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ABSTRACT
An iterative method for computing shape from shading using occluding boundary information is
proposed. Some applications of this method are shown.

We employ the stereographic plane to express the orientations of surface patches, rather than the
more commonly .used gradient space. Use of the stereographic plane makes it possible to incorporate
occluding boundary information, but forces us to employ a smoothness constraint different from the
one previously proposed. The new constraint follows directly from a particular definition of surface
smoothness.

We solve the set of equations arising from the smoothness constraints and the image-irradiance
equation iteratively, using occluding boundary information to supply boundary conditions. Good
initial values are found at certain points to help reduce the number of iterations required to reach a
reasonable solution. Numerical experiments show that the method is effective and robust. Finally, we
analyze scanning electron microscope (SEM) pictures using this method. Other applications are also
proposed.

1. Introduction
This paper explores the relationship between image brightness and object
shape. Much of the work in machine vision does not explicitly exploit the
information contained in the brightness values recorded in the image, using
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these values only to segment the image, based on the difference of average
brightnesses in adjacent regions. A great deal of information is contained in the
image brightness values, however, since it has been shown that image bright-
ness is related to surface orientation [Horn, 1975].

The problem of computing the shape of an object from the shading in an
image can be thought of as the problem of reconstructing one surface (height of
the object above some reference plane) from another surface (brightness in the
image plane). Information at each point of the image is used to compute the
orientation of the corresponding point on the object, using the assumption that
the surface is smooth. This is in contrast with other machine-vision methods
which analyze surface depth based on discontinuities in surface orientation and
boundary information alone.

1.1. Historical background
The photometric approach to determining surface orientation from image
brightness was first formulated in the form of a non-linear first-order partial
differential equation in two unknowns [Horn, 1975]. This equation can be
solved using a modified characteristic strip-expansion method. This method
assumes that the surface is smooth, as does the method described in this paper.
We will see, however, that slightly different interpretations of the term
'smooth' are employed.

The reflectance map, introduced later [Horn, 1977], represents the relation-
ship between surface orientation and surface brightness. The map is defined in
gradient space, which appeared in the work on scene analysis of line drawings
[Huffman, 1971; Mackworth, 1973; Draper, 1980]. We assume orthographic
image projection and take the viewing direction as parallel to the z-axis. The
shape of the object can be described by its height, z, above the xy-plane. It is
convenient to use the short-hand notation p and q for the first partial
derivatives of z with respect to x and y:

p = 9zl9x and q = 9zl9y.

The pq-p\a.ne is referred to as gradient space, since every point in it cor-
responds to a particular surface gradient. Distance from the origin of gradient
space equals the slope of the surface, while the direction is the direction of
steepest ascent.

Fixed scene illumination, surface-reflectance properties, and imaging
geometry can be incorporated into an explicit model that allows image bright-
ness to be related directly to surface orientation. Thus we can associate with
each point in gradient space the brightness of a surface patch with the specified
orientation. The result, usually depicted by means of iso-brightness contours, is
called the reflectance map, and denoted R(p,q). The reflectance map can be
obtained experimentally using a test object or a sample mounted on a
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goniometer stage. It can also be determined theoretically if the surface-
reflectance is known as a function of the incident, emittance, and phase angles.
The reflectance map can be computed, for example, if the so-called Bi-
directional Reflectance Distribution Function (BRDF) [Nicodemus et al., 1977]
and the distribution of light sources is known [Horn and Sjoberg, 1979].

The reflectance map is a convenient tool, since it provides a simple
representation of the constraint inherent in one image-brightness measure-
ment. Once the brightness, E(x, y), is known at a point, one can ask what the
surface orientation might be there. A measurement of image brightness res-
tricts the possible surface orientations at the corresponding point on the surface
of the object. This constraint is expressed by the image -irradiance equation
[Horn, 1977]

R(p,q)=E(x,y),
where the gradient (p, q) denotes possible orientations and E(x, y ) is the
brightness measured at the point (x, y). In general, one measurement cannot
give us both p and q. It can only fix a relationship between the two variables.
Additional constraint is required for a unique solution. This usually takes the
form of some assumption about the class of surfaces that may be allowed.

One effect of the introduction of the reflectance map was that it motivated
research on other ways of solving the shape-from-shading problem. It also led
to the development of iterative methods, similar to those used to solve
second-order partial differential equations. Such methods, now called pseudo-
local, relaxation, or cooperative computation methods, were suggested some
time ago [Horn, 1970, p. 192], but could not be developed for this application
without these new tools.

1.2. Characteristic strip expansion
The old method [Horn, 1975] can be interpreted in terms of the reflectance
map, too. In the method of characteristic strip-expansion [Garabedien, 1964;
Moon and Spencer, 1969; Carrier and Pearson, 1976; Courant and Hilbert,
1962; John, 1978] the partial differential equation given above is replaced by a
set of five ordinary differential equations, one for each of x, y, z, p, and q:

dx/ds = Rp and dy/ds = R,,

dz/ds = pRp + qR,,

dp/ds = E, and dq/ds = Ey,
where Rp and R, are the partial derivatives of R with respect to p and q, while
Ejc and Ey are the partial derivatives of E with respect to x and u [Horn, 1977;
Bruss, 1979].

The parameter s varies monotonically along a particular characteristic strip.
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When the characteristic strip is extended, one moves to a new point (x, y ) in
the image and a new point (p, q) in the reflectance map [Horn, 1977; Wood-
ham, 1978]. The orientation of the surface is known at the end of the strip. One
has to move in a particular direction, (dx, dy), in the image plane in order to be
able to compute the orientation at the new point (see solid arrow in Fig. la).
The equations above tell us that this direction is the direction of steepest
ascent, (Rp, R,), at the corresponding point in the reflectance map (see dotted
arrow in Fig. Ib). At the new image point so determined, a different value of
image brightness is found, corresponding to a new point in the reflectance map.
This point in the reflectance map also lies in a well defined direction, (dp, dq),
from the previous point in the reflectance map (see solid arrow in Fig. Ib).
From the equations above we know that this direction is the direction of
steepest ascent, (E,, Ey), at the corresponding point in the image (see dotted
arrow in Fig. la).

One important observation is that these directions will be computed incor-
rectly if the brightness measurements are corrupted by noise. The result is that
the characteristic strips deviate more and more from their ideal paths as the
computation progresses. Thus, while characteristic strip-expansion works in the
absence of noise, it suffers from error accumulation in practice. One way to

f a )

FIG. 1. Geometric interpretation of the equations arising from the application of the characteristic
strip-expansion method to the image-irradiance equation. The image is shown in (a) as a set of
iso-brightness contours and the reflectance map appears similarly in (b). It is known that the
gradient is (p, q) on the surface of the object at the point corresponding to the image point (x, y).
In order to continue the solution from this point, one must take a small step on the image in a
direction determined by the gradient of the reflectance map, while the direction of the correspond-
ing step on the reflectance map is similarly determined by the image brightness gradient.
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greatly reduce this effect is to expand neighboring strips simultaneously and to
adjust the solution using the assumption that the surface is smooth between
strips [Horn, 1970, p. 144]. The characteristic strip-expansion method modified
in this fashion can also interpolate new strips when the existing ones separate
too far and delete old ones when they approach too closely.

Strips may be started near a so-called singular point (see later) and grow
outwards from there. Because of the directionality of the progress of the
solution, information from the ends of the characteristic strips cannot be
exploited by this method. This is an important shortcoming since crucial
information is obtained from occluding boundaries (see later). Normally, these
would be reached at the end of the computation, with no means available to
influence the (completed) solution.

There have been two new approaches based on two different ways of
introducing additional constraints. In the one case, additional images are
obtained from the same position with changed lighting. This will be discussed
in Section 1.4. The other approach stays in the single image domain, exploiting
instead suitably formulated assumptions about the nature of the surface. The
work in this area employs relaxation or cooperative computation methods,
which depend on the propagation of local constraints to determine global
solutions [Woodham, 1977; Strat, 1979; Brooks, 1979]. These methods can
often be viewed essentially as iterative algorithms for solving large sets of
simultaneous equations arising from a least squares minimization. Information
flow is not just along the characteristic directions, taking into account the fact
that individual measurements are noisy. Instead of singular points, boundary
conditions on a closed curve are used to select one of an infinite number of
possible solutions.

