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Abstract
Thc method described here for recovering lhe shape of a surface from a shaded image can deal with complex,
wrinkled surfaces. Integrability can be enforced easily because bath surface height and gradient are represented.
(A gradient field is integrable ir it is thc gradient of süme surface height function.) Thc robustness of the method
sterns in part from linearization of the reflectance map about the curren! estimate of thc surfacc orientation at
each picturc cell. (Thc reflectance map gives the dependence of scene radiance on surface orienralion.) The new
scheme can find an exact solution of a given shape-from-shading problem even though a regularizing term is in
cluded. The reason is Ihal the penalty term is needed only to stabilize Ihe iteralive scheme when it is far from
the correet solulion; il can be turned off as the solution is approached. This is arefleetion of the fact that shape
from-shading problems are not il1 posed when boundary condilions are available, or when the image contains singular
points.

This' article includes a review of previous work on shape from shading and photoclinometry. Novel features
ofthe new scheme are introduced one at a time to make it easier to see what each contributes. Included is a discus
sion of implementation details that are important if exact algebraic solutions of synlhetic shape-from-shading prob
lems are to be obtained. The hope is that better performance on synthetic data will lead to better ~rformance

on real data.

I Background

The firSI method developed for solving a shape-from
shading problem was restricted to surfuces wilh special
reflecting properties (Rindfleisch 1966). For the sur
faces that Rindfleisch considered, profiles ofthe solu
tion can be obtained by integrating along predetennined
straight Iines in the image. The general problem was
formulated and solved later (Horn 1970, 1975), using
the mcthod of characteristk strip expansion (Garabe
dian 1964; John 1978) applied to the nonlinear first
order partial differential image irradiance equarion.
When Ihe light sources and Ihe viewer are far away from
the scene being viewed, use of the reflectance map
makes the analysis of shape-from-shading algorithms
much'easier (Horn 1977; Horn and Sjoberg 1979).
Several iterative schemes, mostly based on minimiza
tion of some functional containing an integral of the
brightness error, arose 1ater (Woodham 1977; Stral 1979;
Ikeuchi and Horn 1981; Kirk 1984, 1987; Brooks and
Horn 1985; Horn and Brooks 1986; Frankot and
Chellappa 1988).

The new melhod presented here was developed in
pan as a response to recent attention to the question
of integrability' (Horn and Brooks 1986; Frankot and
Chellappa 1988) and exploils Ihe idea of a coup1ed
system of equations for depth and slope (Harris 1986,
1987; Horn 1988). iI borrows from well-known varia
tional approaches to the problem (Ikeuchi and Horn
1981; Brooks and Horn 1985) and an exisling leaSI
squares method for estimating surface shape given a
needle diagram (see Ikeuchi 1984; Horn 1986, eh. 11;
and Horn and Brooks 1986). For one choke of
parameters, the new mcthod becomes simi1ar to one
of the first iterative methods ever developcd for shapc
from shading on a regular grid (Strat 1979), whi1e it
degenerales into another well-known method (Ikeuchi
and Horn 1981) for a different choke of parameters.
If Ihe brightness error term is dropped, Ihen it bccomes
a surface interpolation method (Harris 1986, 1987). The
computational effon grows rapidly with image sizc, so
the new method can benefit from proper multigrid im
plementation (Brandt 1977, 1980, 1984; Brandt and
Dinar 1979; Hackbush 1985; Hackbush and Trouenberg
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1982), as can e:ustmg iterative shape-from-shading
schemes (Terzopolous 1983, 1984; Kirk 1984, 1987).
Alternalively, one ean apply so-called direcl methods
for solving Poisson's equations (Simchony. Chellappa
and Shao 1989).

Experiments indieate thai linear expansion of the
reflcctance map about the current estimate ofthe sur
face gradient leads to more rapid convergeoce. More
importantly, this modification orten allows Ihe scheme
10 converge when simpler schemes diverge, or gel stuck
in !ocal minima ofthe functional. Mosl exisling iterative
shape-from-shading methods handle only re!alively
simple surfaees and so eould benefit from a retrofil of
this idea.

(.)

«)

The new scheme was tested on a number of synthetic
images of increasing complexily. including some
generated from digital tenain models of steep. wrinkled
surfaces. such as a glacial eirque with numerous gullies.
Shown in figure I(a) is a shaded view of a digital ter
rain model, with Iighting from the North.....csl. This is
the input provided 10 the algorithm. The underlying
231xl78 digital terrain model was conSlructed from a
detailed contour map, shown in figure 2. of Hunting
Ion ravine on Ihe eastern slopcs of Mount Washington
in the White Mountains of New Hampshire.~ Shown
in figure I(b) is a shaded vicw of the same digital ter
rain model with lighting from the northeas!. This is
/lot aV'ailable 10 the algorithm, but is shown here 10 make

(b)

(d)

fig. 1. RttoroSHuC1ion of surfacc from shaded image. See 1C:Jl1.
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2 Review of Problem Formulalion

(I)

(2)
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not made in an optimal way. Similarly, these details may
perhaps be of lesser importance for real images, whcre
other error sources eould dominate.

In the next few sections we review image formation
and other elementary ideas underlying the usual for
mulation of the shape-from-shading problem.
Photoclinometry is also brietly rcviewcd for the benefit
01" researchcrs in machine vision who may not be
familiar with this field. We then discuss both the
original and the variational approach to the shape-from
shading problem. Readers familiar wilh thc basic con
cepts may wish to skip over this material and go directly
to section 5, wherc the llew scheme is derived. For addi
tional delails see chapters 10 and II in Robm Vision
(Horn 1986) and the collection of papers, Slwpe jrom
Slwdillg (Horn and Brooks 1989).

The shape-from-shading problem is simplified if we
assume that the depth range is small comparcd with
thc distallee ofthe scene from the vicwcr (which is oflen
thc case whcn we have a narrow rield of view. that is,
whctl wc use a telephoto lcns). Then we have

for some constant 2 0• so that the projcctioll is approx
imately orthographie. In this ease il is eotlvenient to
reseale the image coordinates so that we ean write x
= X and y = Y. For work on shape from sh:tding it
is also convenicnt to use z. heighl above some reference

2.1 !mage Projeclioll (Im! Image 1rradiwlcc

For many problems in maehinc vision it is eonvenient
\0 use a camerfl-cemered coordinate system with the
origin aL the center of projection and the 2-axis aligned
wilh thc optical axis (the perpcndicular from the eentcr
01" projection to the image plane)~. We can align the X
and Y-axes with the image plane x- and y-axes. Let the
prillcipaf dis/(Jl1ce (that is, the perpendicular distance
from the center of projection to the image plane) bc
;; and let the image plane be reficcted through the center
or projcction so as to avoid sign reversal of the coor
dinates. Then the perspective projection equations are

Ag. 2. ConlOur map from which Ihc dilliwl lerrain model us.:d 10
sylllhcsizc fillurcs l(a) and (b) "'as inlcrpolalcd. The surfacc \\"a,
modclcd as a lhin pinte conSlrnincd 10 pass lhrough the contours at

lhe spccificd e1cv;llions. The intcrpolating surfacc WJS found b)' solv
ing lhe biharll10nic equalion. as describcd at lhe end of scclion 5.4.

apparent features of the surface thai may not stand out
as weil in thc other shadcd view. Figurc l(c) shows a
shaded view ol' the surl'ace reconstructed by thc
algorithm, with Iighting from the northwest-it matches
Figure I(a) exactly. More importantly, the shaded view
of the reconstructed surface with lighting from the
nonheast, shown in figure l(d), matches figure I(b)
cxactly also.3

With proper boundary conditions, thc new schcme
recovcrs surface orientation exUf..·/!y whcn prcscnled
with noise-free synthetic scenes4. Previous iterative
schemes do not find the exact solution, and in laet
wander away from the correet solution when it is used
as the initial guess. To obtain exact algebraie solutions,
seveml details of thc implcmcntalion have to be eare
fully thoughl through, as discussed in section 6. Sim
ple surfaces are casier to process-with good resuhs
cven when seveml ol' the implcmentation choices are
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where d is the diameter of the Jens aperture, fis Ihe
principal distance, and the off-axis angle a is given by

(5)
0,

q =oy
02
oxp

first partial derivatives be continuous, and some even
require that second partial derivatives exist. The exis
tence and continuity of derivatives lends a cerrain
"smoothness" to the surface and allows us to construct
local tangent planes. We can then talk about the local
surface orientation in terms of the orientation of these
tangent planes.

There are several commonly used ways of specify
ing the orientation of a planar surface patch, including:

• Unit surface normal ii (Horn and Brooks 1986)
• Point on the Gaussian sphere (Horn 1984)
• Surfacc gradient (p, q) (Horn 1977)
• Stereographic coordinates if, g) (Ikeuchi and Horn

1981)
• Dip and strike (as defined in geology)8
• Luminance longitude and latitude (as defined in

astrogeology)9
• Incident and emittance angles (i and e)10

For our purposes here, thc componcnts of the surface
gradient

will be most directly useful for specifying surface
orientation.

We can convert between different representations
casily. For example, suppose that we are to determine
the unit surface normal given the gradient components.
We know Ihat ifwe move a small distance ax in x, then
the change in height is oz = pax (since p is the slope
of the surface in the x direction). Thus (I, 0, p)T is a
tangent to !he surface. If wc movc a small distance oy
in y, then the change in height is öz = q oy (since q
is the slope of the surface in the y direction). Thus (0,
I, ql is also a tangent to the surface. Thc normal is
perpendicular to a11 tangents, Ihus parallel to the cross
product of these particular tangcnts, that is parallel to
(-p, -q, I)T. Hence a unit normal can be written in
the form

(3)

(4)
Itana =-,Jx2 +y2
f

plane perpendicular to the optical axis, rather than the
distance measured along thc optica1 axis from the center
of projection.

If we ignore vignetting and other imaging system
defects, then image irradiance E at the point (x, y) is
related to scene radiance L at the corresponding point
in the scene by (Horn 1986).

, [dJ 2E=L- - cos4 a4 f .

Accordingly, image irradiance6 is a multiple ofthe scene
radiance, with Ihe factor of proportionality depending
inverselyon the square of Ihe f-number.' If we have a
narrow field of view, thc dcpendence on the off-axis
angle a can be neglected. Allernatively, we can nor
malize the image by dividing the observed image irra
diance by cos4 a (or whatever Ihe actual vignetting func
tion happens to be).

We conclude from the above that what we measure
in the image is directly proportional to scene radiance,
which in turn depends on (a) the strength and distribu
tion of illumination sources, (b) the surface micro
structure, and (c) surface orientation.

In order to be able to solve the shape-from-shading
problem from a single image we must assume that the
surface is uniform in its reflecting properties. If we also
assume that the light sources are far away, then the irra
diance of different parts of the scene will be approx
imately the same and the incident direction may be
taken as constant. Finally, ifwe assume that the viewer
is far away, then the direction to the viewer will be
roughly the same for a11 points in the scene. Given the
above, we find Ihat the scene radiance does not depcnd
on the position in space of a surface palch, only on its
orientation.

Note that this assumes that the z-component ofthe sur
face normal is positive. This is not a problem since we
can only see surface elements whose normal vectors
point within 1r/2 of thc direction toward the viewer
other surface elements are turne<! away from the viewer.

