obligations

	12 Desugaring primitive automata
	12.1 Desugaring terms used as parameters
	12.1.1 Signature
	12.1.2 Transition definitions

	12.2 Introducing canonical names for parameters
	12.2.1 Signature
	12.2.2 Transition definitions
	12.2.3 Simplifying local variables

	12.3 Combining transition definitions
	12.4 Combining aggregate sorts and expanding variable references
	12.5 Restrictions on the form of desugared automaton definitions
	12.6 Semantic proof obligations, revisited

	13 Definitions for composite automata
	13.1 Syntax
	13.2 State variables of composite automata
	13.2.1 State variables for components with no type parameters
	13.2.2 Resortings for automata with type parameters
	13.2.3 State variables for components with type parameters

	13.3 Static semantic checks
	13.4 Semantic proof obligations

	14 Expanding component automata
	14.1 Resorting component automata
	14.2 Introducing canonical names for parameters
	14.3 Substitutions
	14.4 Canonical component automata

	15 Expanding composite automata
	15.1 Expansion assumptions
	15.2 Desugaring [language=bigIOALang]'hidden' statements of composite automata
	15.3 Expanding the signature of composite automata
	15.3.1 Subformulas for actions contributed by a component
	15.3.2 Signature predicates

	15.4 Semantic proof obligations, revisited
	15.4.1 Hidden actions
	15.4.2 Output actions
	15.4.3 Internal actions

	15.5 Expanding [language=bigIOALang]'initially' predicates of composite automata
	15.6 Combining local variables of composite automata
	15.7 Expanding input transitions
	15.7.1 [language=bigIOALang]'where' clause
	15.7.2 [language=bigIOALang]'eff' clause
	15.7.3 [language=bigIOALang]'ensuring' clause

	15.8 Expanding output transitions
	15.8.1 Output-only transition contributed by a single unparameterized component
	15.8.2 Output-only transition contributed by a single parameterized component
	15.8.3 Output-only transitions contributed by multiple components
	15.8.4 Output transitions subsuming input transitions (general case)

	15.9 Expanding internal transitions
	15.9.1 Internal-only transitions
	15.9.2 Internal transitions with hiding (general case)

	16 Expansion of an example composite automaton
	16.1 Desugared [language=bigIOALang]'hidden' statement of [language=bigIOALang]'Sys'
	16.2 Signature of [language=bigIOALang]'SysExpanded'
	16.2.1 Actions per component
	16.2.2 Provisional action kinds
	16.2.3 Signature predicates

	16.3 States and [language=ioaLang]'initially' predicates of [language=bigIOALang]'SysExpanded'
	16.4 Input Transition Definitions of [language=bigIOALang]'SysExpanded'
	16.5 Output Transition Definitions of [language=bigIOALang]'SysExpanded'
	16.6 Internal Transition Definitions of [language=bigIOALang]'SysExpanded'

	17 Renamings, Resortings, and Substitutions
	17.1 Sort renamings
	17.2 Variable renamings
	17.3 Operator renamings
	17.3.1 Terms and sequences of terms
	17.3.2 Values
	17.3.3 Statements and programs
	17.3.4 Shorthand [language=bigIOALang]'tuple' sort declarations

	17.4 Renamings for automata
	17.4.1 Automata
	17.4.2 Transition definitions
	17.4.3 Statements and programs
	17.4.4 Values
	17.4.5 Terms and sequences of terms

	17.5 Substitutions
	17.5.1 Terms and sequences of terms
	17.5.2 Values
	17.5.3 Statements and programs
	17.5.4 Transition definitions
	17.5.5 Hidden clauses

	17.6 Notation

	18 Conclusions
	18.1 Summary
	18.2 Assessment
	18.3 Future Work
	18.3.1 IOA Language Extensions
	18.3.2 Case studies
	18.3.3 Alternative network services
	18.3.4 NDR and Schedules
	18.3.5 Mutable datatypes
	18.3.6 Composition

	A Appendix
	A.1 [language=bigIOALang]'LCRNode'
	A.2 [language=bigIOALang]'TerminatingLCR'
	A.3 [language=bigIOALang]'spanNode'
	A.4 [language=bigIOALang]'bcastNode'

	Bibliography

