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Fig. 1. The definition of Time-To-Contact
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image pointsAbstract-The time-to-contact (TTC) estimation is a simple

and convenient way to detect approaching objects, potential
danger, and to analyze surrounding environment. TTC can be
estimated directly from single camera though neither distance nor
speed information can be estimated with single cameras. Tradi
tional TTC estimation depends on "interesting feature points" or
object boundaries, which is noisy and time consuming. In [13], we
propose a direct "gradient-based" method to compute time-to
contact in three special cases that avoid feature points/lines and
can take advantages of all related pixels for better computation.
In this follow-up paper, we discuss the method to deal with the
most general cases and propose a hierarchical fusion framework
for direct gradient-based time-to-contact estimation. The new
method enhances accuracy, robustness and is computationally
efficient, which is important to provide fast response for vehicle
applications.

where Xo = !(U/W) and Yo = !(V/W), which is the
focus-of-expansion (FOE) at which point the motion informa
tion is zero. When object point corresponding to FOE moves
along the direction of (U, V, W), its image projection remains
the same. The motion directions at other image points are
determined by the vector from the FOE to other image points.

A. The relationship between motion field and time-to
contactlfocus-of-expansion

If we consider only the translational model, by differentiat
ing the perspective projection equations with respect to time,
we obtain the relationship between motion field and TTC as
in equations (2).

I. INTRODUCTION

The time-to-contact (TTC) is the time that would elapse
before the center of projection (COP) reaches the surface being
viewed if the current relative motion between the camera and
the surface was to continue without changes. As shown in
figure (1), we establish a camera-oriented coordinate system,
with the origin at the COP, the Z axis along the optical axis,
and the X and Y axes parallel to axes of the image sensor. Z
is actually the distance from the center of projection (COP) to
object object. Image coordinates x and yare measured from
the principal point (foot of the perpendicular dropped from
the COP). (u,v) = (x,y) is the motion field and (U, V, W) =
(X, Y, Z) is the velocity of a point on the object relative to the
sensor (which is opposite to the motion of the sensor relative
to the object) as in figure (1). The velocity W = dZ/ dt is
negative if the object is approaching the camera.

The TTC is essentially the ratio of distance to velocity:

u

v

W (x - xo)
-Z(x - xo) = TTC

W (y - Yo)
-Z(y - Yo) = TTC (2)
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While distance and velocity can not be recovered from
images taken with a single camera without additional informa
tion, such as the principal distance and the size of the object,
the ratio of distance to velocity can be recovered directly, even
with an uncalibrated sensor.

B. Traditional methods and the limitation

Methods for estimating optical flow are iterative, need to
work at multiple scales, tend to be computationally expensive
and require a significant effort to implement properly.

(3)
1

v y = TTC
1

ux = TTC

1) Optical-flow based methods: A typical
approach [1][2][8][9][10][11] to determining the TTC is
to take advantage of the relationship between time-to-contact
and optical flow as shown in equation (2) and (3).

(1)
dZ d

TTC = -Z/- = -1/-log (Z)
dt dt e
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Fig. 2. Four cases of relative motion.
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where P = (p/!)(W/Zo), Q = (q/!)(W/Zo). Thus,

p = - jP and q = - jQ (10)
G G

The proposed methods are so-called "gradient-based" since
the matrix elements in the above equations are the function
of brightness gradient. The simpler cases (1)(11)(111) are the
special situation for case (IV) and all have closed form
solutions. The more general case (IV) requires non-linear
optimization techniques which will be proposed in the this
papers as shown in section II.

II. TIME-TO-CONTACT ESTIMATION FOR ARBITRARY
TRANSLATIONAL MOTION RELATIVE TO AN ARBITRARY

PLANE

This is the most general case as shown in figure (2) where
the translational motion needs not be in the direction of the
optical axis of the imaging system, and the planar surface
needs not be oriented perpendicular to the optical axis.