2.2 Specifying Sulface Orientatioll

Methods for recovering shape from shading depend on
assumptions about the continuity of surface height and
its partial derivatives. First of a11, since shading depends
only on surface orientation, we must assume that the
surface is continuous and !hat its first partial derivatives
cxist. Most formulations implicitly also require that the

n ---r,=,=~=::i' (- p. - q. I)'
,JI+p2+ q2

(6)
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2.4 Image Irradiance Equation

We are now ready to write the image irradiance
equation

We can use the same notation 00 specify the direc
tion to a collimated light source or a small ponion of
an extended source. We simply give the orientation of
a surface element that lies perpendicular to the inci
dent light rays. So we can writell

E(x, y) = ~R(p(x, Y), q(x, y)) (9)

as long as the numerator is positive, otherwise R(p, q)
=0.

We can show the dependence of scene radiance on sur
face orientation in the form of a reflectance map R(p,
q). The reflectance map can be depicted graphically
in gradient space as aseries of nested contours of con
stant brightness (Horn 1977, 1986).

The reflectance map may be determined experimen
taUy by mounting a sampie of the surface on a
goniometer stage and measuring its brightness undcr
the given iIluminating conditions for various orienta
tions. Ahernatively, one may use the image ofa calibra
tion object (such as a sphere) for which sunace orien
tation is easily ca1culated at every point. Finally, a
reflectance map may be derived from a phenomeno
logical model, such as that of a Lambenian sunace.
In this case one can integrate the prodoct of the bidirec
tional refleetance distribution fimetion (BRDF) and the
given distribution of source brightness as a function
of incident angle (Horn and Sjoberg 1979).

An ideal Lambertian surface illuminated by a single
point source provides a convenient example of a reflec
tance mapl3. Here the scene radiance is given by R(p,
q) = (Eohr) cos i, where i is the incident angle (the
angle between the surfitce normal and the direction
toward the source), while Eo is the irradiance from the
source on a surface oriented perpendicular to the inci
dent rays. (The above formula only applies when i :s:
-rfl; the scene radiance is, of course, zero ror i > -rfl.)

Now cos i = n's,so

for same PI and 91"

2.3 Reflecrance Map

(10)E(x, y) = R(P(x, y), q(x,)'))

E(x, y) = R(,.<x, y), l~X, y» (11)

2.5 Reflectance Map Linear in Gradienl

where p "" z" and q = Zy are the first partial
derivatives of z with respect to x and y. This is a first
order partial differential equation; one that is Iypically
nonlinear, because the reflectance map in mOSI cases
depends nonlinearly on the gradient.

or

where E(x, y) is the irradiance at the point (X, y) in
the image, while R(p, q) is the radiance at the cor
responding point in the scene, at which p = p(x, y)
and q = q{x, y). The proponionality factor f3 depends
on the f-number of the imaging system (and may in
c1ude a scaling factor that depends on the units in which
the instrument measures brighlness). h is customary
to rescale image irradiance so that Ihis proportionality
factor may be droppcd. If the reflectance map has a
unique global extremum, for example. then the image
can bc normalized in this fashion, providcd that a point
can be located that has the corresponding surface orien
tation. l •

Scene radiance also depends on the irradiance of
the .scene and a reflectance factor Ooosely called albedo
bere). These faetors of proportionality can be combined
into one that can be laken care of by normalization of
image brightness. Then only the geometric dependence
of image brighmess on surface orientation remains in
R(p, q), and we can write the image irradiance equa
tion in the simple form

Viewed from a sufficiently great distance, the material
in the maria of the moon has the interesting property
that its brightness depends only on luminanee Iongitude,
being independent of luminance latitude (Hapke 1963,
1965). When luminance 10ngitude and latitude are
related to the incident and eminance angles, il is fouod
that longitude is a funetion of (cos i/cos e). From the

(7)

1 + PIP + qlq (8)

+p1 +q2.JI+p:+q:

,7=~='"(-p" -q" I)T
JI+p:+9:

E"
-r .J I

s =

R(p, q)
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10 obtain

(19)I,. = z,. - cg'(n - cy).

2.6 Low Gradiem Termi" ami Oblique JIlwllilla/ioll

z(x, y) = z(x, y) + g(n - cy) (18)

for an arbitrary function g! This is true because

z" "" z" + sg '(sx - cy)

ep+sq=cp+sq (20)

where p = i" and q = z,. It follows that R(p. q) =
R(p, q). This ambiguity ean bc removcd if an initial
cur\'e is given (rom which the profiles can be staned.
Such an initial curve is lypically nOI available in prnc
tice. Ambiguity is nOI restricted 10 the special ease of
a reflectance map!hat is linear in thc gradient: Withoul
additional constrainl shape-from-shading problems
typically da not have a unique solution.

so

Note that we obtain profiles of the surfaee by inle
grating along predetermined straight lines in the im
age. Each profile has its own unknown constam of in
tegralion. so there is a great deal of ambiguity in Ihe
recovery of surface shape. In fact, if z(x. y) is a solu
tion, so is

(16)

(13)

(14)

R(p, q) = f(ep + sq)

cp + sq "" rl(E(x, yn
The slopc in the image direction (e. s) is

for same functionfand some coefficients c and s. 80th
Lommel-Sceliger"s and Hapkc's funetions fit this mold
(Minnaert 1961; Hapke 1963, 1965). [For a few other
papers on the refleeting properties of surfaces, see
(Hapke 1981, 1984; Hapke and WeHs 1981) and the
bibliography in (Horn and Brooks 1989).] We can,
without lass of generality, arrange for Cl + SI = 1.1'

If the functionfis continuous and monotonie.li wc
can find an inverse

111 "" cp + sq "" I rl(E(x, y» (15)
.JC2 +S2 .JCZ+s2

Wc can imegralell oul this slope along the line

xm "" Xo + cE" 'and ym = )'0 + sE"

above we see thai cos i = ii . S, while cos e = ii . V,
where v = (0. 0, I)T is a unh veclor in the direction
toward the viewer. Consequently,

cosi n's I
--=-= (I+Psp+qsq) (12)
cose n'Y ./1 +p}+q}

Thus (cos ilcos e) dcpcnds linearlyon the gradient com
ponenls p and q, and we can write

(17)z(!) = z, + I r' r' [E(x(,), y(,lll d,
./ c2 +sd o

An extension of the above approach allows one to take
into aecount perspcctive projection as weil as finite
distance to the light souree (Rindfleisch 1966). Two
changcs need to be made; onc is that the reflectance
map now is no longcr independcnt of image position
(sincc the direetions 10 the viewer and the sourcc vary
signifielmtly); and the other is thaI the integral is for
the logarithm of thc radial distance from the center of
projeetion, as opposed to distance measured parallel
10 the optieal axis.

The above was thc first shapc-from-shading or
photoclinomctric problem evcr solved in other Ihan a
heurislie fashion. The original formulation was eon
siderably more eomplex than describcd above, as the
resull of the use of full pcrspcclivc projeclion, the lack
ofthc nOlion of anYlhing like the rcflectance mup, and
the use ofan objccl-cemercd coordinate system (Rind
fleisch 1966).

If we are looking at a surfacc where the gradient (p.
q) is smal!, we ean approximale the refleetance map
using series expansion:

R(p, q) ~ R(O, 0) + pRr(O, 0) + qR,,(O, 0) (21)

This approach docs not work when Ihe rcflcet:mee mup
is rotationally symmelrie, sinee thc first-order terms
then drop out lS• If the illuminution is oblique. however,
we can apply the method in the previous section 10 get
a first cstimate of the surface. Letting c = Rp(O, 0).
.\" = Rq(O, 0) and

r' (E(x, Yll = E(x, y) - R(O, 0) (22)

wc find that
I

,(0 = Z, + --n~~~o;;=~
.J R~(O, 0) + R~(O. 0)

J:(E(X(,), )~,ll - R(O, Oll'" (23)

(For a related frcquency domain approach sec (pentland
1988.)



One might imagine that the above would provide a
good way to get initial conditions for an iterative shape
from-shading method. Unforlunately, this is not very
helpful, because of the remaining ambiguity in the'
direction at right angles to that of profile integration.
Iterative methods already rapidly get adequate varia
tions in height along "down-sun profiles," but then
strugglc for a long time to try to get these profiles tied
together in the direction at right angles.

The above also suggests that errors in gradients of
a computed solution are likely to be small in the direc
tion toward or "away from" the source and large in the
direction at right angles. It should also be clear that
it is relatively easy 10 find solutions for slowly un
dulating surfaces (where p and q remain small) with
oblique illumination (as in Kirk 1987). It is harder to
deal with cases where the surface gradient varies
widely, and with cases where the source is ncur the
viewer (see also the discussion in section 7.3).

3 Brief Review of Photociinometry

Photoclinometry is the recovery of surface slopes from
images (Wilhe1ms 1964; Rindfleisch 1966; Lambiotte
and Taylor 1967; Watson 1968; Lucchitta and Gambell
1970; Tyler, Simpson, and Moore 1971; Rowan,
McCau1ey, and HolJTl 1971; Bonner and Schmall 1973;
Wi1dey 1975; Squyres 1981; Howard, Blasius, and Cutt
1982). Many papers and abstracts relating to this sub
ject appear in places that may seem inaccessible to
someone working in machine vision (Davis, Soder
b10m, and Eliason 1982; Passey and Shoemaker 1982;
Davis and McEwen 1984; Davis and Soderblom 1983,
1984; Malin and Danielson 1984; Wilson et al. 1983;
McEwen 1985; Wilson, Hampton, and Baien 1985).
(For additional references see Horn and Brooks 1989.)
Superficially, pllOtoclinomellY may appear 10 be just
another name for slwpefrom shading. Two different
groups of researchers indepcndenl1y tackled the prob
lem of recovering surface shape from spatial brightness
variations in single images. Astrogeologists and workers
in machine vision became aware of each other's interests
onlya few years ago. The under1ying goals ofthe two
groups are related, but there are some differences in
approach that may be worthy of abrief discussion.

3.1 Phoroclinometry !'ersus Shape [rom Shading

• First, photoclinometry has focused mostly on pro
file methods (photoclinomelrists now refer to existing
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shape-from-shading methods as urea-based photo
c1inometry, as opposed to projile-based). This came
about in large pan because several of the surfaces
of interest to Ihe aSlrogeologist have reflecting pro
perties that allow numerical integration along
predetermined lines in the image, as discussed above
in section 2.5 (Rindfleisch 1966). Later, a similar
profile integration approach was applied to other
kinds of surfaces by using strang assumptions about
local surface geometry instead. The assumption thai
the surface is locally cylindricalleads to such a pro
file integration scheme (Wildey 1986), for example.
More commonly, however, it has been assumed thai
the cross-track slope is zero, in a suitable object
centered coordinale sySlem (Squyres 1981). This may
be reasonable when one is considering a cross-section
of a linearly extended feature, like aridge, a graben,
or a central section of a rotalionally symmetrie feature
like a crater.