1.3. Previous numerical methods for shape from shading

We look at these algorithms in more detail now. Woodham's [Woodham, 1977]
method requires two rules which reduce the number of possible surface
orientations at a particular point. Suppose that two closely spaced image points
Pi and P-i at (xi, yi) and (x^, yi) correspond to object points on the same section
of a smooth surface. Further assume that the view angle, between surface
normal and the line of sight, increases and that the direction of steepest ascent,
polar angle in gradient space, decreases in going from Pi and Pz. Let Ci and Cz
be the contours in gradient space corresponding to

R(p,q)=E(xi,yi) and R(p, q)= E(x2, yz),

where R(p,q) is the reflectance map and E(xi,yi) and E(xi, yi) are the
observed brightness values at the points Pi and p> (see Fig. 2). Now the contour
of permissible values for (p, q) at point Pi can be restricted to those points on
C\ lying on or within the circle of maximum view-angle interpretation of Pz.
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FIG. 2. The possible values of the gradients at the points Pi and Pi are restricted considerably if we
assume that the view angle increases and the direction of steepest ascent decreases in going from Pi
t0?2.

Further, the contour of permissible values for (p, q) at point Pi can be
restricted to those points on C\ on or above the line of the minimum direction
of steepest ascent interpretation of Pi.

If a particular interpretation were applicable to the data, such an inter-
pretation would provide a framework for ordering selected image points with
respect to changes in both the view angle and the direction of steepest ascent.
For example, if one can assume that the surface is elliptical or hyperbolic at a
point (that is, the sign of the Gaussian curvature [Cohn-Vossen, 1952;
Pogorelov, 1956; Moon and Spencer, 1969; do Carmo, 1976] is known) one can
guarantee the sign of the change to the view angle or the sign of the change to
the direction of steepest ascent by choosing the direction of the small step
(dx, dy) from Pi to Pi appropriately [Woodham, 1977; Woodham, 1979]. Thus,
local assumptions about surface shape provide monotonicity relations between
selected image points. Thus we can start a shape-from-shading algorithm using
these rules on the selected image points.

A somewhat different approach makes use of a particular way of formulating
a smoothness constraint. To derive the constraint, we will assume for now that
the second partial derivatives of the surface height z exist and are continuous.
Then the partial derivative of z with respect to x and y is independent of the



NUMERICAL SHAPE FROM SHADING AND OCCLUDING BOUNDARIES 147

order in which the differentiations are performed:
f f p / 9 y = ^ ^ z / ^ y 9x = ^2z/^x f f y = f f q / f f x .

Evidently in any simply-connected region, B say,

{\{9pl9y-9ql9x}=Q,

since the integrand is zero at every point. Thus, by Green's theorem [Hilde-
brand, 1965], the integral of (p, q) along a closed curve (the boundary, 9B, of
the region) also equals zero:

<b {p dx + q dy} = 0.

This is eminently sensible, since the line integral gives the difference between
the height at the end of the line and its beginning, and we assumed that we
remain on the same section of the surface (see Fig. 3).

If we use a numerical method based on imperfect data to compute the
orientation of the surface at every point, we can expect that this integral will in
fact not be exactly equal to zero. One way of imposing a smoothness constraint
then is to find a solution which minimizes the errors in these loop integrals
while also satisfying the image-irradiance equation as closely as possible.

This idea was pursued by Strat [Strat, 1979] as well as Brooks [Brooks, 1979].
Brooks showed that he could restrict attention to integrals around small loops
in the image plane. He listed the possible orientations (quantized in a suitable
way) at each point, then iteratively eliminated those conflicting with the loop
integral criterion. This was accomplished using a relaxation method not unlike
that developed by Waltz [Waltz, 1975] for labelling line drawings.

Strat minimized the weighted sum of the errors in integrals around small
loops and the errors in the image-irradiance equations. He developed a system
for iteratively solving the large, sparse set of equations arising from this
minimization formulation. His method is in many ways similar to the one
presented here except insofar as he used gradient space and so could not deal

FIG. 3. Discrete version of the loop integral of (p, q). The total change in elevation as one goes
around the loop should be zero if the patches belong to a differentiable, single-valued surface.
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with occluding boundaries. As a result, his algorithm requires that surface
orientation be given on a closed curve. This limits its applicability.

1.4. Photometric stereo methods
The other new approach uses further images to provide additional constraint.
These images are taken from the same position, but with changed lighting
conditions. This so-called photometric stereo approach [Woodham, 1977; Horn
et al. 1978; Woodham, 1980] allows one to determine surface orientation
locally without smoothness assumptions.

Since the images are obtained from the same position, a particular point on
the object will appear at the same spot in each image. This means that one
does not have the problem of identifying projections of a particular surface
feature in multiple views, as happens in ordinary stereo. A different reflectance
map applies to each image, however, since the lighting is different for each
view. For a given point in the image we have one brightness value correspond-
ing to each of these reflectance maps. Suppose, for example, that at a particular
point, (xo, yo), two measurements of image brightness are available. Then we
have two (non-linear) equations for p and q,

Ri(p, q) = £i(xo, yo), Ri(p, q) = E^XO, yo),
where Ri and R^ are the reflectance maps appropriate to the two lighting
situations, while £1 and £3 are the observed image-brightness values. The
intersection of the corresponding gradient-space contours provides one with
the sought after surface orientation. This is the essential idea of photometric
stereo. Naturally, the above pair of nonlinear equations in two unknowns may
have more than one solution, in which case additional information (such as a
third image) may be needed to find the unique answer (see Fig. 4).

The graphical construction shown here can be replaced with a simple
lookup-table procedure [Silver, 1980; Ikeuchi, 1981]. Quantized brightness
values are used as indices into the table; the entries in the table contain the
corresponding surface orientations. Detection of errors is facilitated (if more
than two images are used) by blank entries which represent incompatible
combinations of brightness values. Values of p and q are found for every point
in the image, yielding surface orientation for the corresponding surface pat-
ches. While a description of the shape of an object in this form may be suitable
for recognition and to find the attitude of an object in space, it is at times
helpful to provide height above some reference plane instead. While z can
obviously be found by integration of p and q, the best way to do this when it is
known that the data is corrupted by measurement noise has not yet been
described.

In industrial applications one has to deal with metallic parts which often
exhibit specular or mirror-like reflections. In this case a distributed light source



NUMERICAL SHAPE FROM SHADING AND OCCLUDING BOUNDARIES 149

FIG. 4. Determining the surface orientation at a given image point using the photometric stereo
method. Here, three measurements of image brightness are obtained using different illumination
conditions. Three superimposed reflectance map contours, corresponding to the different
measurements, intersect at the point sought.

with spatially varying brightness may be used [Ikeuchi, 1981]. For matte
surfaces one can simply use a number of point sources [Silver, 1980]. So far
experimentation has been confined to single objects, avoiding possible inac-
curacies due to interflection or mutual illumination [Spacek, 1979].

1.5. Motivation of this research
The outline of the projection of an object in the image plane is called its
silhouette. Parts of this silhouette may correspond to sharp edges on the
surface, others to places where the surface curves around smoothly. The
smooth parts of the surface corresponding to parts of the silhouette are
referred to as occluding boundaries. The locus of (barely) visible points on the
surface where the tangent plane contains the viewer is called the occluding
boundary. Occluding boundaries supply important information about the shape
of an object and one can attempt to recover the shape of the object from this
information alone using rather strong assumptions [Marr, 1977]. A simple
interpolation algorithm works, particularly if the surface is (locally) spherical or
cylindrical [Barrow and Tenenbaum, 1981]. This can also be approached from
the statistical point of view of recovering the most likely surface [Witkin, 1980].
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The true surface, however, can be found only if we also pay attention to the
shading information. The occluding boundary can then be used as the boun-
dary condition for the reconstruction. There is some question about whether
the problem is well posed in this form, since the partial derivatives of height
become infinite on the boundary. It should be clear, though, that if a numerical
method is to succeed at all, then the representation of surface orientation must
allow these boundary conditions to be expressed correctly. Little is known now
about the uniqueness of solutions obtained in this way. It seems likely,
however, that only one solution is possible under certain rather general
assumptions about the nature of the reflectance map [Bruss, 1979; Bruss, 1980].