Substituting the expression for Z given by equation (5) in
expressions for u and v given by equation (2) and then insert
ing these into the brightness change constraint equation (11)
leads to

(5)

(6)

(4)

Z = Zo +pX +qY

ds d
T = s/ dt = 1/dt logee (s )

Results for the discussed cases are:

• Case (I)
Translational motion along the optical axis towards a
planar surface perpendicular to the optical axis;

2) Size-based methods: TTC can be estimated by the ratio
of the size s of the image of the object to the rate of change
of the size, as shown in equation (4).

High accuracy is needed in measuring the image size of
targets in order to obtain accurate estimates of the TTC when it
is large compared to the inter-frame interval. When image size
is about 100 pixels, and the estimated TTC is 100 frames, then
size changes by only 1 pixel from frame to frame. To achieve
even 10% error in the TTC one would have to measure target
sizes with an accuracy of better than 1/10 of a pixel. Thus
the accuracy of TTC computation based on the method is far
from satisfying.

C. Direct method for time-to-contact

In [13], for three special cases (case (1)(11)(111) as shown
in figure (2), we proposed a direct method [13] based on the
"constant brightness assumption" described by equation (11),
which needs only the derivatives of image brightness and does
not require feature detecting, feature tracking, or estimation of
the optical flow.

Define G = -W/Z (the inverse of the TTC), and G =
(xEx +yEy ) a short-hand for the "radial gradient" while Ex,
Ey, E t are the partial derivatives of brightness w.r.t. x, y, and
t. Let p and q be the slopes of the planar surface in the X
and Y directions.

• Case (II)
Translational motion in an arbitrary direction relative to
a planar surface that is perpendicular to the optical axis;

we have,

uEx + vEy + E t = 0 (11)

(7)

w ( x y)- Zo 1 - Pj - qj [(x - xo)Ex + (y - yo)Ey ] + Et = 0

Follow the previous definition for A, B, G, P, Q, the above
equation can be rewriten as:

where A = !(U/Z), B = !(V/Z), and FOE is given:

• Case (III)
Translational motion along the optical axis relative to a
planar surface of arbitrary orientation;

Xo = -A/G and Yo = -B/G (8)

C(l+X~+Y~) [G+Ex~+Ey~]+Et=O (12)

We can formulate a least squares method to find the five
unknown parameters A, B, G, P, and Q that minimize the
following error integral or sum over all pixels of a region of
interest (which could be the whole image):

1395



Parameters P, Q, and C can be solved based on the
following linear equations:

Parameters A, B, and C can be solved based on the
following linear equations:

A. Impact ofdifferent assumptions

We have discussed different computational methods based
on different assumptions. For the most general situation,
there are 3 unknown motion-related parameters, (U, V, W) =
(X, Y, Z) is the moving velocity relative to the sensor and 2
unknown object parameters, p and q, the slopes of the planar
surface in the X and Y directions.

For case (I), it is assumed U = V = 0 and p = q = o. One
unknown parameter: W.

For case (II), it is assumed p = q = o. Three unknown
parameters: U, V, W.

For case (III), it is assumed U = V = O. Three unknown
parameters: W, p, q.

For case (IV), no assumption. Five unknown parameters:
U, V, W,p,q.

For case (II), the planar surface is assumed to be perpen
dicular to the optical axis while the translational motion in an
arbitrary direction. If the translational motion is also along
the optical axis, i.e., U = 0 and V = 0, we should have
A ~ 0, B ~ 0, and Xo ~ 0, Yo ~ 0 based on equation (8),
which shows that the FOE will be around the origin.

For case (III), the translational motion is assumed to be
along the optical axis while the planar surface is of arbitrary
orientation. If the planar surface is also perpendicular to the
optical axis, we should have p / f = - P / C = 0 ~ 0 and
q/f = -Q/C = 0 ~ 0 according to equation (9)(10).