• The introduction of conSlraints that are easiest to ex
press in an object-centered coordinate system leads
away from use of a camera-centered coordinate
system and to complex coordinate Iransformations
that tend to obscure the underlying problem. A
classic paper on photoclinometry (Rindfleisch 1966)
is difficult to read for this reason, and as a resuh had
little impact on the field. On the other hand, it must
be acknowledged that Ihis paper dealt properly with
perspective projection, which is important when the
field of view is large. In all bul the earliest work on
shape from shading (Horn 1970, 1975), Ihe assump
tion is made that the projeclion is approximately or
thographie. This simplifies the equations and allows
introduction of the reflectance map.

• The inherent ambiguity of the problem does not stand
out as obviously when one works with profiles, as
it does when one tries to fully reconstruct surfaces.
This is perhaps why workers on shape from shading
have been more concerned with ambiguity, and why
they have emphasized the importance of singular
poims and occluding boulldaries (Bruss 1982; Deift
and Sylvester 1981; Brooks 1983; Blake, Zisserman,
and Knowles 1985; Saxberg 1988).

• The recovery of shape is more complex than the com
putation of a sei of profiles. Consequently much of
the work in shape from shading has been restricted
to simple shapes. At the same lime, there has been
extensive lesting of shape from shading algorithms
on synthetic data. This is something that is impor-



44 Hom

Ian! for work on shape from shading, but makes little
sense for the study of simple profile methods, exeept
to test for errors in the procedures used for invening
the photomelric function.

• Shape-from-shading methods easily deal with arbi
trary colleetions of collimated light sources and
eXlended sources, sinee these can be accommodated
in the reflectance map by integrating the BRDF and
the souree distribution. In astrogeology there is only
one source of light (if we ignore mutual illumina
tion or interfleclion between surfaces), so methods
for dealing with multiple sources or exlcnded sources
were nOI developed.

• Calibration objects are used both in photoclinomelry
and shape from shading. In photoclinometry the dala
derivcd is used 10 fil parameters 10 phenomcnologica.l
models sueh as those of Minnaen, Lamme! and
Seeliger, Hapkc, and Lamben. ln werk on shape from
shading the numerical data is at times used direclly
without furthercurve fitting. The parameterized models
have the advantage that they permit extrapolation of
observations to situations not encountercd on the eali
bration objeeL This is not an issue if the calibration
objeet eontains surfaee elements with all possible
orientations, as it will if it is smooth and eonvex.

• Normalization of brightness measurements is treated
slightly differently too. Ifthe imaging device is linear,
onc is looking for a single overall scale faetor. In
photoclinometry this factor is often estimated by Jook
ing for a region thai is more or less flat and has
known orientation in the object-eentercd coordinate
system. In shapc from shading the brightness of
singular points is often used to normalizc brightness
measurements instead. The choice depends in part
on what is known about the scene, what the shapes
of the objects are (that is, are singular points or
occluding boundaries imaged) and how the surfaee
reneets light (Ihat is, is there a unique global
extremum in brighlness).

• Finally, simple profiling methods usually only require
eontinuity of the surface and existence of the first
derivative (unless there is an ambiguity in the inver
sion cf the photometric function whose resolution re
quires !hat neighboring derivatives are similar). Most
shape-from-shading methods require continuous first
derivatives und the existenee of second derivatives.
(In some cases use is made of the equality of the sec
ond cross-deriV'dtives taken in different order, that
is, l.<y = Zy.<)' This means that these methods do not

werk weil on scenes eomposed of objects that are
only piecewise smooth, unless appropriately
modified-but see (Malik and Maydan 1989).19

3.2 Profiling Methods

We have seen in section 2.5 how special photometrie
properties sometimes allow one to ealculatc a profile
by imegration along predetermined straight lines in the
image. The other approach commonly used in
photoclinometry to pcrmit simple integration is to make
strong assumplions about lhe surface shape, most com
monly thal, in a suitable objecH;entered coordinate
system, the slope of the surfaee is zero in a direetion
at right angles to the direction in whieh the profile is
being computed. Local surface orientation has two
degrees of freedom. 1be measured brightness provides
one constraint. A second eonstraint is needed to ob
tain a solution for sunace orientation. A known tangent
of the surface can provide the needed information. Two
common cases are treatcd in astrogeology:
(a) features that appcar to be linearly extended (such

as some ridges and grabens), in a direction pre
sumed to be "horizontal" (that is, in Ihe average
local tangem plane);

(b) features thai appear 10 be rotationally symmetric
(Iike eraters), with symmetry axis presumed to be
"venical" (thai iso perpendicular to the average
local tangem plane).

In eaeh ease, the profile is taken "'across" the feature,
Ihal is, in a direction perpendieular to the imersection
of Ihe surfaee with the average local tangem plane.
Equivalenlly, it is assumed that the cross-track slope
is zero in the object-eentered coordinate system.

One problem with this approach is that we obtain
a profile in a plane containing the viewer and the light
souree, nOI a "vertical" profile, one that is pcrpcn
dicular to the average local tangent plane. One way to
deal with this is to iteratively adjust for the image
displacement resulting from f1uetuations in height on
the sunace, using first a sean that reaJly is just a straight
line in the image, then using the eslimated profile 10
introduce appropriate lateral displacements into the sean
line, and so on (Davis and Soderblom 1984).

1t turns out that the standard photoclinometric pro
file approach can bc easily generalizcd to arbitrary
tangent directions, ones that need not be pcrpendicular
to the profile, and also 10 nonzero slopcs. All that we
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(29)

(28)

(30)

(25)

oq "" Ey ö~

öq "" söx + toy (26)

,"d

an<!

y=Rq, z=pRp+qRq

p=E.., q""Ey

öz=pöx+qöy

then, from equations (26) and (Zl) we have

This is Ihe whole "trick." We can summarize the above
in the sei of ordinary differential equations

At this point we exploit the fact lhal we are free to
choose the direction of the step (&.r, hy). Suppose lIlat
we pick

op "" röx + soy

where r "" Z.u' S = z.ry = zyx, and t "" z», are Ihe sec
ond parlial derivatives of the height. It seems thai we
need to now keep track of the second derivatives also,
and in order to do that we need the third panial
derivatives, and so on.

To avoid this infinite recurrence, we take another
lack. Note that we have not yet used the image irra
diance equation E(x, y) = R(p, q). To find the
brightness gradient we differentiale this equation with
respect to x and y and so obtain

So, as we explore the surface, we need to keep track
of p and q in addition to x, y, and z. This means that
we also need to be able to compute the changes in p
and q when we lake the step. This can be done lIsing

basic idea is quite easy 10 explain using the reflectance
map (Horn Im, 1986). Suppose Ihat we are at a point
(x, y, Z)T on the surface and we wish to extend the
solution a small distanee in some direction by taking
a step &.r in x and öy in y. We need to compute the
change in height öz. This we can do if we know the
components of the gradiem, p = z.. and q = z,..
because

(24)ap+bq=c

This, together with the equation E = R(p, q), con
stitutes a pair of equations in the two unknowns p and
q. There may, however, be more than one solution (or
perhaps none) since one ofthe equations is nonlinear.
Othcr means must be found 10 remove possible am
biguity arising from Ihis circumstance. Under appro
priate oblique Iighting conditions, there will usually on
Iy be one solution for most observed brighmess values.

From the above we conclude that we can recover
surface orientation locally if we assume that the sur
face is cylindrical, with known direction of the
generator. We can integrale out the resulting gradient
in any direction we please, not necessarily across the
feature. Also, the generator need not lie in the average
local tangenl plane; we can deal with other sirualions,
as long as we know ,the direction of the generator in
the camera-centered coordinate system. Further
generalizalions are possible, since any means of pro
viding one more constraint on p and q will do.

In machine vision too, some workers have used
slrong local assumptions abaut the surface to allow
dircct recovery of surface orientation. For example, if
the surface is assumed to be locally spherical, the first
two partial derivatives of brightness allow one [0 reeover
thc surface orientation (pentland 1984; Lee and
Rosenfeld 1985). Ahernalively, one may assurne that
the surface is locally cylindrical (Wildey 1984, 1986)
10 resolve the ambiguilY present locally in the general
case.

4 Review of Shape-from-8hading Schemes

need 10 assume is lIlal the surface can locally be ap
proximated by a (general) cylinder, that is, a surface
generated by sweeping a line, the genuator, along a
curve in space. Suppose the direction of the generator
is given by the veetor t = (0, b, C)T. Note lIlat at each
point on the surface, a line parallel to the generator is
tangent 10 the surface. Then, sioce the normal is perpen
dicular to any tangent, we have I . n = 0 at every point
on the surface, or just

4.1 Chamcteristic Strips

The original solution of the general sbape from shading
problem (Horn Im, 1975) uses the method of
charaeteristic strip expansion for first order partial dif
ferential equalions (Garabedian 1964; John 1978). The

where the dot denotes differentiation with respect to
~, a parameter lIlat varies along a panicular solution
curve (the equations can be rescaled 10 make this
parameter be arc length). NOIe thai we acrually have
more than a mere chamcteristic curvt, since we also
know the orientation of the surface al all points in this
curve. This is why a panicular solulion is called a
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eharaeteristie strip. The projection of a eharacleristic
curve inlo Ihe image plane is ca11ed a base duzraeteristic
(Garabedian 1964; lohn 1978).

The base eharacteristics are predetermined straight
lines in Ihe image only when Ihe ratio x:y = Rp : Rq

is fixed, !hat is when Ihe reflectance map is linear in
p and q. In general, one eannot integrate along arbiuary
curves in Ihe image. Also, an inilial eurve is needed
from which to sproul Ihe eharacteristics strips.

It turns out that direcl numerieal implementauons
of the above equations do not yield particularly good
resuhs, since Ihe palhs of Ihe characleriSlics are affected
by noise in the image brightness measurements and
errors lend to accumulate along Iheir length. In partic
ularly bad eases, the base characteristics may even
cross, which does not make any sense in lerms of sur
face shape. It is possible, however, to grow eharaeter
istic strips in parallel and use a so-called sharpening
process to keep neighboring charaeleristics eonsistent
by cnforcing Ihe condilions 4 = P x, + q Y, and E(x,
y) "" R(p, q) along curves connecting Ihe tips of
characteristics advancing in parallel (Horn 1970, 1975).
This greatiy improves the accuracy of Ihe solulion, since
the computation of surface orientalion is lied more
c10sely 10 image brightness itself ralher Ihan 10 Ihe
brightness gradient. This also makes it possible to inter
polate new characteristic strips when existing ones
spread too far apart, and to remove some when Ihey
approach each olher 100 ciosely.

4.2 Rotationally Symmetrie Refleetance Maps

for some k. That is, in Ihis casc the eharaeteristies are
curves of sleepest ascenl or descent on Ihe surfaee. The
extrema of surface heighl are sources and sinks of ehar
aeteristic curves. In this ease, diese are the points where
Ihe surface has maxima in brightness.

This example illustrates the importance of SO'<:allcd
singular points. At most image points, as we have seen,
Ihe gradient is not fully constrained by image bright
ness. Now suppose Ihal R(p, q) has a unique global
maximum,zo Ihal is

A singular point (xo, Yo) in the image is a point where

(35)

At such a point we may conclude that (p, q) = (Po,
qo). Singular points in general are sources and sinks
of characteristie eurves. Singular points provide slrong
constraint on possible solutions (Horn 1970, 1975; Bruss
1982; Brooks 1983; Saxberg 1988).