2. The Gaussian Sphere and Reflectance Functions
We can identify surface orientations with points on a unit sphere, called the
Gaussian sphere [Hilbert and Cohn-Vossen, 1952]. Let the viewer be far above
the north pole, along the z-axis, where the z-axis is taken as the extended line
from the center of the sphere to its north pole. Assume that we take a patch of
the surface of an object and place it in the center of the sphere, without
changing its attitude in space. The patch will face some point of the sphere.
That is, a unit-surface normal erected on the patch will touch the sphere at this
point. The orientation of a horizontal portion of a surface, for example, is
represented by a point at the north pole, since its surface normal points directly
at the viewer. Portions of the surface seen at a glancing angle by the viewer
correspond to points on the equator, while surface elements turned away from
the viewer are associated with points in the southern hemisphere. Thus points
in the northern hemisphere are of most interest to us here.

2.1. The Gaussian sphere and apparent brightness of a surface patch
If we assume orthographic projection of the three-dimensional world, then the
angle between the line of sight and the surface normal is independent of the
position of the patch on the object. As far as the geometry of light reflection is
concerned we need to concern ourselves only with the orientation of a surface
patch as represented by a point on the Gaussian sphere. Surface patches of an
object which share the same orientation are associated with the same point on
the sphere, independent of their position in space (see Fig. 5).

Surface brightness depends on the surface material and the geometry of light
reflection: the angles between the line of sight, the surface normal, and the
incident light rays. Since each point on the Gaussian sphere expresses one
particular such geometric relationship, we can associate a unique value of
surface brightness with each point on its surface. Say, for example, that a
surface patch perpendicular to the viewer appears with unit brightness. In that
situation we assign this value to the north pole. Using this method, we can
assign brightness values to all points on the Gaussian sphere. Shown in Fig. 6 is



NUMERICAL SHAPE FROM SHADING AND OCCLUDING BOUNDARIES 151

( a } b)
RG. 5. Surface patches of an object (b), which share the same orientation are associated with the
same point on the Gaussian sphere (a), independent of their position on the object.

FIG. 6. Cross section through Gaussian sphere showing brightness values associated with points on
the sphere. The radial distance of the curve from the surface of the sphere is proportional to the
brightness. The particular reflectance function shown here happens to vary as Va2 cos2 e + 1 +
(a cos e - 1), where e is the emittance angle, between the surface normal and the line of sight, and
a = 0.72.

a cross section of the Gaussian sphere with brightness values represented by
the height of a curve above the surface.

2.2. Projections of the Gaussian sphere
It may not be convenient to use this representation of the dependence of
surface brightness on orientation, since the Gaussian sphere is three-dimen-
sional. Graphic presentation of this information, for example, is difficult. It is
therefore advantageous to project the Gaussian sphere onto a plane. (This is
possible since we are interested only in the surface of the Gaussian sphere.)
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There are, of course, many ways to perform this mapping operation. Even if we
were to confine ourselves to conformal projections, we would have many to
choose from, including the Mercator, Lambert, and stereographic projections
used in geodesy and cartography [Thomas, 1952; Raisz, 1962]. We prefer *
continuous projections like these, since they map neighboring points into
neighboring points. This is important because we plan to generate surface
representations iteratively from boundary information. Roughly speaking, to "
be able to do this, we want the following to hold: a point C lying between two
other points A and B is projected into a point F(C) which lies approximately
between F(A) and F(B).

It can easily be shown that,
n=(-p,-q,l)/^l+p2+q2

is a unit (outward) normal to the surface [Horn, 1977; Horn, 1981]. This gives
us the coordinates of the point on the Gaussian sphere corresponding to a
surface patch with gradient (p, q), and immediately suggests a projection onto a
plane with axes labelled p and q. Appropriately enough, the plane of pro-
jection is called gradient space in this case, as we have mentioned before
[Huffman, 1971; Mackworth, 1973; Draper, 1980].

Geometrically we can think of this as the projection of the Gaussian sphere
by rays from its center onto a plane tangent to the north pole (with the sense of
the p and q axes reversed from that of the x and y axes). This projection,
called the gnomonic projection, has the property that great circles are mapped
into lines. (It is used for this reason in navigation to determine the shortest
path between two points on the earth.) This also makes it a so-called geodesic
projection. In our case here, the north pole is mapped into the origin, the top
hemisphere is mapped into the whole pq-plane, and points on the equator end
up at infinity. Points on the lower hemisphere are not projected onto the
pq-plane.

Since each point in gradient space corresponds to a particular surface
orientation, one can associate a unique brightness value with it. The result, as
mentioned earlier, is the reflectance map [Horn, 1977]. The gnomonic pro-
jection is convenient for the following reasons: (1) the coordinates correspond
to the first partial derivatives of surface height, z, (2) we can compute surface
height by integrating p and q, and (3) a line integral of (p, q) along a closed
loop is always zero. Unfortunately, gradient space also has a serious drawback.
As we shall see, points on the equator of the Gaussian sphere correspond to
surface patches on the occluding boundary. With the gradient-space projection,
the equator maps to infinity. As a result, occluding boundary information
cannot be expressed in gradient space.

2.3. Stereographic projection
One solution to this problem is the use of the stereographic projection [Sohon,



NUMERICAL SHAPE FROM SHADING AND OCCLUDING BOUNDARIES 153

1941]. ffipparchus (circa 150 B.C.) is credited with the invention of this
projection (which appears to have been employed in the astrolabe-planisphere
solution of the astronomical triangle). We can think of this projection in
geometric terms also as projection onto a plane tangent at the north pole. This
time, however, the center of projection is the south pole, not the center of the
sphere (see Fig. 7). We label the axes of the stereographic plane / and g to
distinguish them from those of gradient space. It can be shown that these
coordinates are related to the partial derivatives as follows:

/=2^Vl+p2+<^2-l]/(p2+92).

g = lq[^/\+pl+ql- \W+q1).

This projection is conformal (preserves angles between lines and shapes of
small figures) and maps circles on the Gaussian sphere into circles on the plane
[Hilbert and Cohn-Vossen, 1952]. The whole sphere, not just the northern
hemisphere, is mapped onto the plane this time. Only the south pole ends up at
infinity, while the equator is mapped into a circle of radius two (see Fig. 8). We
may also assign a brightness value to each point in the stereographic plane, just
as we did with points in gradient space.

The two projections considered so far fall in the category of azimuthal
projections, since latitude on the sphere simply becomes the azimuth in the
plane. Another convenient projection in this class is the so-called azimuthal
equidistant projection. Here the distance from the origin in the plane equals
the distance along the surface of the sphere measured from the north pole (that
is, the co-latitude). There is no obvious geometric interpretation in terms of
rays emanating from a fixed center of projection. One can think of this
mapping instead as one obtained by rolling the sphere on the plane, along
meridians, always starting with the north pole aligned with the origin. If we call

FIG. 7. The stereographic mapping projects each point on the surface of the sphere, along a ray
from one pole, onto a plane tangent to the opposite pole.
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FIG. 8. The stereographic projection maps the equator onto a circle of radius two. The equator of
the Gaussian sphere corresponds to points on the occluding boundary of the object.

the coordinates of the plane a and b in this case, we have
a = [p/V^+g2] tan-1 Vp^T^,
b = [<?/V?T<p] tan-1 V^+f?2.

As with the gnomonic projection, we project only the northern hemisphere.
But, unlike the gnomonic projection, points on the equator do not end up at
infinity; instead they are mapped onto a circle of radius TT/2.

There are, of course, numerous other projections one might use. K. Tanaka,
for example, used another azimuthal projection, the so-called orthographic
projection in early work on hill-shading [Horn, 1981].