The physical model of case (I) is a special situation of cases
(II), (III) and (IV). Applying the computational method for
case (II) for case (I), we should have A ~ 0 and B ~ O.
Applying the case model (III) for case (I), we should have
P ~ 0 and Q ~ o. If we use the case model (IV) for case
(I), we should have A ~ 0, B ~ 0, P ~ 0 and Q ~ 0, which
shows that the object plane is perpendicular to the optical axis
and move along the optical axis. Thus we can identify case
(I) in real computation.

III. SEVERAL FACTORS THAT AFFECT COMPUTATIONAL
RESULTS AND HIERARCHICAL TIME-TO-CONTACT
ESTIMATION BASED ON FUSION OF MULTI-SCALED

SUBSAMPLING

After finding theoretical solutions of TTC estimation, we
further discuss several factors that would have impact on the
accuracy and reliability of the computational results, which
includes: computational models, the threshold on the time
derivative, computational areas (full images or segmentation
regions), sub-sampling factor, etc.

A. Impact ofdifferent computational models

Normally the computational model for case (IV) is the best
choice when we do not know any prior information about the
relative motion. In real application, we apply all four different
computational models to estimate TTC values. The compu
tational models for case (1)(11)(111) can provide fast close
form solutions and have other merits while the computational
method for case (IV) depends on iteration which involves
more computational load and might not converge or might

(16)

(17)L [(C + xP + yQ) * D + Et ]2

L{C(l+X~+Y~) [G+Ex~+Ey~]+Etr (13)

or

Conversely, if A/C and B /C are given, then D = G +
ExA/C + EyB / C is known and the cost function equa
tion (13) are linear in the remaining unknowns P, Q, and
C.

L [CFD + E t ]2 (14)

where F = l+xP/C+yQ/C, D = G+ExA/C+EyB/C
To find the best fit values of the five unknown parameters we

differentiate the above sum with respect to the five parameters
and set the results equal to zero. This leads to five equations
in five unknowns. The equations are nonlinear and need to be
solved numerically.

If PIC and Q/C are given, then F = 1 + xP/C + yQ/C
is known and the cost function equation (13) are linear in the
remaining unknowns A, B, and C as followed:

[~~2~: ~~;: ~~;] [~ ]
-[~~gl: ] (18)

Thus, given an initial guess PIC and Q/C, we can al
ternately solve for A, B, and C based on initial estimate
of PIC and Q/C using equation (16). Then, given the new
estimates of A/C and B /C, we can update P, Q and C with
equation (18). A few iterations of this pair of steps typically
yield a close enough approximation to the exact solution.

As before, the time to collision is the inverse of the
parameter C. If desired, the direction of translational motion,
given by (U/W)(= (A/C)/f) and (V/W)(= (B/C)/f)
can also be calculated, as can the orientation of the surface
specified by f(P/C) and f(Q/C).
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not provide reliable solutions. The estimation accuracy will
be improved if we fuse the results from four computational
models.

B. Impact of computational areas or contributed pixels

The computational methods as introduced in equa
tion (6), (7), (9), (18) need to computate the integral or sum
over all pixels of a region of interest. We can sum over either
the whole image or specified regions.

TTC computation based on whole images is somehow
similar to the weighted average of TTCs for pixels from
foregrounds and backgrounds. Typically, background objects
are static and far away. The large TTC corresponding to
background pixels makes TTC computation based on whole
images larger than based on pure foreground pixels. The
farther away the foreground is, the larger the background
fraction is, the larger the integrated TTC estimation based on
full images is.

1) Impact of threshold for time derivative of brightness:
The impact of large TTC from background pixels can be
reduced by setting a threshold on the time derivative of bright
ness, Et_Threshold, to block contributions of image pixels
with minor intensity change and to improve computational
accuracy. We tested the impact of different threshold of bright
ness derivative on TTC estimation between two continuous
frames. Results remain relatively consistent unless the Et
threshold becomes too large. (When Et threshold is too large,
most changes from frame to frame are ignored, TTC results
increase leading to wrong impression that foregrounds are far
away.) Test results show that TTC results are relatively robust
to the choices of Et_Threshold.