Tbe occludjng boundary is the set of points where
Ihe local tangent plane contains Ihe direclion toward
Ihe viewer. It has been suggested Ihal occluding boun
daries provide strong conslrainl on possible solutions
(Ikeuchi and Horn 1981); Bruss 1982). As a conse
quenee there has been inleresl in representations for
surface orientalion that behave v..-ell ncar Ihe occluding
boundary, unlikc Ihe gradient which becomes infinile
(lkeuehi and Horn 1981; Horn and Brooks 1986).
Rceently Ihere has been some question as to how much
conslraint occ1uding boundaries really provide, given
Ihal singular points appear to already slrongly conslrain
Ihe solution (Brooks 1983; Saxberg 1988).

and so thc direclions in which Ihc base characleristics
grow are given by

One ean get some idea of how the charactcrislics ex
plorc a surface by considering Ihe special easc of a rota
tionally symmelric reflectancc map, as mighl apply
whcn thc light source is at the viewer (or when deal
ing wilh scanning e1cctron microscope (SEM) images).
Suppose thai

R(p, q) = f(Pl + ql)

4.3 Existeflee and Ulliqueness

Queslions of existenee and uniqueness of solutions of
the shape·from-shading problem have slill not bcen
resolvcd enlircly satisfactorily. Wilh an initial curve,
however, the melhod of eharacleristic strips docs yield
a unique solution, assuming only eontinuity of Ihe firsl
derivalives of surface heighl (see Haar's Iheorem on
pg. 145 in Courant and Hilben 1962 or Bruss 1982).
The queslion of uniquencss is more difficult [0 a-:swer
when an inilial curve is nOI available. One problem is
Ihat il is hard 10 say anything eomplelely general that
will apply 10 all possible reflcctance maps. More can
be said when spccific reflcetanee maps are chosen, such
as ones Ihal are linear in Ihe gmdienl (Rindfleisch 1966)
or those Ihat are rotalionally symmetrie (Bruss 1982).(33)

(31)

y "" kqan<!i "" kp

thcn
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It has recently been shown that there exist impossi
ble shaded images, that is, images that do not corres
pond to any surface illuminated in the specified way
(Horn, Szeliski, and Yuille 1989), It may turn out that'
almost a1l images with multiple singular points are im
possible in this sense (Saxbcrg 1988). This is an impor
tant issue, because it may help explain how our visual
system sometimes determines that the surface being
viewed cannot possibly be uniform in its reflccting pro
perties. One can easily come up with smoothly shaded
images. for example, that do not yield an impression
of shape, instead appearing as flat surfaees with
spatial1y varying reflectanee or surfaee "albedo," (See
also figure 10 in section 7.2.)

In fact, the error can be made equal to zero for an in
finite number of choices for {p~r, y), q(x, y)}. We can
pick out one of these solutions by finding the one that
minimizes some functional such as a measure of
"departure from smoothness,"

II(p; +p} + q~ + q})drdy (39)

while satislJing the constraint E(x, y) = R(p, q). Intro
ducing a Lagrange multiplier Mx, y) to enforce the con
straint, we find that we have to minimizc

II«P.~ +p; +q~ +q;) + h(x,y)(E- R»drdy (40)

The Euler cquations are

4.4 l1:,riatiolla{ Formll{ations

where E(x, y) is the image irradiance at the point (x,
y), while R(p, q), the refleclallce map, is the (normal
ized) scene radiance of a surface patch with orienta
tion specified by the partial derivatives

As discussed above in section 2.4, in the case of a sur
face with constant albedo, when both the observer and
the light sources are far away. surface radiance depends
only on surface orientation and not on position in space
and the image projection can be considercd to be or
thographie.21 In this case the image irradiance equa
tion becomes just

(41)

(43)

E(x, y) = R(p, q) (42)

IIp + Mx, y)R" = 0

Ilq + Mx, y)Rq = 0

Unfurtunately, no convergent iterative scheme has been
found for this constrained variational problem (Horn
and Brooks 1986); (compare Wildey 1975).

We ean approach this problem in a quite differem
way using the "departure from smoothness" measure
in a penalty term (lkeuchi and Horn 1981), looking in
stead for a minimum 0[24

After elimination of the Lagrange multiplier A(x, y),
we are left with the pair of equations

IJ[(E(x, y) - R(p, q»)2

+ h(P; + p} + q; + q})]drdy

(36)

(37)
azq =ay

E(x, y) ,= R(P(x, y), q(x, y»

azp = ~
ax

Using a discrete approximation of the Laplacian
operator2 '

It should be pointed out that a solution of this
"regularized" problem is flor a solution of the original
problem, although it may be dose to some solution of
the original problem (Brooks 1985). In any case, this
variational problem leads to the following coupled pair
of second-order partial differential equations:

of surface height z(x, y) above some reference plane
perpendieular to the optieal axis.

The task is to find z(x, y) given the image E(x, y)
and the reflectance map R(p, q). Additional constraints,
such as boundary conditions. and singular points, are
needed to ensure that there is a unique solution (Bruss
1982; Deift and Sylvester 1981; Blake, Zisserman, and
Knowles 1985; Saxberg 1988). Ifwe ignore imegrabil
ity,n some versions of the problem of shape from
shading may be considered to be ill posed,2l that is,
there is not a unique solution (P(x, y), q(x, y)} that
minimizes the brighlness error

hllp -(E(x, y)

hllq = - (E(x, y)

R(p, q)) R,,(p, q)

R(p, q» R,(p, q) (44)

11 (E(x, y) - R(p, q»)2 clx dy (38) (45)
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wherejis a local average off, and (is the spacing be
tween picture cells,1' we arrive at the set of equations

I(X'Pu = I(X 'Pu + (E(x, y) - R(p, q» RpCp. q)

I(X' qu = I(X 'qu + (E(x, y) - R(p, q» R/'p, q) (46)

where X' = X1E2. This immediately suggests the
iterative scheme

In general. this approach produces solutions that are
100 smooth, with the amount of distonion depending
on the choice of lhe parameter A. For relaled reasons,
this algorithm does weil only on simple smOOlh shapes,
and does not perfonn weil on complex, wrinkJed
surfaces.

(E(x, y) - Rrp'°', q<o'»Rp(P'o" q<o')

q~7+1) = iiW + _1-
,A'

for some constanl k. While this includes all harmonie
fuoctions, it exeludes most real surfaces. for which ad

justments away from the oorrCCI shape are needed 10

assure equality of lhe lef! and right sides of equations
(44) describing the solUlion ofthe modified problem.

(E(x, y) - R(p(nl , q(n))Rq(p(nl, qln) (47)

where the superscript denotes thc iteration numberP
From the above it may appear that R(p, q), R/.p,

q), and Rq(p. q) should be ewluated using the "old"
valucs oep and q. iIlUms out that the numerical stabilily
of the scheme is somewhat enhanced if they are
ewluated inSlead at the local average values, p and q
(Ikeuchi and Horn 1981).

One might hope that the correct solution of the
original shape+from-shading problem provides a fixed
point for the iterative scheme. This is not too likely,
however, since we aie solving a modified problem !hat
includes a penalty tenn. Consequendy, an interesting
question one mighl ask aboul an aigorithm such as this,
is whether il will "walk away" from the correct solu
tion of the original image inadiance equation E(x, y)
= R(p, q) when this solution is provided as an initial
condilion (Brooks 1985). The algorithm described here
does just thai, since it can Irade off a smalJ amount of
brightness error againsl an increase in surfaee
smoolhness. At the solution, we have E(x, y) = R(p,
q). so that Ihe righl-hand sides ofthe two coupled par+
tial differential equations (equatio!JS (44» are zero. This
implies that if the solulion of the modified problem is
10 be equal the solution of the original problem then
the Laplacians ofP and q must be equal 10 zero. This
is the case for very few surfaces, jusl those for which

(53)

(51)

czol+szy=cp+sq

, , -

;Z 4J = (2 4I ~ (Pol + q,),

a set of equations that suggeslS the following iterative
scheme:

where (c, s) is a nonnal to the boundary.29
Another way ofdealing with the integrabilily issue

is to try and directly minimize

,\;." ~ i~' - ~ ({P,)~' + (q,,}~') (52)
•

tJ.z. = Pol + q, (50)

Using the discrete approximation of the Laplacian given
alxwe (equation (45» yields

where the tenns in braces are numerical estimates of
the indicated derivatives at the picture cell (k, f).

Thc so-callcd natural boundary conditiolls here are
just

In any case, we are also still faced with the problem
of dealing with the lack of imegrability. thai is the lack
of a surface z(x, y) such that p(x, y) = zol(x, y) and
q(x, y) = Zy(x, y).28 At the very least, wc should try
to find the surfacc z(x, y) that has panial derivatives
zol and Zy that come e10sest to mate hing thc computcd
p(x, y) and q(:c, y), by minimizing

JJ«zol - pp + (z, - qP) dx (Iy (49)

This leads to the Poisson equation

4.5 Rt!COvering Height from Gradient

ff ((E(x, y) - R(p, q»' + A(P, - q,)'} dxdy (54)

This leads to the coupled partial differential equations
(Horn and Bmoks 1986)

A(PJY - qSJ) = - (E(x, y) - R(p. q»Rp

Mq" - p,,) ~ - (E(x, y) - R(p, q»R. (55)

(48)dz(x, y) = k
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and we know from the previous section lhal the Euler
equation for this variational problem is jusl

We now have one equation for each of p, q, and z.
These three equations are c1early satisfied when p

= zr, q = z, and E = R. That is, if a solution of the
original shape-from-shading problem exists, then it
satisfies this system of equations exaetly (which is more
than can be said for some other syslems of equalions
obtained using a varialional approach. as pointed OUI
in seclion 4.4). It is instruclive to substilute the expres
sions obtained for p and q in Pr + q,:

Pr + q, = Z.u + Z,)"

I+ - [(E - R)(Rpppx + Rpq(p, + q,)

"+ Rqfl,.) - (RIP" + R"Rq(p, + qr)

+ R~,) + (Eß, + E,Rq» (60)

Since liz. = (Pr + q,), we ROte that the three equations
above are salisfied when

This sei of equalions can also be discrelized by intro
ducing appropriate finite difference approximations lOr
the second partial derivatives Pyy' q;cr and the cross
derivatives ofP and q. An iterative scherne is suggested
ooce one isolates the cenler terms of the discrele ap
proximations ofpyy and q;cr. This is very similac to the
method developed by Stral, although he arrived at his
scheme directly in the discrete domain (Strat 1979). His
iteralive scheme avoids the excessive smoothing of the
one described earlier, but appears to be less stable, in
the sense thai it diverges under a wider set of
circumstances.

5 New Coupled Height and Gradient Scheme

The new shape-from-shading scherne will be presented
through aseries of increasingly more robust variational
methods. We start with the simplest, which grows
nalurally out of whal was discussed in the previous
seclion.

4z=Pr+q, (59)

5./ Fusing H~ight and Gradient Recovery

One Wi!'j of fusing the TeCCJ'Yery oe grad ienl from shading
with the recovery of heighl from gradienl, is 10 repre
sent both gradient (p, q) and height z in one variational
scheme and to minimize the funetional

ff [(E(x, y) - R(p, q))'

+ /.l«zx - pp + (z, - q)2)] dx dy (56)

Note Ihal, as far as p{x, y) and q{x, y) are concerned,
Ihis is an ordinary calculus problem (since no partial
derivalives of P and q appear in the inlegrand). Dif
fercntiating the integrand with respect to p{x, y) and
q(x, y) and setting the resull equal to zero leads to

I
p=zx+-{E-K)R,

"I
q=z,+-(E-K)R" (57)

"Now z{x, y) does not oceur dircctly in (E{x, y) - R(p,
q» so 'Ne actually just need 10 minimize

(Rj,pr + RpR,,(P, + qJ + Rl,q,)

- (E,Rp + E,R.)