3. Smoothness Constraint and Boundary Conditions
In the sequel we use the stereographic projection. The form of the image-
irradiance equation will be slightly different, since we use / and g instead of p
and q. However, this makes no difference to the basic idea that a measurement
of surface brightness restricts the possible surface orientations. We must
develop a suitable smoothness constraint expressible in the coordinate system
natural to the stereographic plane. We also have to determine what boundary
conditions are available to constrain the solution of the image-irradiance
equation. Finally, it will be helpful to find a way of determining good initial
values of surface orientation for at least some of the points, in order to get the
numerical solution off to a good start.

3.1. Formulation of surface smoothness constraints
If we employ the stereographic projection, we cannot use the closed loop
constraint proposed by Strat [Strat, 1979] and Brooks [Brooks, 1979], because
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the closed loop constraint depends upon a special characteristic of the
gnomonic projection. Namely, the closed loop integral can be expressed
directly in terms of p and q, the coordinates of gradient space. Unfortunately,
this is not true in the case of either the stereographic projection or the
azimuthal equidistant projection. If a constraint expresses the property of
surface smoothness, it ought to be valid regardless of the projection we happen
to use. It seems reasonable to express the smoothness criterion in terms of a
relationship between neighboring points.

We now turn to the definition of surface smoothness. The standard definition
of a smooth function is one which has continuous first partial derivatives. This
agrees with our intuitive feeling of what constitutes a smooth surface. First of
all, smoothness requires that there be no depth discontinuities. That is to say,
height, as a function of the image coordinates, should be continuous (height is
class C°). But we also require that surface orientation be continuous, for if a
surface has a sharp edge or krinkle, the surface is not considered smooth. In
other words, smoothness also requires that the first partial derivatives of height
be continuous (height is class C1).

Should one also require that the second partial derivatives of height be
continuous, or equivalently, that the derivatives of orientation are continuous?
The following illustration shows that this is not necessary. Imagine a planar
surface attached to a portion of a cylindrical surface so that the two are tangent
where they touch (see Fig. 9). Here surface orientation is constant on the
planar part, but varies on the cylindrical part. Thus surface orientation is
continuous, but its derivatives are not. Nevertheless, people regard this surface
as smooth.

It is interesting to note at this point that the method of characteristic strip
expansion can be shown to apply in general when the function sought is of class
C1. In the case of a first-order partial differential equation in two independent
variables, however, it is known that the solution is unique even when the
function is only class C1 [Courant and Hilbert, 1962, p. 145]. Similarly, the
derivation of the closed loop constraint shown above requires that the function
be class C2. It turns out to be sufficient, however, that the function be
single-valued and (once) differentiable.

FIG. 9. A surface constructed by attaching a portion of a cylindrical surface to a plane, in such a
way that they are tangent on the contact line, is considered smooth.
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3.1.1. Continuity of surface orientation
What is the definition of continuous? A function is continuous if neighboring
points map into neighboring points. If a function is vector valued, being*
continuous implies that each component of the function is continuous [do
Carmo, 1976]. This allows us to consider each component of surface orientation
separately. For example, in the stereographic plane, we can formulate two ?

constraints which express continuity of/and g separately. We use the standard
definition of continuity [do Carmo, 1976]:

A function F is continuous at (xy, yo) if, given any e > 0, there exists a 8 such
that when

(x-x^+(y-y^<82,

then,

\F(x,y)-F(xo,yo)\<e.
If, given a particular e, we can find a single value of 8 for all points in the
region of interest, then the function is uniformly continuous.

In practice, we will be dealing with a discrete grid of points with values
defined at the nodes of the grid. If we take the grid interval 80 smaller than 8,
then we are guaranteed that:

\F(xo+8o,yo)-F(xo,yo)\<e and \F(xo, yo + 80) - F(xo, yo)| < e.
At this point we should remember that it is surface orientation which we are
assuming varies continuously as a function the image coordinates. Thus equa-
tions like the one above apply to / and g.
3.1.2. Summation of error terms
One more check is necessary before we can use our smoothness constraint. To
measure how far the computed surface departs from smoothness, we will be
looking at error terms like

(fi+U - fuY and (gi+ij - g,j)2.

We form the sum of the squares of the differences over all adjacent pairs of
nodes in the grid. When the grid interval becomes small, the number of nodes
per unit area becomes large. For our purposes, the sum of all the differences
squared should nevertheless remain small as we decrease the grid interval. For
this to be true we actually require that the derivatives of orientation exist and
are bounded. Suppose that the largest absolute value of the partial derivatives
of / and g with respect to x and y is denoted by Dm. Then the square of an
error term will be less than

[DM'-
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Since the number of nodes per unit area equals 1/5§, we find that the sum of
squares of the errors is less than Dm. Note that discontinuities of the derivatives
of orientation, as occur on the dotted line in Fig. 9, do not constitute a
problem.

3.2. Constraints from boundary information
In some areas of an image, we can determine surface orientations directly. This
is true, for example, at so-called singular points and specular points. Useful
initial values for the iterative solution process are found this way. More
importantly, at an occluding boundary, we can determine surface orientation
from the silhouette. This supplies us with the all-important boundary con-
ditions.
3.2.1. Occluding boundary
At an occluding boundary we can determine the surface normal uniquely
[Marr, 1977; Barrow and Tenenbaum, 1981]. The following two facts are the
starting points of our discussion of the determination of the surface normals
from the silhouette.

FIG. 10. The line of sight is tangent to the surface at the point where it touches the occluding
boundary. The tangent plane at that point cuts the image plane in a line. This line is tangent to the
silhouette in the image plane.
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First: since we observe an occluding boundary there, the line connecting the
surface to the viewer must be tangential to the surface patch at that point (see
Fig. 10). Thus the line of sight lies in the plane tangent to the surface at the
point where it grazes the surface. It is therefore perpendicular to the surface '
normal at that point.

Second: the line of sight is perpendicular to the image plane (Since we
assumed orthographic image projection, all lines of sight are parallel to the °
z-axis and thus perpendicular to the image plane). It follows that the tangent
plane is perpendicular to the image plane and therefore projected as a line in
the image plane. This line is tangent to the silhouette in the image plane.

We see then that a normal to the silhouette in the image plane is parallel to
the normal to the surface at the corresponding point on the occluding boun-
dary. We can in this fashion obtain surface orientations for all points on the
occluding boundary.
3.2.2. Self-shadow boundary
Consider the situation where there is a single point source. The locus of
(barely) illuminated points on the surface where the tangent plane contains the
light source is called the self-shadow boundary. On the self-shadow boundary,
light rays play the role of the lines of sight in the previous discussion. Namely,
the light grazes the surface there; the rays are perpendicular to the surface
normal. The trouble is that now the tangent plane is not projected as a line in
the image plane (see Fig. 11). Consequently we cannot determine surface
orientations uniquely on a self-shadow boundary. Approximations to the
correct surface orientations can be computed if we make some assumptions.
This is helpful, because these can serve as initial values for the iterative
algorithm. One possible assumption we might make is that the self-shadow
boundary lies in a plane perpendicular to the light source. This occurs, for
example, when the object is spherical, and is not a bad approximation when the
object is ellipsoidal.

Let the light source lie in a direction given by the unit vector n,. The
projection of the self-shadow boundary in the image is called the shadow edge.
Let a vector in the image plane perpendicular to the shadow edge be B» (drawn
from the lighted towards the shadowed side). The self-shadow boundary lies in
a plane perpendicular to both HI, and n, and must therefore be parallel to

n, x Hh.

The surface normal on the shadow boundary must be perpendicular to this line,
as well as to the incident rays. It must therefore be parallel to

(n, x n») x n, = n» - (»» •»»,)»,.

The above vector vanishes when the incident rays are parallel to the image
plane, indicating that in this case we cannot determine anything about the
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LINES OF SIGHT

FIG. 11. The tangent planes on the self-shadow boundary do not project as lines into the image
plane. The surface orientation of points on the self-shadow boundary cannot be determined
uniquely.

surface normals on the shadow boundary, even with the assumption that this
boundary lies in a plane perpendicular to the incident rays. Conversely, when
the source is at the viewer, the surface normal is fully determined even without
this assumption, since the shadow boundary then coincides with the occluding
boundary.