2) TTC computation using whole images vs. segmented
regions : Besides, segmenting the interest foreground regions
also helps to block the large TTC contributions of pixels from
background regions. In general, results based on segmentation
are more accurate than results based on full images. How much
segmentation helps to improve the accuracy of TTC results for
our test cases will be further discussed in section IV-D.

C. TTC computation using multiple subsampling scales

In our implementation, images were subsampled after ap
proximate low-pass filtering. Block averaging was used as a
computationally cheap approximation to low pass filtering.
The size of block averaging is defined as the subsampling
rate which is 1 when there is no subsampling.

We had compared TTC results with different subsampling
parameters based on four discussed computational models for
two continuous frames. The corresponding results without
subsampling are significantly larger than the results with sub
sampling, which somehow explains the necessity of applying
subsampling technique.

The dependency of TTC estimation accuracy on subsam
pIing rates is affected by the TTC values which will be
illustrated with more details when we analyze TTC estimation
results for test sequences in experiment section IV-C. As
shown in figure (7) and figure (9), when the subsampling

rate is small, the estimation error for small TTCs shows the
tendency of going up at the very end of the sequence because
of de-focus and the large motions between frames. When the
subsampling rate is high, the estimation is not reliable for large
TTCs because of limited pixel input for small foreground areas
and large subsampling rates. When both subsampling rate and
TTC values are not too large and too small, TTC results remain
relatively insensitive to the changes of subsampling rates.

D. Hierarchical Time-to-Contact Estimation based on Fusion
ofMulti-Scaled Subsampling

Because of the sensitivity of TTC estimation on subsam
pIing rate and computational models, it will help if we fuse
the TTC estimation data with different computational mod
els and at different subsampling rate. Applying TTC fusion
scheme based on multi-scale subsampling helps to improve
the robustness and reliability. In our experiment section, fusion
scheme based on simple minimization significantly improves
the estimation accuracy and reliability as in figure (7) and (9).

IV. EXPERIMENTS AND DISCUSSION

The actual relative motion between the camera and relative
to the object being imaged must be known for evaluation
purpose. Thus, we created test sequences using the stop motion
method, which is to move either the camera or an object in
regular steps. Sequences involving camera motion are subject
to small camera rotations that are hard to avoid and even
small camera rotations cause significant apparent lateral image
motions. In order to create reasonable stop motion sequences,
we choose to move objects than to move camera. We put a
toy car on the platform of a scaled optical bench with length
550mm and moved it along the optical bench by rotating a
knob. The initial position of the platform is at the far end of the
bench. Then for each step we slowly moved the toycar on the
sliding platform toward the camera by 5mm and took a picture
until the object could not be further moved because of the me
chanicallimitation. The motion increment is 5 mm in the depth
for each frame. The accuracy of each movement is O.lmm.
The optical bench ensures the 2% = (0.1/5) accuracy in the
effective TTC. Stop motion sequences produced with ordinary
digital cameras suffer from the effects of automatic focus and
automatic exposure adjustments, as well as artifact introduced
by image compression. Thus, we chose Canon Digital Rebel
xTi (EOS-400D), SLR Digital Camera Kit wi Canon 18-55mm
EF-S Lens. We took advantage of camera's remote control
function and took pictures by computer operation instead of
physically pressing a button on the camera to take pictures. We
chose manual focus option and all parameters were manually
controlled and fixed during the whole imaging process. We set
small aperture and long focal length to ensure large depth of
field.

Here below we first apply four different computational
models to estimate TTC values based on full images as
well as segmented regions for two test cases for which
the relative motion is respectively along and off the optical
axis in section IV-A and in section IV-B. The fusion-based
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TTC estimation was applied to four stop-motion sequences
whose translational motion is off the optical axis and a real
video sequence as in section IV-C. The stop-motion sequences
include one side-view sequence as shown in figure (5), and
three front-view sequences in figure (8) that are different in
the angle between the optical axis and the relative motion.
Real video sequences shown in figure (10) is taken with a
camera mounted on an automobile driven around Cambridge,
Massachusetts. The data has been provided by the test vehicles
of DARPA challenges competition.