- (E - K)(R",P. + R",,(p, + q,) + R.,q,) (61)

This is exaetly the equalion obtained at the end of sec
lion 4.2 in (Horn and Bmoks 1986), where an attempl
was made 10 dircctly impose integrability using the con
slraint P, = qr. It was stated there thai no convergenl
ilerative scheme had bcen found for dircctly solving
this complicated nonlinear partial differential cquation.
Thc mcthod presented in this scction provides an in
direct way of solving this equation.

Nole thai the natural boundary conditions for z are
once again

CZr + sz, = cp + sq (62)

where (c, s) is anormal to the boundary.
The coupled system of equations above for p, q

{equation (57» and z (equalion (59» immedialely sug
gests an iterative scheme

Pti+l) = (zrlti) + .!. (E - K)R,

"
11tH

) = (z,}17) + .!. (E - R)R"

"
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(63)
which point lhe penalty term is removed in order to
prevent it from distorting lhe solution. We first Ireat
the Iinearization of the reflectance map.

5.2 lineariUllion 01 Reflectance Map

Again, galhering all of the terms in Pi! and q.l:l on the
left-hand sides of lhe equations, we now obtain

R(p. q) ... R(po. qol + (p - pol Rp(Po. qo)

+ (q - qo) Rq(Po. qo) + . . (64)

This leads to

(p. + Rfi) OPtl + H,)?,Oqkl =Il oZx + (E - R)Rp

RpRq 0Pkl + (11 + R~) oqk/ = IJ. OZy + (E - R)Rq (67)

(66)

(68)

oqk/ = qk' - qo

OZ" = Zy - qo

and

and

D = Il(p. + R~ + R~)

while lhe equation for z rcmains unchangcd. (Note lhat
now R, Rp , and R, denOIC quantitics evaluated 31 the
reference gradient (Po, qo).)

It is convenient to rewritc these equations in lerms
of quantities relative to thc refcrence gradient (Po. qo).
Let

We can develop a belter scheme lhan the one described
in lhe previous section, while preserving the apparent
linearity of the equations, by approximating lhe reflec
tance map R(p, q) locally by alinear funclion of P and
q. 1bere are several options for choice of reference gra
dient for the series expansion. so let us keep it general
for now at (Po. qO)'lO We have

(p. + R~)P.I:I + R"Rrfltl = Jl.Zx

+ (E - R + poRp + qoRq)Rp

RqR,p.l:l + (p. + R~) q.l:l = Jl.Zy

+ (E - R + poRp + qoRq)Rq
(65)

(The equ31ions clcarly simplify somcwhat ifwe choose
(z.r> Zy) for the rcference gradiem (Po, qo).) We can
view the above as 3 pair of linear equations for Op.I:I
and Oqi/' The detcrminanl of thc 2 x2 coefficient
matrix.

0Pk/ = Ptl - Po

oZx=zx-Po

where we have used the discrete approximation of lhe
Laplacian for z introduced in equation (45). This new
iterative scheme works weil when lhe initial values
given for p. q. and z are elose to lhe solution. It will
converge 10 the exact solution if it exisls; lhat is, if lhere
exisls a discrete set ofvalues {Zti} such lhat {P.l:l} and
{q.l:l} are lhe discrete estimate of lhe first partial
derivatives of z wilh respect tO.l" and y respectively and
E.I:I = R(P.l:l. q.l:l)'

In lhis case lhe functional we wish 10 minimize can
actually be reduced 10 zero. 11 should be apparent lhat
for lhis 10 happen. the discrete estimalor used for lhe
Laplacian must match the sum of the convolution of
lhe discrete eslimalor of the.l" derivative wilh itself and
lhe convolution of the discrete estimator of the y
derivative wilh itself. (This and related mauers are laken
up again In section 6.2).

The algorithm can easily be tested using synthelic
heighl data Z.tJ. One merely estimates lhe partial
derivatives using suitable discrete difference formulas,
and lhen uses lhe resuhing values Pil and q.l:110 com
pute the synthetic image E.I:I = R(P.l:l' q.l:l)' This con
struction guarantees thai lhere will be an exact solu
tion. If areal Image is used, there is no guarantee lhat
therc is an exact solution, and lhe algorilhm can at best
find a good discrete approxima!ion of lhe solution of
the underiying continuous problem. In this case the
functional will in fact not be reduced exactly to zero.
In some cases the residue may be quite large. This may
be the result of aliasing introduced when sampling the
image. as discussed in section 6.5, or because in fact
the image given could not have arisen from shading on
a homogeneous surface with the reflectance properties
and lighting as encoded in the reflectance map-that
is, it is an impossible shaded image (Horn. Szeliski.
and Yuille 1989).

The iterative algorithm described in this section,
while simple, is not very stable, and has a tendency
to gel stuck in local minima, unless one is elose to the
exact solution, particularly when the surface is com
plex and the reflectance map is not elose to linear in
the gradient. It has been found lhat the performance
of this algorithm can be improved greatly by lineariz
ing lhe reflectance map. h can also be stabilized by add
ing a penalty term for departure from smoothness. This
allows one to come elose to the correct solulion. at
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is always positive, so there is no problem with
singularities. The solution is given by

DOPt! = (p. + R~)A - R"RIJ

D ;qu ~ (p + RfilB - R,R"A (69)

where

A diserete approximation of these equations ean be
obtained using the discrete approximation of the Lapla
eian operator introduced in equation (45):

-(E - R)Rp - p.(zx - Pu)

This leads to a convenient iterative scheme where the
new values are given by

in terms orthe old reference gradient and the increments
computed above. The new version of the iterative
scheme does not require a great deal more computa
tion than the simpler scheme introduced in section 4.5,
since the partial derivatives Rp and Rq are a1ready
needed there.

(74)

(75)

l: (it, - 41) :: Pol' + qy

where E, R, Rp, and Rq are the corresponding values
at the picrure cell (k, 1), while 4.1" 4" P", and q, are
discrete estimates of the partial derivative of 4, P, and
q there. We can collect the tenns in Pt!, qu, and Zu on
one side to obtain

(KA' + IJ,)PI:! :: (KA 'PI:! + p.l.,,) + (E - R)Rp

(KA' + IJ)qt! :: (KA 'qu + p.l.,) + (E - R)Rq

K K_ (p )-41=-Zu- ,,+q
El El ,

(70)

A=IJ,Ozx+(E-R)Rp

B::IJOz,.+(E-R)Rq

5.3 !ncorporating Departure from Smoothness 'Tenn

The Euler equations of this calculus of variations prob
lem lead to the following coupled system of seeond
order partial differential cquations:

JJ[(E(x, y) - R(p, q))'

+ A(P} + p} + qi + qJ)

+ p.((z" - p)l + (z,. - q)l)JiUdy (72)

.
We now introduce a penalty tenn for departure from
smoothness, effcctively combining the iterative method
of (lkcuchi and Horn 1981) for recovering P and q from
E(x, y) and R(p, q), with the scheme for recovering z
given P and q discussed in section 4.5. (For the mo
ment we do not linearize the reflectance map; this will
be addressed in section 5.6.) We look direetly for a
minimum of

where A' = AIE l . These equations immediately suggest
an iterative scheme, where the right-hand sides are
computed using the current values of the Zu, Pt!, and
ql:!, with the resuhs then used 10 supply new values for
the unknowns appearing on thc left-hand sides.

From the above it may appear that R(p, q), Rp(p,
q), and Rq(p, q) should bc evalualed using the "old"
values ofP and q. One might, on the other hand, argue
that the local average values p and q, or perhaps even
the gradient estimates 4" and 4)" are more appropriate.
Experimentation suggests that the scheme is most stable
when the loeal averages p and q are used.

The above scheme contains a penalty tenn for depar
ture from smoothness, so it may appear that it cannot
eonverge (0 the exact solution. Indeed, it appears as
if the iterative scheme will "walk away"' from the cor
rect solution when it is presented with it as initial con
dilions, as discussed in section 4.4. It turns OUI,
however, that the penalty term is needed only to pre
vent instability when far from the solution. When we
oome dose to the solution, A' can be reduced to zero,
and so the penalty renn drops out. It is tempting 10 leave
the penalty tenn out right from the start, sinee this
simplifies the cquations a great deal, as shown in sec
tion 5.1. The contribution from the penalty tenn does,(73)

Af!,.p :: -(E - R)Rp - P.(4" - p)

~q :: -(E - R)Rq - ""(4,. - q)

.o.z = p" + q,.
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however, help damp out instabilities when far from the
solution and so should be included. This is particularly
important with real data, where one cannot ex.pect to
find an exact solution.

Note, by the~, that the coupled second-order par
tial differential equations above (equation (76)) are
eminently suited for solution by coupled resistive grids
(Horn 1988).

5.4 RelOlionship to Existing Techniqlles

!!p\(p: +pJ. + q: + q;)

+ «z.. - p)2 + (Z,. - q)2)1 dr dy
and arrives at the Euler equations

;. t>p ~ -(z, - p)

At:.q = -(Zr - q)

.6z = p.. + q,.

Now consider that

6("<) - t>(p, + q,)

(76)

(77)

(78)

0'

and so

(79)

(80)

Since application of the Laplacian operator and dif
ferentiation commute wc have

5.5 Boundary Condirions and Nonlinearity 01
Reflectance Map

So far we have assumed that suitablc boundary condi
tions arc available, that iso the gradicnt is known on

>"t:.(t:,.z) = -.6z + (p.. + qr) = 0 (81)

So his rnethod solves thc biharmonic cquation for z:.
by solving a coupled set of sccond-order partial dif
ferential equations. It does it in an elegant, stable way
that pennits introduction cfconstraints on both height
z: and gradient (p, q). This is a good method for in
terpolating from sparse dcpth and surface orienta
tion data.

The bihannonic equation has been employed to inter
polate digital terrain models (UfMs) frorn contour
maps. Such UfMs were used, for example, in (Horn
1981; Sjoberg and Horn 1983). The obvious implemen
tations of finite difference approximations of thc bihar
manie operator, however, tend to be unstable because
some ofthe weights are negative, and because thc cor
responding coefficient matrix lacks diagonal
dominance. Also, the treaunent cf boundary conditions
is complicated by the fact that the support of the bihar
manie operator is so large. The scherne described above
circurnvents hath of these difficulties-it was used 10

interpolate the digital terrain model uscd for the ex
ample illustrated by figure I.Jl

• Rccently, new methods have been developed that
combine the iterative scheme discussed in section 4.4
for recovering surface orientation from shading with
a projection onto the subspace of intcgrablc gradients
(Frankot and Chellappa 1988; Shao, Simchony, and
Chellappa 1988). The approach there is lo altemately
take one step of the iterative scheme Okeuchi and
Horn 1988) and to find the "nearest" intcgrable
gra~ienl. This gradient is then provided as initial
conditions for the next step of the iterative scheme,
ensuring that thc gradient field never dcparts far from
intcgrabiLity. The integrable gradient dosest to a
given gradient field can be found using onhononnal
series expansion and the fact that differentiation in
the spatial d..omain corresponds to multiplication by
frequency in the transfonn domain (Frankot and
Chellappa 1988).