Errors in the determination of the surface normal on the shadow boundary
do not lead to errors in the final result, since they affect only the initial values.
Presumably, better initial values do reduce the number of iterations required to
obtain an accurate solution, however. Note that the condition that the surface
normal is perpendicular to the incident rays on the self-shadow boundary is
actually already implicit in the equation R(p, q} = 0.
3.2.3. Specular point and singular point

We can also determine surface orientation at so-called singular points and
specular points. Assume for now that the illumination comes from a single
point-source of light. Consider first a surface patch oriented so that its normal
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vector points directly at this light source. (It will be maximally illuminated, but
not necessarily maximally luminous.) Let us call the point on the Gaussian
sphere corresponding to this orientation the source spot, since it essentially
specifies the direction towards the light source. Note, by the way, that the
source spot ends up in the southern hemisphere when the object is illuminated
from behind. Such a source spot will be projected into a point in the plane by
the stereographic projection. This is not the case if we use the gnomonic or
azimuthal-equidistant projections, since these project only the northern
hemisphere.

Next, assume that we are dealing with a surface material which exhibits
mirror-like or specular reflection. A surface patch on such a surface may be
oriented just right to reflect rays from the light source towards the viewer. This
leads to a so-called specular point in the image. This happens only when the
incident angle, i, equals the emittance angle, e, and when the incident ray, the
surface normal, and the reflected ray lie in the same plane. This orientation
corresponds to the point mid-way between the source spot on the Gaussian
sphere and the north pole.

If we let (p,, q,) be the point in gradient space which corresponds to the
source spot on the Gaussian sphere, then a surface patch oriented for specular
reflection has the gradient (pm, qm), given by:

Pn, = ft[Vl+^+^ - W + ̂ ),

q» = ̂ [VTTpFT^- IW+q]).

This can be shown by noting that (pm,qm) must lie in the same direction in
gradient space as (p,, q,), and that the angle between (0,0,1) and (-pm, -qm, 1)
must be equal to the angle between (-pm, -qm, 1) and (-p,, -q,, 1). Similar
formulae apply in the stereographic plane:

fn,=f.[^l+fi+82,-W+g]),

^.=ft[Vl+/?+^-l]/y?+^).
Finally, for the azimuthal equidistant projection,

a^ = a,/2 and bm = fc,/2.
For an ideal point source, an ideal specular surface (and an ideal imaging

system), the specular point would be infinitely bright and infinitesimal in
extent. For slightly extended sources and surfaces that are not perfectly
smooth, the specular reflection is spread out somewhat, with a large, but finite
maximum brightness. Surfaces with slightly undulating surface microstructure
give rise to glossy high-lights [Horn, 1981].

For surfaces which do not exhibit specular reflection there often still is a
unique surface orientation which gives rise to maximum (or minimum) bright-
ness. A Lambertian surface, for example, is brightest when the light rays strike
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it perpendicularly. Suppose then that there is a particular value of brightness
which corresponds uniquely to a particular surface orientation. A singular point
is a point in the image where this value of brightness is observed. Note that
specular points are special cases of singular points. Evidently, we can deter-
mine the surface orientation uniquely at a singular point.

Singular points, by the way, were used to provide starting values in an
implementation of the characteristic strip-expansion method [Horn, 1975].
Note that information about the orientation of the surface at these special
points is implicit in the image-irradiance equation. What we gain here are
helpful initial values for the iterative method.

3.3. Minimization of errors
It helps to first consider the continuous case, ignoring for now the tesselation of
the image plane into picture cells. We try to find functions f ( x , y ) and g(x, y )
which make the errors in the image-irradiance equation small while also being
as 'smooth' as possible. We can try to minimize

e=ff{(n+n)+(g2.+g2y)+^E(x,y)-R,(f,g)Y}dxdy,

where f , , f y , gx, and gy are the first partial derivative of / and g with respect to x
and y. The errors in the image irradiance equation are weighted by the factor A
relative to the measure of departure from 'smoothness'. This factor can be
made large when the reflectance map is known accurately and the brightness
measurements are precise.

The minimization of an integral of the form

J JF(f,g,f»fy,g»gy)dxdy

is a problem in the calculus of variation [Courant and Hilbert, 1953; Hilde-
brand, 1965; Carrier and Pearson, 1976]. When the integrand depends on two
functions of two independent variables as well as their first partial derivatives,
then the Euler equations are,

Ff-9/8x(Ff,)-9/9y(Ff,)=0,

F , - 9 / f f x ( F ^ ) - 9 / 9 y ( F ^ = 0 .
Applying these formulae we obtain:

V2/ = A [E(x, y) - R,(f, g)} 9R./9f,

V^ = \[E(x, y) - R.(f, g)] 9RJ9g,

where

v^W+aW
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is the Laplacian operator. These equations will provide helpful guidelines when
we tackle the discrete case in the next section. It can be shown, by looking at
higher order variations, that if / and g obey the above partial differential
equations, then the stationary value of the sum of errors is actually a minimum.

It may also be of interest that we would have ended up with the biharmonic
operator here (instead of the Laplacian) if we had tried to minimize the sum of
squares of the Laplacian of / and g (instead of the sum of squares of the first
partial derivatives of / and g). We will not discuss why the two functions, / and
g, should be 'consistent', that is, correspond to the surface orientations of a
smooth surface.

As an extension of the above analysis we may consider the minimization of

Jj{(^+^)+(^+g?)}dxdy,

subject to the constraint
E(x,y)=R,(f,g).

Introduction of the Lagrangian multiplier A leads to the same equations as the
ones considered above. Elimination of A gives us this set of equations:

(^R,/^gm=(^RJ^f)V2g,

E(x,y)=R,(f,g).

We will not use the results of this constrained minimization exercise since we
do expect errors in the measurements of image brightness. Instead, we will set
the value of the parameter A in inverse proportion to the root-mean-square of
the noise in the image brightness measurements.

4. Proposed Algorithm and Numerical Experiments
We will construct an iterative algorithm using two kinds of constraints: one
from the image-irradiance equations and the other from the smoothness
condition. In addition, we depend on the occluding boundary to provide
boundary conditions and a few special points to supply helpful initial values.

We will have to check whether the algorithm converges. Since we do not
have a theoretical analysis of the conditions required for convergence, we
resort to numerical experimentation. With exact, complete information, we
expect that the algorithm will converge, and converge to the correct solution.
In practice there are errors, however, due both to noise in the measurements
and to discrepancies between the mathematical model and the real situation.
Further, due to obscuration, for example, the information may be incomplete.
Under these circumstances one would hope that the algorithm would be robust
enough to converge to some solution, preferably one close to the correct one.

Consequently we have carried out numerical experiments under two
different conditions: in the first case, all information given to the algorithm is
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exact: the reflectance map is correct, and complete boundary information is
available. In the second, some of the information is erroneous: the reflectance
map given may be incorrect, either because of inappropriate assumptions about
the properties of the surface material or because of incorrect information about
the position of the light source. We also may be lacking effective boundary
conditions on part of the border, perhaps because of partial obscuration of the
object by another. The algorithm would not be very useful if it did not
converge, or converged to a solution very different from the correct one, when
faced with these difficulties.

4.1. Proposed algorithm
We will use an iterative algorithm to determine surface orientations using the
image-irradiance equations and the smoothness criterion as constraints. We can
measure the departure from smoothness as follows:

s,j = [(fmj - fuf + O^i - A/)2 + (gmj - g,j)2 + (gi^i - SuW-

The error in the image-irradiance equation, on the other hand, can be stated
this way:

r,, = [E,j - R,(f,,, gy)]2,
where £y is the observed image brightness at the node (i,j), while R, is the
reflectance map with /, and g, the surface orientation components as
arguments. We will seek a solution which minimizes the sum of the error terms
over all nodes:

<'=S2(^+Ary).