A. Direct TTC computation for sequence whose translational
motion is along the optical axis

The first test sequence is for translational motion along the
optical axis. Figure (3) are the sample frames @ sequence 1,
16, 31, 46, 61, 76 from total 81 frames.

We compute TTC results based on both the whole images
and the labeled regions in figure (3) at subsampling rate 2 x 2
according to four different models as shown in figure (4). The
dashed black line shows the theoretical truth value. The Cyan
lines are the results based on segmented regions.

••

TABLE I
TTC ESTIMATION ERROR(PERCENT) FOR SEQUENCE IN FIGURE (3)

method fulllcase(I) fulllcase(II) fulllcase(III) fulllcase(IV)
avg 53.41 1.40 -4.65 1.34
avg 54.60 2.57 13.06 2.52

method reg!case(I) reg!case(II) reg!case(III) reglcase(IV)
avg 60.44 -0.59 -5.64 -.61

avg(abs) 61.96 2.83 15.12 3.18

The comparison between TTC results based on both full
images and segmented areas is shown in table (I). The TTC
and its deviation results are very encouraging. The real object
is not completely planar. However the estimation results based
on planar-object-computation model are still very satisfactory.
Results for case (II) are very ideal even if the front view of
the toy bus is not completely planar and perpendicular to the
optical axis (assumption for case (II)). Our proposed method
for case (IV) provides the most satisfactory performance. The
results for case (I) and (III) are not ideal because we do not
have a systematic method to ensure that the direction of object
movement on the optical bench is completely along the optical
axis for our camera. It shows that TTC estimation is more
robust to object orientation than moving direction.

Fig. 3. Sample frames and their segmentation for a stop-motion image
sequence, newCam_Bus_Front_5mm (81 frames). Frame seq: 1, 16, 31,46,
61,76.
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B. Direct TTC computation for sequence whose translational
motion is off the optical axis

The second test sequence is for translational motion in
arbitrary direction, the most general situation. The sequences
are the images of the side view of a toy car moving in a
direction with an angle with the optical axis. Figure (5) are
the sample frames @ sequence 1, 21, 41, 61, 81, 101 from
total 104 frames. Figure (6) shows the TTC estimation results
as subsampling rate 2 x 2 according to four methods.

Fig. 5. Sample frames and their segmentation for a stop-motion image
sequence, newCam_side_slantlO_5mm_day_hf (104 frames). Frame seq: 1,
21, 41, 61, 81, 101.

Similarly, the case (II)(IV) produce better results than for
case (1)(111), and results for four cases based on segmentation
are better than results based on the full image. For case (II) and
(IV), results based on segmentation are quiet close to the truth

case (IV)case (III)case (II)case (I)

Fig. 6. The comparison of TTC computation based on the whole image and
the segmented area for different cases at subsampling rate 2 x 2 for sequence
(newCam_side_slantl0_5mm_day_ht). The horizontal axis shows the frame
number; the vertical axis shows the TTC. TTC thin lines: based on the whole
image. TTC thick line: based on segmented areas. Dashed black line: TTC
Truth value.

Among four models, the case (II) and case (IV) produce
very accurate results, no matter when we use the whole
image or the segmented regions. Iteration in case (IV) takes
around one to five cycle before results converge. The algorithm
produced TTC values that dropped linearly as expected. Even
the simplest model for case (I) provides ideal results when the
object is getting close to the camera, which is very important
since we need high accuracy of TTC estimation when TTC
becomes smaller and situation becomes more dangerous.