• Similar results can be obtained by using instead the
method described in section 4.5 for recovering the
height z(x, y) that best matches a given gradient. The
resulting sunace can then be (numerically) differen
tiated to obtain initial values for p(x, y) and q(x, y)
for the next step ofthe iterative scheme (Shao, Sim
chony, and Chellappa 1988).

• Next, note that we obtain the scheme of Okeuchi and
Horn 1981) (who ignored the integrability problem)
discussed in section 4.4, if we drop the departure
from integrability term in the integrand-that is,
when JL = 0. If we instead remove thedeparture from
smoothness term in the integrand-that is, when A
= O-we obtain sornething reminiscent of the
itcrative scherne of (Strat 1979), although Strat dealt
with the integrability issue in a different way.

• Finally, if we drop the brighmess error tenn in the
intcgrand, we obtain the scheme of (Harris 1986,
1987) for interpolating from dcpth and slopc. He
minimizes
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Ihe boundary of Ihe image region to which the COffi
pulation is to be applied. Ifthis is not thecase, the solu
tion is likely nOI to be unique. We may nevertheless
try to find some solution by imposing so-called IIatural
boundary conditions (Courant and Hilbert 1953). Thc
natural ooundary conditions for the variational problem
described here can be shown to be

Cls + $Z, = ep + sq (83)

where (e, s) is anormal to the boundary. That is, the
normal derivative of the gradienl is zero and the nor
mal derivative of thc height has to match the slope in
the normal dircction computed from the gradient.

In the above we have approximated thc original par
tial differential cquations by a set of discrete equations,
threc for every picture cell (one eaeh for p. q, and ,).
Ifthese equalions were linear, we eould directly apply
all the e.xisting thoory relating to convergence of various
iterative schemes and how one soh'es such equations
efficiently, given that thc corresponding coefficient
matrixes are sparse.12 Unfortunatcly, the equations are
in general not linear, bccause of the nonIinear
dependenee of thc reflectance map R(p. q) on the gra
dient. In fact, in deriving the above simple iterativc
scheme, we' have treated R(p, q), and its derivatives,
as constant (independent of p and q) during any par
tieular itcrative adjustmcm of p and q.

D = AN(A" + Rfi + R~) (88)

is always positive, so there is no problem with
singularities. The solution is given by

(89)

Dopu = (A" + R~)A

DOqkJ = (A" + Ri)B

while thc equation for z remains uochanged. (Note Ihat
here R, Rp , and Rq again dcnolc quantities C\'aluated
at the referenec gradient (Po. qo». In the abovc wc have
abbreviated A~ = KA' + 11.

It is convcnienl to rewrite thcse equations in terms
of quantities defincd relative to thc refercnce gmdiem:

0Pkt = Pu - Po and Oqu = qu - qo

0Pkl = Pkt - Po and oqu = qu - qo

oZs = Zs - Po and oZ.< = :, - qo (86)

This yiclds

(A ~ + Rfi)oPkl +RpRqoqk/ = KA'OPU

+ p.oz.. + (E - R)R1,

RpRqoqkJ +(A ~ +R~) Oqkl = KA'oqkJ

+I-l&y + (E - R)R'I (87)

(Thc equations c1carly simplify somcwhat ifwe choose
either Pand qor Zs and " for the reference gmdicnt
Po and qo.) We can vicw thc abO\'e as a pair of linear
equations for oPu and Oqkl' Thc determinant of the
2 x2 coefficicnt matrix

eqs + sq, = 0 (82)andeps + sP, = 0

an<!

(84)

5.6 Locaf Linear Approximation of Reflectallce Map

In scclion 5.2 we linearizcd thc reflectanec map in order
to countcmct thc tendency of thc simple itcmtive scheme
dcvcloped in section 5.1 to get stuck in local minima.
We now do the same for the more eomplex scheme
describcd in $Cetion 5.3. We again use

R(p, q) ,.. R(Po, qo) + (p - Po)Rp(Po, qo)

+ (q - qo)R,f.Po. qo) + ...

whcre

A = KA' 0Pkl + I-l oz.. + (E - R)Rp

B = Kh' oqt/ + 1-l0l>, + (E - R)Rq (90)

This leads to a convenient iterativc schcmc where thc
new ",ducs are given by

p~+l) = p~jl + op~l

'Il7'" ~ qt' + ",t'
Gathering all of the terms in Pkt and qtl on the lef!·
hand sidcs of thc equations, we now obtain

(A ~ + RiZ,)pk/ + R,,Rt/ltl

= (KA 'Pkl + J.lZ..•) + (E - R + poRp + qfftq)Rp

RqR,Pu + (A ~ + R~)qkl

= (KA 'qu + JLZ,) + (E - R + poRp + qoRq)Rq (85)

in terms ofthe old reference gradicnt and the incremcnts
eompUlcd abovc. It has been detcrmined cmpirically
that this schcmc converges under a far widcr sct of cir
cumstances than the one prcscnlcd in the prcvious
seClion.

Experimcntation with different rcfcrcnce gmdicnts.
including the old values of fJ and q, thc local averagc
Pand ij, as weil as Zs and zr showed Ihat thc aeeuracy
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of the solution and the convergence is affected by this
choice. It became apparent that if we do not want the
scheme 10 "walk away" from the correct solution, then
we should use the old value ofp and q forthe reference
Po and qo· PIO Pu Pl2

6 Some Implementation Details Z10 Zl1

6./ Deril'Oti\'e Esrimators anti Slaggered Grids
Poo Pol Po,

Fig. .1 11 i$ COllYC:llielll 10 haYC: thc: disctC:1C grid for p. q (and he:nce:
lOr lhe: image E il$C:lf) otfsd by tI2 picture teil in.f lind tI2 picture
teil in y from the: grid lOr ~.

The results obtained apply 10 thc point (k + 112. I +
1(2) in the grid of discrete values of Z; or the poim (k,
1) in the (offset) discrete grid of values of p and q.
Similar schemes can be developed for Ihe first partial
derivatives of p and q needed in the algorithms imro
duced herc, with the offsels now acting in the opposite
direction.

In ODe dimension, il is well-known from numerical
analysis that the best finite difference estimators ofeven
derivatives have odd support, while the best estimators
of odd derivatives have even support. These estimators
are "best" in the sense that their lowest-order errar
tenns have a small coefficient and that they do not at
terlUate the higher frequencies as much as the alternative
ones. A good estimator of the second derivative of Z,
for example, is

while a good estimator of the first derivative of l is just
1{z.rh ... - (l,hl - W (93),

Zoo ZOI ZO' Z03

I I
4 4

-1

I I
4 4

20'

I
4

I -1 I
4 4

I
4

4

We also need 10 obtain local averagcs bascd on discrete
approximations of Ihc Laplacian operators. We could
simply use one of thc slencils

6. 2 Discrell! Eslimators 0/ fhe Loplaciafl

The second, diagonal, form has a higher cocfficienl on
the lowest-order error term Ihan Ihe first, edge-adjacem
form, and so is usually not used by itself. Thc diagonal
form is also typically not favorcd in iterative schemes
for solving Poisson's equations. since it does not sup-
press cenain high-frcquency components. We can write
a stencil for alinear combination of the edge-adjacem
and the diagonal vcrsions in the form

~~
2f~

.nd~~
2f~

{l.rh.1

Note that the latter, like other estimators with even sup
port for odd derivatives, gives aß estimate valid at the
point midway betwccn sampies.

This suggests that OßC should use staggered grids.
That is, the arrays cOßlaißing sampled values of p and
q (and hence image brightness E) should be offset by
1/2 picture cell in both x and y from those for l (see
figurc 3). This also means that ifthe image is rcctangu
lar and contains n X m picturc cclls, then the array of
heightsshould bcofsizc (n + I) x (m + 1). Appropri
alC two-dimensional cstimators for the first partial de
rivatives of l then are (sec also Horn and Schunck 1981).

1
- 2f (4.1+1

1
2f (ZHLI - 4.1 + 4+1.1+1 - l.l:.I+I) (94)

These can be convcnicmly shown graphically in the
form of thc stcncils
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A judiciously chosen weighled average, namely one for
which a = ;, is normally preferred, since this com
bioation cancels the lowest-order errar term.

Ir we wish 10 prevent the iterative scheme from
"walking away" from the solution, however, we need
(0 makc our estimate of the Laplacian consistent with
rcpeatcd application of our estimators for the first par
tial derivatives. That is, we want Dur discrctc estimate
of 6z to be as dose as possible to OUT discrete estimate
of

(95)

11 is easy to see that the surn of the convolulion of the
discrete eslimalOr for the x-derivative with itself and
the convolution of the discrete estimator for the y
derivative with itself yields the diagonal pattern. So,
while thc diagonal pattern is usually not favored because
it leads 10 less stahle iterative schemes. I1 appears to
be desirable here to avoid inconsistencies between
discrete estimators of the first and second partial
derivatives. Experimenlation with various linear com
binalions bears this out. The edge-adjacenl Slencil is
very stable and permits over-relaxation (SOR) with a
"" 2 (see next seclion), but leads to some errors in the
solution wilh noisefree inpul data. The diagonal form
is less stable and requires a reduced value for a, bUl
allows the scheme to converge to the exact algebraic
solution to problems that have exact solutions.

Thc incipienl instability inhercnt in use of the
diagonal form is a reflection ofthe fact that ifwe think
of the discrele grid as acheckerboard , then the "red"
and the "black" squares are decoupled.u ThaI is, up
dates of red squares are based only on existing values
on red squares, while updates of black squares are based
only on existing values on black squares. Equivalently,
note that there is no change in the iocrcmental update
equations when we add a discrele function of the form

(96)

to the current values of the height. The reason is that
the estimators of the first derivalives and the diagonal
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form ofthe Laplacian estirnator arc completcly insen
sitive to components ofthis specific (high) spatial fre
quency.14 Fonunately, the iterative update cannol inject
components of this frequency either, so thaI if the
averageofthe values ofthe "red" cells initially matches
the average of the values of the "black" cells. then it
will continue to do so. The above has not tumed out
to be an important issue, since the iteration appears to
be stable with the diagonal form of the average, that
is, for a "" I, when the natural boundary conditions
are implemented with care.

6:3 Boundary ConditioflS

The boundary conditions have also to be dealt with
propcrly to assurc consistency bctween first- and
second-order derivative estimators. In a simple rec~

tangular image region, the natural boundary conditions
for zcould be implemcntcd by simply takißg thc average
of the IWO nearest values of the appropriate gradient
cornponent and multiplying by f 10 obtain an offset from
the nearest wlue of z in the inlerior of the grid. That
is, for I :s k < n and I :s: I < m, we could use

,
4.0"" 4.1 - '2 (Pt-I.O + Pt.1V

,
z"./ "" z,,-l.t + "2 (q,,-U-I + q,,-l.t) (97)

on the lerr, right, bouorn, and top bordcr of a rec
tangular image region (Ihe corners are extrapolated
diagonally from Ihe ncarest poinl in the interior using
both components of the gradient). But this introduces
a conncclion belween the "red" and Ihe "black" ceHs,
and so must be in confliCI with the underlying discrete
estimalors of the derivatives thai are being used.