The factor A weights the errors in the image-irradiance equation relative to the
departures from surface smoothness.

We can, by the way, write a formula for the error, just like the one given
above, using the components of the gradient, p and q, or the azimuthal
equidistant coordinates, a and b, instead of the stereographic coordinates / and
g. For that matter, we can do this directly with coordinates specified on the
Gaussian sphere.

We are going to differentiate e with respect to f , j and g,j (note that each /y
and gij occurs in four terms of the sum for e). We obtain,

9el9f,, = 2(/-y -/?,)- 2A[£y - R,(f,,, ft,)] 9R./9f,
9e/9g,, = 2(Si, - gt,)-2\[E,, - R,(f,,,, g,,)} QRJQg,

where /* and g* are the local averages of / and g:

ft = IA-+IJ + A/+i + /,-ij + A/-i]/4,
8ti = [Si+u + Si^i + gi-u + ̂ .j-i]/4.
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The partial derivatives of e with respect to /y and gij will all equal zero, if the
set of values we have for f , j and g,j constitute a solution to the minimization
problem. Assume that they are; then the task is to solve the resulting large,
sparse set of equations [Hildebrand, 1965; Conte and de Boor, 1972; Ham-
ming, 1972]. Iterative techniques like the Gauss-Jacobi method, the Gauss-
Seidel method, or successive over-relaxation [Carrier and Pearson, 1976, p.
277; Ames, 1977, p. 103], can be used if we first rearrange the equations as
follows:

A, = /*, + A [£y - R,(f,,, g,,)] 9R.l9f,

g,j = g*j + A[£y - R.(fij, gy)] 9RJ9g.
We can think of these equations as suggesting an adjustment of / and g, in a
direction given by the gradient of Rs, by an amount proportional to the residual
error in the image-irradiance equation. (The magnitude of the adjustment is
also controlled by the parameter A.) Further, we can see that the value for the
orientation at a point will be filled in from the surround when the gradient of
R, is zero, as happens at a singular point.

The basic idea now is that the difference between corresponding values of /
and corresponding values of g on successive iterations will decrease as we
proceed. Thus we can perhaps use the values from the rath iteration on the
righthand side to compute the values for the (ra + l)st iteration on the lefthand
side. Under certain conditions this method converges to the solution of the
original set of equations. Thus we might use the rule:

/?;1 = ft," + A [E,j - -R.W,, g?,)] 9R,/9f,

S^ = gy + A[£y - RsW,, g?j)} 9RJ9g,

where /?j and g f j are used in evaluating R, (and the partial derivatives of jR,).
To avoid a particular kind of numerical instability we resort to a slightly
different set of formulae

A" = /*/ + A[£y - iW, g,7)] W9f,

gV = g?j'1 + A[£y - R.(fV, gr,")} 9RJ9g,

where /y and g*j" are used in evaluating R, (and the partial derivatives of R,).
The flow of information when one uses this method can be illustrated schema-
tically as shown in Fig. 12. Note that the computations for a given iteration are
local. Global consistency is achieved by the propagation of constraints over
many iterations.

The numerical instability alluded to above can best be thought of in terms of
a checkerboard. On each iteration the new values for the white squares are
computed using the old values on the black squares and vice versa. Small noise
components can be amplified into a checkerboard pattern in this fashion as the
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FIG. 12. This schematic diagram shows the flow of information in the iterative computation of
surface orientation. It also suggests possible hardware implementations of the algorithm.

iterations progress. Say, for example, that the orientations ( f , g) and (/"*, g*) lie
on opposite sides of the correct solution. Then the iterative equations above
will produce an adjustment relative to ( f * , g * ) based on the error in the
image-irradiance equation at ( f , g), which goes in the wrong direction. (Fig. 13
illustrates how this can occur.) This undesirable process can be damped out by
using the local average, rather than the value at the cell itself in evaluating R,.

Using a better stencil for computing the local average improves stability too.
A stencil is a pattern of weights by which neighboring values are multiplied.
One may, for example, add (4/5) of the average of the four neighbors that
share an edge with a particular point to (1/5) of the average of the neighbors
that touch on a corner. This suggestion is based on a better discrete ap-
proximation of the Laplacian than the one we have been implicitly using here
[Richtmyer and Morton, 1967; Milne 1970; Carrier and Pearson, 1976; Ames,
1977].
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(E-R)

f *

FIG. 13. This illustration shows why the simple iterative formulae may be subject to a certain kind
of numerical instability. The correction to /* (on the right) is computed from the gradient of the
total error using the orientation / (on the left). The correction will have the wrong direction if the
minimum lies between the two.

4.2. Numerical experiments
To start off with, we will use synthetic images based on models of objects, so
that we can compare the results produced by our algorithm with the known
shape. To check that the algorithm works correctly, we will give it the exact
brightness distribution, complete boundary information, and the correct
reflectance map. Then we will see what happens if we omit some of the
boundary information, or if we estimate the light-source direction incorrectly,
or assume the wrong reflectance properties. Finally, the method is applied to
real images.

The shape information computed will be presented in two forms: as needle
diagrams and oblique views of the surface. In a needle diagram we present an
orthographic projection of the normals to the surface as they would be seen by
the viewer [Horn, 1982]. This may be the most direct way of portraying
graphically the information computed by the algorithm. The surface height
above some reference plane can be estimated by integrating this surface
orientation information. We can then show an oblique view of a network of
lines drawn over the resulting surface by intersecting it with vertical planes
parallel to the two coordinate axes. This mode of presentation is referred to as
a block-diagram in cartography [Horn, 1981].

For several of the examples we will assume that the surface is made of a
material which acts as a Lambertian reflector. A Lambertian surface is a diffuse
reflector with the property that a particular surface patch looks equally bright
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from all viewing directions and that its brightness is proportional to the
illumination falling on it. Due to foreshortening of the surface as seen from the
light source, the illumination (flux per unit area) varies as the cosine of the
incident angle, i (between the incident rays and the surface normal). For a
Lambertian surface, then, the brightness, too, will vary as the cosine of the
incident angle. For surface patches turned away from the light source, the
incident angle becomes larger than 90°, and so the cosine becomes negative.
Since brightness cannot be negative, we use the formula

max[0, cos i]
for computing brightness.

The first task is to determine the reflectance map. If we let n be a
unit-surface normal and n, a unit vector pointing in the direction of the light
source, then the cosine of the incident angle is just the dot-product of these two
vectors,

cos i = n • n,.

The expression for the unit-surface normal in terms of p and q, shown earlier,
allows one to express the cosine of the incident angle in terms of the first
partial derivatives of the surface orientation [Horn, 1977; Horn, 1981]:

cos i = [Vi+^+^vi+p^2]'
Using the coordinates of the stereographic plane instead:

^ , , [16(̂  + &g) + (4 - f - ̂ (4 - f , - g?)1
cosl [(^f+g^+fl+g^)}

If we use the azimuthal equidistant projection we have for cos i:
cos V^+fc2 cos ValT&i + sin Va^fc2 sin Va^+fr2

^ (aft + b,b)
[Vfl^^V^+fc2]'

In several of the examples we use a sphere as a test object, or an ellipsoid
obtained by anistropically scaling a sphere. To make a synthetic image we need
to know the surface orientation at each point in the image. The implicit
equation for a sphere with its center at the origin can be written

x^y^z^R^O.

Computing the gradient of the lefthand side of this equation tells us that the
surface normal at the point (x, y, z) is parallel to the vector (x, y, z} and that

9zl9x = -x/z and 9zl9y = - y / z .
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From these values of p and q, we can calculate / and g, or a and b. The
brightness at every point in the image can then be found from

E(x, y ) = max[0, cos i]

and the equations for cos (' given above.
4.2.1. Example 1. Lambertian sphere with source near the viewer

Consider a Lambertian sphere illuminated by a single, distant light source,
located near the viewer. The occluding boundary is also the self-shadow
boundary in this case. The whole occluding boundary is visible to the viewer,
while none of the shadowed areas is. The image-brightness data is derived
analytically from a model of the surface and the known reflectance properties
of a Lambertian surface. The algorithm is then applied to the synthesized
image. (Fig. 14 shows a pseudo gray-level image of the object.)