For case (I) and (III), they show similar trend. The detail
deviation of different TTC results from the truth value is
listed in the table (I), including the average based on original
deviation and the absolute value of deviation. The best result
is for case (II) with segmented region. The average TTC
estimation error based on segmented region for case (IV) is
0.61% and 3.18% (the average of error itself and its absolute
value) for case (IV).

Fig. 4. The comparison of TTC computation based on the whole image and
the segmented area for different cases at subsampling rate 2 x 2 for sequence
(newCam_Bus_Front_5mm). The horizontal axis shows the frame number;
the vertical axis shows the TTC. TTC thin lines: based on the whole image.
TTC thick line: based on segmented areas. Dashed black line: TTC Truth
value.
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is not possible because of the coarse quantization of the
manual estimates. The size-based TTC estimation results are
much more noisy than our estimation. The size-based TTC
estimation between frames 100-200 vary significantly from our
results. The difficulty with manual estimation of the TTC once
again illustrates that the TTC algorithm presented here works
with remarkably small image motions. These results show the
efficiency of our algorithm for different setup and different
lighting situations.

D. TTC computation using whole images vs. segmented re
gions

Our test sequences are produced by the Canon camera
with the same parameters. For sequences in figure (3), the
intensities of background pixels are quiet similar, and the
threshold of time derivative works very well in reducing the
impact of background pixels. TTC estimation with four models
based on both full images and segmentation are very similar as
shown in figure (4) and table (I). But for the case of arbitrary
movement in figure (5), results based on full images as shown
in figure (6) are not as ideal as for the movement close to the
direction of the optical axis. Segmentation helps to improve
the accuracy of TTC estimation, TTC performance is not very
sensitive to segmentation errors. We applied two segmentation
scheme for sequence in figure (5), and their TTC estimation
is quite similar as shown in figure (7) and table (II).

In the case of these real world video sequences, the TTC
estimated by the algorithm generally tended to be somewhat
lower than that estimated manually. This is because faster
moving parts of the image corresponding to nearby objects
contributed to the result. This effect is reduced through seg
mentation. TTC estimation based on the labeled regions are
larger than based on whole image as shown in the comparison
between figure (11)(b2) and (bl).

3$":"".._...._"...1O_smm_d~"<'_M"".(O_'SO)1.2.4 ••

(a) sub:l, 2, 4, 8 (b) sub:16, 32, 64 (c) fusion (a)(b)

Fig. 7. The comparison of TTC fusion r~sult with result~ at different
subsampling rate based on given segmentatIon, hand labehng and aut.o
segmentation, for sequence (newCam_side_sl~nt10_~mm_day_ht). The hon
zontal axis shows the frame number; the vertIcal aXIs shows the TTC. TTC
dotted lines: results at different subsampling rates for segmented areas. TTC
thick line: fusion results. Dashed black line: TTC Truth value. Top row: results
for segmentation based on hand labeling. Bottom row: results for segmentati?n
based on auto segmentation. Left/Middle column: TTC results ~omputed wIth
different subsampling rates. Left: 1 x 1, 2 x 2, 4 x 4, 8 x 8. MIddle: 16 x 16,
32 x 32, 64 x 64. Right column: Fusion results based on top row and center
row.

3$":"".._...._"...1O_smm_d~"<'_M"".(O_'SO)1.2.4 ••

method case-II sub2 case-IV sub2 regl/fuse reg2/fuse
avg 16.59 11.84 4.88 3.24

avg(abs) 16.59 11.96 5.21 3.96

TABLE II
TTC ESTIMATION ERROR(PERCENT) BASED ON SEGMENTATION FOR

SEQUENCE IN FIGURE (5)

value. The average TTC estimation error based on segmented
region for case (IV) is 11.84% and 11.96% (the average of
error itself and its absolute value).