One can do beuer using offsets from cells in the in
lerior thai lie in diagonal dircclion from the ones on
the boundary. That is, for 2 :s: k < 11 - land 2 :s::
J < m - I, we use

1
l,t.o "" 2" (l,t-1.I - f(Pt-1.0 - qt- 1.0)

+ 4+ 1.1 - f(Pt.o + quj»
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I
4 .... = "2 (Zk-I,m-l + E(Pk-I.",-1 + qk-l ....-I)

+ 4+1....-1 + E(pk...._l - qk....-I»

and similarly for q. As before, the corner points. and
one point on each side of the corner have to bc copied
diagonally, witoout averaging, since only one of the two
values ncedcd lies in the interior of the region.

Pu = Pk.l

Po.! = Pl,l

There are numerous iterative schemes for solution of
large sparsc sets of equations, among them:

• Gauss·Scidel-with replacement-scquential update;
• Jacobi-without replaeement-parallel update:
• Suecessive Over-Relaxation (SOR):
• KaZl1lllfZ relaxation;
• Une relaxation.

Successive over-relaxation (SOR) makes an adjustment
from the old value that is 01 times the correclion com
puted from the basic equations. That iso for examplc.

di+ ll = zW + 01 (itl - zl;') (101)

where iW is the "new" value calculatcd by the ordin
ary scheme without over-relaxalion. When a > I. this
amounts 10 moving further in the direction of the ad
justrnent than suggeslcd by the basic equations. This
can speed up convergence, but also may lead to in
stability.lS The Gauss-Scidel method typically can be
sped up in this fashion by dlOosing a value for Cl: e10se
10 tv.Q--the scheme becomes unstable for a > 2. Un
fortunately the Gauss-Seidel method does not lend itself
10 parallel implementation.

The Jaeobi method is suitcd for parallel implemen
tation, but successive ovcr-relaxation cannol bc applied
direetly-the scheme diverges for Cl: > I. This greatly
reduces the speed of convergence. Some intuition may
be gained into why successive over-relaxation cannot
bc used in this case. when it is noted that the ncighbors
of a particular cell, the ones on which the future value
of the cell is based. are changcd in the same iteralive
slep as Ihe cell itself. This does not hltppcn if we use
the Gauss·Seidel mcthod, which aceounts for its stabil
ity. This also suggests a modificalion of the Jacobi
method. where the parallel update of the cells is divided
into scquential updates of subscts ofthe cells. Imagine
coloring the cells in such a W'J.Y thai the neighbors of
a givcn cell uscd in computing its ncw value havc a dif
ferent color from the ccll itself. Now it is "safe" 10 up
date all the cells of one color in parallel (for an
analogous solulion to a problem in binary image pro
cessing. see chapter 4 of Horn 1986).

6.4 Iterative Schemes und Parallelism

(99)

I
l(u = "2 (<:Ij-I + EVJo.,-1 - qO.I-I)

+ ZU+I - f:VJo., + qOJ)

I
2;",1 = "2 (2;,,-1)-1 + E(P...-1J-l + q,,-I.I-I)

+ 2;,,-1.1+1 - f:(p,,_1.l - q,,_I.I» (98)

I
Po.1 = "2 (Pl.l-I + PI)+I)

on the Jen. righl, bollorn, and top border of a rec
t:mgular image region. The corners are again ex
trapolliied diagonally from the nearest point in the in
terior using bOlh componcnts of Ihe gradient. Note that,
in this scheme. onc point on each side of the corner
has to bc similarly interpolated, bccause only one of
the IWO values ncedcd by Ihe above diagonal template
lies in the interior of the region.

If the surface gradienl is not given on the image
boundary, then natural boundary conditions must bc
used for p and q as weil. The natural boundary condi
tion is that the normal derivatives of p and q are zero.
The simplest implementation is perhaps, for I s k <
n-Iandlsl<m-l,

I
P,,-LI = "2 (P,,-2.I-1 + P,,-2.I+1) (100)

Pk.... -l = Pk,m-2

and similarly for q (points in thc corner are copied from
the nearest neighbor diagonally in the interior of the
region). [t may be better to agnin use a different im
plementation. where the values for points on the boun
dary are computed from values at interior cells that have
the same "color." That is, for 2 :s k < " - 2 and
2 :s I < 111 - 2,
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Rg. 4. The modirlCd Jaeobi ITIClhod operaleS on subsel$ofcclls wilh
different "eolors" al different limes. In thc simples! ClIse. thcre are
only two colon. onc IOr thc ccl1s where lhc sum or Ihc indexes ;s
even. lhe other IOr llle alls where the sum or Ihe indc:xC$ is odd.

(102)
sin(rxlt)
(rxlt)

65 Aliasi"8. a"d HolV ro Amid Ir

response for filtering before subsampling (Rifman and
McKinnon 1974; Bernstein 1976; Keys 1981; Abdou and
Young 1982). There is nothing spccific in the above
relating to shape-from-shading: thcse are considerations
that apply generally 10 machine vision.

Similar nations apply to processing of the surface
itself. If we have a digital terrain model of a certain
resolution and want to generme a lower-resolution
shaded image from it, we need to firsl filler and sam
pie Ihe digital terrain model. Otherwisc the result will

Discrete sampies can represcnt a continuous wavefonn
uniquely only if Ihe continuous wavefonn does not con
tain frequency components above Ihe Nyquist rale (wn
= rh., where t is Ihe spacing bet'A-'Cen sampies). If a
wavefonn is sampled Ihat conlains higher frequency
components, Ihese make contributions to Ihe sampled
result Ihat are nol distinguishable from low-frequency
components. If, for eumple, we have a component at
frequency Wo < W < 2"'0' il will make the same con
tributions as a component at frequency 2"'0 - w. This
is what is meant by aliasi/lg. Ideally. Ihe continuous
funclion to bc sampled should first be lowpass filtered.
Filtering after sarnpling can only suppress desirable
signal components along with aliased information.

Numerical estimation of derivatives is weaL:ly i/I
posed. The continuous derivative operator multiplies
Ihe amplitude of each spatial frequency component by
the frequency, thus suppressing low frequencics and 3C

centualing higher frequencies. Any corruption of the
higher frequencies is noticeable, parlicularly if most
of the signal itself is concentratcd atlower frequencies.
This means that wc have to be careful how we estimate
derivatives and how we sampie the image.

Suppose, for example. thai we have an image of a
ceTlain size, but that we YIOuld like 10 TUn our shape
from-shading algorithm on a smaller version, perhaps
to obtain a result in a reasonable amount of time, or
to cheaply provide useful initial values for ileration on
the finer grid. It would be quite wrong to simply sub
sampIe the original image. Simple block-averaging is
better, although frequency analysis shows that Ihe
response of a block-averaging filter first drops to zero
only at twice Ihe Nyquist frequency. It is beller to use
a cubic spline approximation of the ideal

..'~~ .:
4' ,'.

:~36 :
, ....-

-:<.:-. .~".-;':

·.Z10: zl1 :~f2; Zu.',"': '. ':";.'

~- :::::
.z30'·· z31......., .',

When the illumination of the surface is oblique (light
source away from the viewcr), R(p, q) will tend to be
locally approximately linear. This means that the gra
dient of R(p, q) will point in more or less the same
dircction ovcr some region of the image. The effect of
this is that innuences on the adjustments of the
cstimated gradient tend to be much smaller along a
direclion at righl angles 10 Ihe direction "away from
the light source," than they are along other directions.
This can be seen most easily when the coordinale
~)'stem is aligncd with the direclion toWard a single light
source in such a W'J.Y that Ihe reneclance map has
bilateral symmelry with respeCI to Ihc axis q = O. Then
Rq will bc smalI, at leasl for gradients near the p-axis.
In this casc the cocfficients on the diagonal oflhe 2x2
malTix may be vcry different in magnitude. This is
analogous to a syslem of equations being much stiffer
in one direction Ihan another, and suggests that the con
vergence rate may bc lower in this case. A possible
response to this difficuhy is the usc of line relaxation.

Successive over-relaxalion can be used wilh Ihis
nxxIified Jacobi melhod. If !ocal averages are computed
using only Ihe four edge-adjacenl neighbors of a ceU,
then only two colors are needed (where Ihe colors are
assigned according to whether i + j is even or odd~
see figure 4). Each step of Ihe iteration is carried out
in lWO sub-sleps, one for each of Ihe cells of one color.
The above shows Ihal the improved convergence rales
of successive over·relaxation can be made accessible
10 parallel implemcnlations.
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be subject 10 aliasing, and some fealUTeS of the shaded
image will not relate in a recognizable way 10 fealUres
of the surface.

Finally, in creating synthetic dala it is not advisable
to compute the surface gradient on a regular discrete
set of points and then use the retloctance map to
calculate the expected brightness values. At the very
least, one should perform this compulation on a grid
that is much finer than the final image, and then com
pute block averages of the result to simulate the effect
of finite sensing element areas-just as is done in com
puter graphics to reduce aliasing effects.l6

(This hints at an interesting problem, by the way,
since the brightness associated with the average sur
face orientation of a patch is typically not quite equal
to the average brightness of the surface, since the reflec
tance map is not linear in the gradient. This means that
one has to use a retlectance map appropriate to the
resolution one is working at-the reflectance map
depends on the optical properties of the micrOSlrUclUre
of the surface, and what is microstructure depends on
at what scale one is viewing the surface.)

6:6 M~asuring the Quality of Reconstruct;on

There are many ways of accessing the quality of the
solution surface generated. Not all are useful:

I. In the caseofa synthetic imageobtained from a sur
face model, the best test of the output of a shape
from-shading a1gorithm is comparison of the sur
face orientations of the computed result with those
of the underlying surface. One can either compute
the root·mean-square deviation of the directions of
the computed surface norrnals from the tnIe surface
normals, or just the root-mean-square difference in
the gradients themselves.

2. Shading is a function of the surfaee gradient and
thus most sensitive to higher spatial frequencies.
Conversely. in the presenee of neise and recon
suuction errors, we expect !hat the lower spatial fre
quencies will not be recovered as weil. This makes
pointwise comparison of the heights ofthe computed
surface with that of the original surface somewhat
less useful, since errors in the Iower spatiaI frequen
eies will affeet this result strongly. Also, errors in
height will be a funetion of the width of the region
over which one has atternpted 10 recover height from
gradient.

3. Also, comparison ofan "image" obtained by mak
ing brightness a function of height with a similar
"image" obtained from the original surface is
usually not very useful, since such a representation
is not sensitive to surfaee orientation errors, only
grass errors in surface heighl. Also, people gener
ally find such displays quite hard to interpret.

4. Oblique views of "wire-meshes" or "block
diagrams" defined by the discrete known points on
the surface may be helpful to get a qualitative idea
of surface shape, bot can be misleading and are dif
fieult to compare. If the shape·from-shading scheme
is working anything like it is supposed to, the dif
ferenees between the solution and the true surfaee
are Iikely to be too small to be apparent using this
mode of presentation.