FIG. 14. Pseudo gray-level image of a Lambertian sphere illuminated by a light source near the
viewer. This is the synthetic image used as input to the algorithm.
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The discussion earlier showed that at an occluding boundary, the surface
normal is parallel to the normal to the silhouette at the corresponding point in
the image. We can therefore determine the surface orientations at the occlud-
ing boundary. This boundary information is shown in Fig. 15a in the form of a
needle diagram.

The algorithm requires at least as many iterations as there are nodes across
the image. This can be explained as follows: At a point near one side of a

I 1 l . ' , ' / . ' , '

ba

FIG. 15. Needle diagrams showing various stages of the iterative solution: (a) This is the initial
orientation array, obtained from boundary information, (b) Result after 5 iterations, (c) Result
after 30 iterations.
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FIG. 16. This shows how the root-mean-square of error in orientation decreases with the number of
iterations.

region surrounded by an occluding boundary, one needs information from the
opposite side to obtain the exact orientation. At each iteration, information
available at one point propagates only to its immediate neighbors. This means
that it takes as many iterations as there are nodes across the object for a point
near the boundary to begin to be influenced by the opposite boundary. In this
case, the number of nodes across is thirty and this implies that we may need
more than thirty iterations. Fig. 15b shows the results after 5 iterations, while
Fig. 15c is the result after 30 iterations. Fig. 16 is the root-mean-square error
(the difference between the true values of orientation and those computed by
the algorithm) plotted as a function of the number of iterations.

The error gradually decreases, and after thirty iterations, the relative error is
less than 0.01%. Fig. 17 is a view of the surface generated from the surface
orientation data that was used to make the needle diagram.

FIG. 17. The surface generated by the algorithm from the synthetic image of the sphere.
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4.2.2. Example 2. Effect of initial values
We proposed the use of orientations at singular points as initial values. It may
be desirable that until the boundary information propagates to a point,
orientation values at that point not begin to change. At a singular point, the
partial derivatives of R are always zero. This means that the constraints of the
image-irradiance equations are ineffective there. The orientations at each point
can be initialized to (0.0,0.0). The partial derivatives for that orientation
typically are non-zero, however, with the result that the iterative equations
indicate adjustments at each grid node before information from the boundary
has had a chance to propagate to the node. It is not clear if the number of
iterations required for a reasonable solution is affected adversely by this
phenomenon.

This second example illustrates the effect of initial values. An egg-shaped
object is illuminated from a direction near the extension of one of its short
axes, and the viewer is looking in the direction of the long axis. We use an egg
shape now to demonstrate that our algorithm works on objects other than
spheres. The ratio of the length of the long axis to that of the short axis is 3 in
this example. The precise position of the light source is given by (f,, g,) =
(0.5,0.0) (the angle between the incident rays and the z-axis is 53.1°).

The surface orientations on the self-shadow boundary are given initially to
simplify matters. Fig. 18 shows the resulting needle diagram and Fig. 19 the
relative errors, illustrating the utility of initial values at singular points. When
we use singular values as initial values, we get to a reasonable solution after
fewer iterations than when all points are initialized to have the orientation
(0.0,0.0). A view of the surface computed is shown in Fig. 20.

FIG. 18. The needle diagram generated for the
egg-shaped object.

ITERATIONS 100

FIG. 19. The root-mean-square error in orien-
tation for the egg-shaped object. The error is
lower after a given number of iterations when
the singular point is used to provide initial
values.
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FIG. 20. The surface generated by the algorithm from the synthetic image of the egg-shaped object.

4.2.5. Example 3. Negative Gaussian curvature
The two previous examples involved surfaces whose Gaussian curvature is
positive [Cohn-Vossen, 1952; Pogorelov, 1956; Moon and Spencer, 1969; do
Carmo, 1976]. The third example involves a hyperbolic shape, one with
negative Gaussian curvature. Unfortunately, there are no occluding boundaries
on this surface. Instead, we provide the algorithm with orientations on a closed
curve as boundary conditions. The light source is again near the viewer in this
example. Fig. 21 is the needle diagram generated for this surface.

It takes about the same number of iterations to obtain a reasonable solution
as in the first example. This result illustrates that the algorithm is not sensitive
to whether a surface has negative or positive Gaussian curvature. In other

FIG. 21. The needle diagram of the solution obtained for the hyperbolic surface.
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FIG. 22. The surface generated by the algorithm from the synthetic image of the hyperbolic
surface.

words, we can use this algorithm without paying attention to the global
characteristics of the surface, whether it be concave or convex, and whether its
surface consists of hyperbolic or elliptical points [Woodham, 1977]. Fig. 22 is a
view of the surface generated by the algorithm.
4.2.4. Example 4. Effect of incomplete boundary information

If no boundary information is available at all, then we can say very little about
the shape of the surface. We would, however, like to get some estimate of the
surface shape when only some of the boundary information is missing.

In the example shown here, we do not provide explicit boundary information
on the self-shadow boundary. There are two motivations for considering this
situation. One is that, as mentioned earlier, we cannot determine surface
orientations uniquely there anyway. The other is that it sometimes happens
that we cannot see all of the surface of an object, and we have to do without
information on part of the boundary, leaving it unconstrained. The algorithm
should try to obtain reasonable surface orientations even in situations like that
(although one might expect that there may not be a unique solution to the
shape-from-shading problem in this case).

We imagine that a Lambertian sphere is illuminated from the direction
(/»> 8s) = (0-5,0.0). No information is provided on the self-shadow boundary.
Fig. 23 shows the relative errors in the solution obtained by the algorithm,
plotted against the number of iterations.

The conclusion is that the information about orientations on the self-shadow
boundary helps the algorithm arrive at a good solution after fewer steps, but is
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N\ SELF SHADOW:
\\^-———FREE

'•̂ .̂.̂ gIVEN

FIG. 23. The root-mean-square error in orientation when boundary information is incomplete
decreases more slowly than when it is complete. A reasonable solution is obtained in both cases.

not necessary for convergence. A closed boundary does not seem to be a
necessary condition for the algorithm to arrive at a solution. If an object is
partially obscured by another, it may still be possible to obtain a 'reasonable'
solution, one which does not contradict any of the information provided by the
image.

.-—-'" 90° 95%

75° 65%

60° 32%
52.5°18%
45° (REAL)
37-5^

30° 35%

15° 65%

0° 86%

FIG. 24. The effect of inaccurate estimation of the position of the light source. The source is
actually at 45°, while the program is misled into believing it is at a variety of angles, from 0° to 90°.
The interrupted line shows a cross section through the correct solution.
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4.2.5. Example 5. Effect of error in estimating light-source position

In practice, we may not be able to determine the light-source position pre-
cisely. In this example the light-source position is given incorrectly. It is
reasonable to insist that the algorithm still work, although, of course, the
solution cannot be expected to be accurate.

A synthesized image of a sphere is made with the illumination coming from a
direction which makes an angle of 45° with the z-axis. Then the algorithm tries
to determine surface orientations under the assumption that the light source is
at some other position, ranging from 0° to 90°. As one can see from Fig. 24, an
error of 7.5° in estimating the source direction causes no more than 20% error
in surface height.
4.2.6. Example 6. Effect of error in assumed reflectance properties

In this experiment, the algorithm uses a reflectance map based on incorrect
assumptions about the reflectance properties of the surface. Egg shapes, whose
axis ratios are 5, 3, and 1 are illuminated from a light source placed near the
viewer. The surface has brightness linearly dependent on the incident angle
(rather than the cosine of the incident angle):

1 - 2i7ir.

The algorithm, however, assumes that the surface is Lambertian. The output
still resembles the correct result as shown by the cross sections in Fig. 25.