C. TTC fusion based on multiple-scale subsampling

The left and center columns in figure (7) show the TTC
results based on two different segmentation schemes according
to case(IV) model when we use different subsampling rates
at 1 x 1, 2 x 2, 4 x 4, 8 x 8, 16 x 16, 32 x 32, 64 x 64.
The fusion result based on simple minimization operation as
in section III-D is shown in the right column in figure (7).
For hand-labeling segmentation scheme as shown in the top
row of figure (7), the average TTC estimation error based
on segmented region for case (IV) is 4.88% and 5.21%
(the average of error itself and its absolute value). For auto
segmentation scheme as shown in the bottom row of figure ~7),

the average TTC estimation error based on segmented regIon
for case (IV) is 3.24% and 3.96% (the average of error itself
and its absolute value). The details of performance evaluation
in table (II) show the advantages of fusion.

We have applied three other stop-motion sequences corre
sponding to general situation where the relative motion are
at different angle toward the cameras in order to test the
robustness of the algorithm . The initial sequences are shown
in figure (8) while their fusion results are shown in figure (9).
TTC estimation for the side-view sequence is more accurate
than for three front-view sequences since the side-view of toy
bus has larger flat areas than for the front-view sequences.

Figure (11) shows the TTC estimation results based on
multi-scale fusion according to our proposed gradient-based
TTC computation (case model 2). Figure (11) (al) and (a2) are
TTC estimation at multiple subsampling rates (1 x 1, 2 x 2, and
4 x 4) respectively based on the whole images and segmented
regions. Figure (11 )(b1) and (b2) are corresponding fusion
results based on (al) and (a2).

Our TTC results agree with visual estimates of vehicle
motion and distances. The driver appeared to initially brake so
as to keep the TTC more or less constant. The vehicle was then
brought to a complete halt (at which point the computation of
the TTC become unstable since C approached zero).

Unfortunately, the actual "ground truth" is not known in
this case. To evaluate the performance of TTC estimation, we
estimate TTC values based on traditional size-based method.
We manually measure the sizes of objects in the images and
estimate the TTC using equation (4) which are represented by
green circles for comparison in figure (11.

Graphs of the TTC from our algorithm and the manually
estimated TTC generally agree, although detailed comparison
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v. CONCLUSIONS

We have proposed a method to determine TTC using time
varying images, which can also be used in advanced automa
tion, automated assembly and robotics, where parts need to
be moved rapidly into close physical alignment while at the
same time avoiding damage due to high speed impact.

Our proposed "direct method" operates directly on the
spatial and temporal derivatives of brightness, does not depend
on the computation of the optical flow as an intermediate
result, and does not require feature detection/tracking.

For situations with specific motion, TTC can be estimated
based on the full images without any segmentation. In practice,
some form of image segmentation may be useful in sup
pressing contributions from image regions moving in ways
different from those of the object of interest. For applications
with general relative motion, the final performance is robust
to segmentation error. The multi-scale based fusion scheme
increases the robustness to measurement error and parame
ter choices. In sum, our proposed method has low latency,
avoids the computational load of calibration, and significantly
improves the accuracy and robustness of TTC estimation.
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(107 frames). Frame seq: 1, 21, 41, 61, 81, 101.

Fig. 10. Sample frames and their segmentation for a stop-motion image
sequence, camera3CUT1-horn(93 frames). Frame seq: 100, 159, 218, 277,
336,395.

[1] F. Meyer, "Time-to-collision from First-Order Models of the Motion
Field", IEEE Transaction on Robotics and Automation, Vol.10, 1994,
792-798.

[2] F. Meyer, P. Bouthemy, "Estimation of Time-to-collision Maps from
First Order Motion Models and Normal Flows", ICPR1992, 78-82.

[3] B.K.P. Horn and S. Negahdaripour. Direct Passive Navigation, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI
9, No.1, January 1987, pp. 168-176.

[4] B.K.P. Horn and EJ. Weldon. Jr. Direct Methodsfor Recovering Motion,
International Journal of Computer Vision, Vol. 2, No.1, Jun. 1988, pp.
51-76.

[5] S. Negahdaripour and B.K.P. Horn. A Direct Method for Locating the
Focus ofExpansion, Computer Vision, Graphics and Image Processing,
Vol. 46, No.3, June 1989, pp. 303-326.

[6] B.K.P. Horn. Parallel Analog Networks for Machine Vision, in Artificial
Intelligence at MIT: Expanding Frontiers, edited by Patrick H. Winston
and Sarah A. Shellard, MIT Press, Vol. 2, pp. 531573, 1990.

[7] I.S. McQuirk and B.K.P. Horn and H.-S. Lee and J.L. Wyatt. Estimat
ing the Focus of Expansion in Analog VLSL International Journal of
Computer Vision, Vol. 28, No.3, 1998, pp. 261-277.

[8] E. De Micheli and V. Torre and S. Uras. The Accuracy of the
Computation ofOptical Flow and ofthe Recovery ofMotion Parameters,
IEEE Transactions on PAMI, Vol. 15, No.5, May 1993, pp. 434-447.

[9] T.A. Camus. Calculating Time-to-Contact Using Real-Time Quantized
Optical Flow, Max-Planck-Institut fur Biologische Kybernetik, Technical
Report No.14, February, 1995.

[10] P. Guermeur and E. Pissaloux. A Qualitative Image Reconstruction from
an Axial Image Sequence, 30th Applied Imagery Pattern Recognition
Workshop, AIPR 2001, IEEE Computer Society, pp. 175181.

[11] S. Lakshmanan and N. Ramarathnam and T.B.D. Yeo. A Side Collision
Awareness Method, IEEE Intelligent Vehicle Symposium 2002, Vol. 2,
pp. 640645, 1721 June 2002.

[12] H. Hecht and G.J.P. Savelsbergh (eds.). Time-To-Contact, Elsevier,
Advances in Psychophysics, 2004.

[13] Berthold Horn, Yajun Fang, Ichiro Masaki, "time-to-contact Relative to
a Planar Surface", Proceedings ofIEEE Intelligent Vehicles Symposium,
2007.

[14] Yajun Fang, Berthold Horn, Ichiro Masaki, "Systematic information
fusion methodology for static and dynamic obstacle detection in ITS,"
15th World Congress On ITS, 2008

(b2)

(c) fusion (a)(b)

newCllm;JSOslanl2S_'tonl_Smm1-1-107e'''3-noscale(ong-3S01-'USlon1-2-.1-a-16-n.

1••• :~~(m")lW9IefI'.letfI)(%""7S8107S"1

(a2)

(b) sub:16, 32, 64

(bl)

(a) sub: 1, 2, 4, 8

U
-"""--~-""-"i
~ r

I· J
.~

1«1 200 HI "' _ Q)

(al)

Fig. 9. Multiscale-based TTC fusion results based on given segmentation
for sequences (newCam_slant_front_5mm), (newCam_slant15_front_5mm),
(newCam_slant25_front_5mm) in figure (8). The horizontal axis shows the
frame number; the vertical axis shows the TTC. TTC dotted lines: results
at different subsampling rate for segmented areas. TTC thick line: fusion
results. Dashed black line: TTC Truth value. (a)(b) TTC results computed
with different subsampling rates. (a) 1 x 1, 2 x 2, 4 x 4, 8 x 8. (b) 16 x 16,
32 x 32,64 x 64. Dashed black line: TTC Truth value. (c) Fusion results based
on (a) and (b). The three rows respectively correspond to three sequences in
figure (8).

Fig. 11. The comparison of TTC fusion results and traditional size-based
TTC estimation (camera3CUT1-horn). The horizontal axis shows the frame
number; the vertical axis shows the TTC. (a1)(a2) TTC dotted lines: TTC
results computed at subsampling rates 1 x 1, 2 x 2, 4 x 4, 8 x 8. (a1) Results
based on full images. (a2) Results based on labeled regions. (b1)/(b2) Blue
lines: Fusion results based on (a1)/(a2) respectively. Green circle: size-based
TTC measurement.
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