(a) (b) (c)

FIG. 25. Cross sections through shapes computed when the reflectance properties were different
from those assumed by the program, (a) Egg shape with ratio of axes equal to 5. (b) Egg shape with
ratio of axes equal to 3. (c) Egg shape with ratio of axes equal to 1. In each case the interrupted
line shows a cross section through the correct solution.
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4.2.7. Example 7. Analysis of a SEM picture

Here the algorithm is applied to a picture which was produced by a scanning
electron microscope (SEM). Such devices are described in a book by Wells
[Wells et al., 1974], and pictures made using them can be found in a number of
popular books [Scharf, 1977; Grillone, 1978] and articles [Echlin, 1968]. SEM
images are in many ways similar to images obtained in an optical system when
the light source is symmetrically distributed about the viewer. The reflectance
map is rotationally symmetric about the origin in both cases, and none of the
visible areas are shadowed. One minor difference is that, in an SEM image, a
surface patch oriented with its normal pointing at the viewer has minimum
brightness, not maximum.

The object shown in the pseudo gray-level image that appears as Fig. 26 is a
protuberance on a young leaf [Scharf, 1977, p. 96]. The reflectance map we
used at first was based on the data of Laponsky [Laponsky and Whetten, I960],

FIG. 26. A pseudo gray-level picture made from a scanning electron microscope image of a
protuberance on a young leaf of cannabis saliva indica.
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FIG. 27. The needle diagram computed for the object in the previous figure.

which suggests that secondary electron flux in a Scanning Electron Microscope
varies approximately as the secant of the incident angle. Fig. 27 is the needle
diagram which the algorithm computed, and views of the surface generated are
shown in Fig. 28.

The computed surface appears to be a bit too flat, probably as a result of
incorrect assumptions about the form of the reflectance map, as well as the fact
that we did not take into account the changes in gray-level that are introduced

FIG. 28. Various views of the surface computed from the scanning electron microscope picture.
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-2 0

FIG. 29. Cross section through the reflectance map based on the assumption that the resin droplet
is spherical. The horizontal coordinate equals V^+g2 = 2 tan ill. Also shown for comparison are
(a) the function sec i and (b) a function which equals (1 + sec i')/2 for i < 70° and saturates for larger
incident angles.

by the lithographic reproduction of the picture. The data of Miiller [Miiller,
1937] suggests that the secondary electron flux grows more slowly than the
secant of the incident angle, at least for amorphous metals. Careful measure-
ments on a more or less spherical resin droplet imaged in another picture of the
same plant confirmed this for our example. Shown in Fig. 29 is a cross section
through the reflectance map obtained from this 'calibration object'.

An approximation for the brightness, which remains finite for all incident
angles,

pad-cosi)c >

has been suggested by Bruining [Bruining, 1954]. The best fit of this function to
our data occurred for a^l. A considerably better fit was provided by a
function of the form

sec ki

for k ss 0.8. For incident angles less than 70°, however, the best fit was obtained
from

(1 - s) + s sec »'
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Flo. 30. Cross sections through the surfaces computed from the image of the protuberance using
the two reflectance functions shown in Fig. 29.

for s" |. The only remaining discrepancy results from the fact that the
observed brightness saturates at a finite value for incident angles close to 90°.
An ad hoc correction for this was incorporated in our estimate, also shown in
Fig. 29.

Shown in Fig. 30 are cross sections through two reconstructions. The upper
one (a) corresponds to the result shown in Fig. 28, while the lower one (b)
was obtained using the reflectance function (1 + sec i)/2, modified to take into
account the saturation of brightness for large incident angles. The shape
computed using the latter reflectance function is in better accord with human
judgment.

The lesson is that it is better to use a calibration object of known shape for
the determination of the reflectance map than to depend on measurements
obtained under somewhat different circumstances, or on a theoretically derived
approximation.

5. Concluding Remarks
We proposed an algorithm for computing surface orientations from shading
information using an iterative method. We then demonstrated that this al-
gorithm does successfully compute surface orientations under a variety of
conditions.

5.1. Relevance to applications in machine vision
One use of the algorithm is, of course, to compute shape from shading in a
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single image. This algorithm is especially effective in the analysis of scanning
electron microscope pictures of smooth parts of objects.

Another application is the improvement of the results produced by the
photometric stereo method. We do not need any assumptions about surface
smoothness to implement the photometric stereo method. However, when
there is noise in the measured brightness values, the computed orientations will
be in error. This error can be drastically reduced if we do introduce the
constraint of surface smoothness. If, for example, there is a dirty spot on the
object, the measured brightness values will be too low. The lookup table used
in the photometric stereo method may then not have a surface orientation
entry for these erroneous values. In this case, surface orientation can be filled
in from the neighboring points by averaging. This is the simplest use of the
method. Output from a photometric stereo system [Silver, 1980] has been
smoothed successfully using this method.

An even better way to proceed is to minimize the weighted sum of the errors
in the image-irradiance equations and the smoothness measure. The solution is
then, in effect, pulled towards each of the constraint lines of the reflectance
map and towards the local average of the surface orientations. It ends up in
some compromise position which minimizes the overall 'strain'. The weights,
by the way, can be set according to known values of noise in the measure-
ments. This method has in fact been used in some recent work on photometric
stereo. (Compare Fig. 8.2 with Fig. 8.4 in [Ikeuchi, 1981].) In the cases shown
there, the algorithm not only smoothed the output, but also extended the area
in which a solution could be found.

5.2. Relevance to basic research in machine vision

The algorithm still works reasonably when the reflectance map is only a crude
approximation. As can be seen from Example 5, if one is prepared to tolerate
errors of up to 20%, then one can be off by as much as 7.5° in estimating where
the light source is. Similarly, Example 6 shows that if this kind of error is
acceptable, it does not matter whether the surface is Lambertian or one with
somewhat different reflectance properties. Thus, if one is willing to accept 20%
estimation errors, only six or seven reflectance maps are needed for different
light-source position, multiplied by two or three to allow for different surface
materials. Note that we don't really need different reflectance maps for
different light-source azimuths, since the reflectance map can be rotated to
accommodate changes in azimuth of the light source. The nature of the
reflectance map does, however, change when the zenith angle of the light
source changes.

Propagation of constraints is a powerful method for attacking vision prob-
lems. Clarification of the constraints or relationships between neighboring
nodes often gives us the key to the solution of a problem. The propagation of
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constraints from neighboring nodes cuts down the space of possible solutions at
a node [Zucker, 1976]. In vision, the number of nodes is large and the possible
values lie in a continuous range. This means that the solution space is rather

a large. In this case, the propagation technique is more effective than the search
, technique. Even when the propagation technique cannot determine a unique

solution, it can reduce the number of possible solutions so that subsequent
1 search can be more effective [Waltz, 1975].

There are several examples in vision where this method has been employed
effectively. An iterative method is used to invert the Laplace operator in the
computation of lightness [Horn, 1974]. A pseudo-local operator is a global
operator which can be computed by iteration of a local operator because it
happens to be the inverse of a local operator [Horn, 1982]. In the computation
alluded to here, the so-called G operator (pseudo-local) calculates a lightness
value from those at neighboring points and the thresholded result of the
so-called L operator (local) applied at the corresponding point in the image.
The first stereo algorithm of Marr [Marr and Poggio, 1976] used this idea too.
Here, the 'continuity rule' is an example of positive propagation, requiring that
neighboring points have similar disparity values. The 'uniqueness rule' is an
example of negative propagation, causing the value at a node to inhibit
neighboring nodes from taking on the same value. Iterative computations
similar to the ones presented in this paper also occur in the estimation of
optical flow from image sequences [Horn and Schunck, 1981]. The shape from
regular pattern algorithm [Ikeuchi, 1980] is another example which uses a very
similar method. Needless to say, the relaxation technique [Zucker, 1976;
Rosenfeld, 1978; Hummel and Zucker, 1980; Davis and Rosenfeld, 1981] is an
implementation method for the propagation of constraints.

The propagation of constraint method is suggestive of parallel processing in a
planar computational network. The relationship between nodes is homo-
geneous. Each node connects to its neighbors in the same fashion, independent
of its position within the network. An essential operation in many of the
algorithms mentioned here is the computation of a weighted average over the
neighboring nodes. This is the kind of operation that even a simple array
processor can perform easily.
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