5. Comparing the original image with an image ob
tained under the same lighting eonditions from the
solution for the gradient (p, q) is not useful, since
the brightness error is redueed very quiekly with
most iterative schemes. Also, a "solution" can have
gradient field {Ptt.qu} that yields exaetly the cor
rect image when iIIuminated appropriately, yet it
may not even be integrable. In fact, the "sunace"'
may yield an arbitrary second image when illumin
ated from a different direction unless p and q are
forced to be consistent (that iso unless Py = q.J as
discussed at the end of section 7.3.

6. SlightJy better is comparison of the original image
with an image obtained under the same lighting con
ditions using numerieal eslimales of (z..., zyl. But,
unless the image is corrupted, or the assumptions
about the refleeting properties of the surfaee and
the Iighting are incorrect, this synthetic image too
will soon be very e10se to the original image.

7. lf the underlying surfaee is known, shaded views
of the solution and the original surfaee. produced
under lighling eonditions differellt from those used
to generate the input to the algorithm, are wonh
eomparing. This is a useful test that immediately
shows up shoncomings of the solution method. lt
also is agraphie way of ponraying the progress of
the iteration-one that is easier to interpret than a
set of numbers representing the state of the
eomputation.

8. Various measures of depanure from integrability
may be eomputed. Perhaps most useful are com
parisons of numerical estimates of (z.. , Zy) with (p,
q). SlightJy less useful is the differenee (Py - q.J
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of the solulion, since the heighl Z may still not have
converged to the best fit to p and q, even when the
gradient itself is almest integrable.

Q7 When 10 S10P Iterating

As is the case with many ilerative processes. it is dif
ficult to decide when to SIOP iteraling. Ifwe knew what
the underlying surface was, we could just wait for the
gradient of lhe solulion to approach that of the surface.
But, other than when we lest the algorithm on syntheric
images, we do not know what the surface is, otherwise
we would probably not be using a shape-from-shading
method in the first place! Some other test quantities
indude:
I. The brightness error

JJ(E(x, y) - R(p, q»' dx dy (103)

should be smalL Unfortunately this error becomes
small after just a few iterations, so it does nOI yield
a useful stopping criterion.

2. A slightly different brightncss error measure

JJ(E(x, y) - R(zz, z,»l dz dy (104)

is a bit more useful, for while il approaches the
above when an exact solulion is obtained, it lags
behind until the gradient of z equals (p, q). When
an exaci solution is not possible, there will continue
10 be small differences between the gradient ofzand
(p, q), which means that this error measure does
not tend to zero.

3. The departure from smoothness

JJ (Pi + p; + q; + q'j) dxdy

often drops as the solution is approached, but does
not constitute a particularly good indicator of ap
proach to the solution. In particular, when one
comes dose to the solution, one may wish to reduce
the parameter X. perhaps even 10 zero, in which case
further iterations may actually reduce smoothness
in order to better satisfy the remaining criteria.

4. One of the measures of lack of integrability
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is also not too useful, since it can al times become
smalI, or stop changing significantly, even when z
is slill inconsistenl with p and q.

5. Anotber measure of lack of integrability

JJ(zz - pp + (Z,. - q)2) d:c dy (101)

does appear to be very useful, since it drops slowly
and often keeps on changing unlil the iteration has
converged.

6. One can also keep track of the rale of change of the
solution with iteralions

One should not stop until this has become smalI.
In most cases it helps to continue for a while after
the above measures stop changing rapidly since the
solution often continues to adjusl a bit.

Same of the implementation details given above may
appear to be extraneous. However, when all of these
mauers are anended to, then the iterative algorithm will

not "walk away" from the solution, and it will find the
solution, to machine precision, given exaCl data (and
assuming that boundaJy condilions for p and q are
given, and that h' is reduced to zero as the solution
is approached). Convergence to the exaCl solution will
not occur when something is amiss, such as a mismateh
between the discrete estimatofS of the firsl derivative
and the discrete estimator of the Laplacian. It is not
yet c1ear how significanl all of this is when one works
with real image data, where there is no exact solution,
and where the error introduced by incorrect implemen
tation detail may be swamped by errors from other
sources.

7 Some Experimental Results

The new algorithm has been applied to a number of
synthetic images of simple shapes (such as an asym
metrica1 Gaussian, a sum ofGaussian blobs, and a sum
of low-frequency sinusoidal gratings) generated with a
number of different refloctance maps (including one
linear in p and q, Lambertian with oblique illumina
tion, and a rotationally symmetrie one). These synthetic
images were small (usually 64x64 piClure cells) in
order to keep the computarional time manageable.
Typica1ly the surface normals \W>uld be within a degree
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or IWO of the oorrect direclion after a few hundred itera
lions. With appropriate boundary oonditions, the com~

puted shape would eventually be the same (10 machine
precison) as lhe shape used to generate the syntheric
image. In each case, the brightness error decreased
mpidly, while the intcgmbility orthe cstimaled gradient
dccrcased much more slowly.

7.1 Graphical Depicliorl 01 Solutioll Process

For help in debugging thc algorithm, and for purposes
of detennining a good schedule for adjusting the

parameters I-t and >"', it is useful to print out the
diagnostic measurernents discussed in sections 6.6 and
6.7. But it is hard 10 tell exactly what is going on just
by looking at a large table of numbers such as that
shown in figure 5. It is important 10 also provide some
graphie depiction of the CVQlving shape as it is corn
puted. 10 make shaded images orme rcconstructoo sur
face useful, however, they must be illuminated from
a direction differem from the direction of illumination
used for thc original input image.37 Shown in figurc 6,
is such a sequencc of shadcd images generatcd during
the reconstruction of thc surlllce ofa polyhcdml object.
staning from a random fjeld of surfacc oriemalions.
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Fig. 5. Diagno~lic lniCe or vilrious error meilsurcs. This scquence of rcsulls corrcsponds 10 lhe rcconslruclion of lhe sharp-cdged enller shapc
sllOWn in figurc 7. This kind or prcscnt.llion is il1lponunl. bUI mUSl bc supplememed by some graphie depiclion oflhe evolving solUlion surface.
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Fig. 6. Ream$lruclion or a porlion or a lruncatcd hcuhedron rrom a sh:tded image. Tbc dihedrnl angle: betwc:en c:ac:h pair ci lhe lhree Ol.Jler
surra.cc:s is 11:12. Tbis c:xample: illl.Jstrates thc: algoriltun'$ ability 10 dc:al ...-im surfac:c:s lhal~ !arge disconlinl.Jilic:s in surrace orielllalion.

Here the image provided 10 lhe algorithm conesponded
to illumination from the northwcst, while illumination
from the northeast was uscd to display the reeonstrue
tion.lI Note how the edges beeome sharper as A', con
trolling the eontribution oflhe penalty term for depar
ture from smoothness, is made smaller and smaller.
This example iIlustratcs the algorilhm's ability to deal
with surfuces that have discontinuities in surface
orientation.

Becausc of thc inlCrest in application to astrogcology,
aeraler-like shapc was also reconstruetcd, as shown in
figure 7. In Ihis ease, thc algorithm rapidly found a
shape Ihal was generally eorrect, exccpt for flaws in
plaees on thc rim of Ihc eraler in the northeaSI and
southwest. These are areas where there is liule con
trast bctween the inside and the outside of the crater
in the input image.39 It took the algorithm a eonsiderable
number of additional iterations to determine the correct
eontinuation oflhe shapeeomputed in other imageareas.

7. 2 Emergem Global OrganilPtioll

Often progress toward the correct solution is not as
uncventful. Frequently, small inlernally eonsistent solu
tion patchcs will establish themselves, with discontinu
ilics in surfaec orientalion where these patehes adjoin.
Also, conical singularities form that tcnd 10 movc along
the boundaries between such regions as thc iterative
solution progresses. Converscly, boundaries bctween
solution patehcs orten form along eurves connecting
eonieal singularitics that fonn earlier. After a large
cnough number of itcrations, patehes of local organiza
lion tcnd to eoalesce and lead to ell'lcrgent global organ
izallon. This ean be obscrved best when XI is smaller
than it would normally be for rapid eonvergenec. In
figures 8 and 9, for examplc, arc shown a scquencc of
shapes leading finally to a spherical cap on a planar
surfacc. Within some regions, solUlion surface palches
quiekly establish themselves that individually provide
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Fig. 7. ReconSlruction of a cralcr-like shape. Points on lhe rim in lhe nonheaSl and lhe soulhwcsl correspond 10 places in lhe inpul image
wherc lherc is leasl eontras[ belwcen lhe inside and the outside. sinee the dircetion of lhe ineidenl illuminalion is paral1cllO the rim therc.

good matches to corresponding parts of the input image.
The borders bctween these internally consistent regions
provide error contributions that the algorithm slowly
rcduces by moving the boundaries and inerementally
changing the shapes within each of the regions. Too
rapid a reduction of A' can remove the incentive to re
duce the creases and kinks and to freeze the solution in
astate where some unnecessary discontinuities remain.
If, for example, A' were to be set 10 zero with a "solu
tion" consisting of a spherical cap with an inner disk
inverted, as in the right hand image of the middle row
offigure 9, there would be no incentive to further reduce
the length of the drcular discontinuity, and the smooth
solution for this part of the image would nol be found.

The algorithm was also applicd to impossible shadcd
images. Suppose, for example, that we are dcaling with
a Lambertian surface illuminated by a source near the
viewer and that there is a dark smudge in the middle
of a large planar region racing us (whkh appears

brightly lit). It turns out that there is no surface with
continuous first derivatives that could give rise to a
shadcd image with a simply connected, bounded dark
region in the middle of a bright region (Horn, Szeliski,
and Yuille 1989). In figure 10 we see what happens
when the algorithm allempts 10 find a solution. Patches
grow within which the solution is consistent with the
image, but there are discontinuities at boundaries bc
tween patches. Conical singularities sit astride these
boundaries. For all random initial conditions tried, the
algorithm evenrually eliminales all but one of these con
kai singularities. The computcd surface is in fact a
"solution," if one is willing to allow such singularities.

The graphical method of presenting the progress of
the iterative solutions illustratcd above was ver)' hclpful
in debugging the program and in determining reason
able schedules for reduction of the parameters A' and
p.. Shown in figure 11 are some examples of what hap
pens when things go wrong. In the top row are shown
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Fig. 8. Emergenl global organizalion of local nonlinear iteralive proce's. Internally consislcm solution, arise in certain image patelIes witll
discominuilie, at llle borden; belween regions. lhe boundaries !Jelween tllese palche, movc. and Ihe solulions wilhin lhe palclles adjust in
order 10 rcduce Ille ,um of the error terms.

instabilities arising in the solution for the craler-Iike
shape, near the points where there is low contrast be
tween the inside and the outside of the crater-that is,
where there is no local evidence for curvature. These
instabilities can be suppressed by reducing A' more
slowly. In the middle row are shown patterns resulting
from various programming errors. Final1y, in the
botlom row is shown the propagation of an instability
from a free boundary when A' is set to zero. It appears
Ihal the process is nOi stable without the regularizer
when the boundary is completely free. This is not too
surprising, since the problem in this case may be
underdetennined.

In the past, shape-from-shading algorithms have
often been "tested" by verifying that the computed gra
dient field actually generates something close to the
given input image. To show jusl how dangerous this
is, consider figure 12, which demonstrates a ncw non
iterative method for recovering a "surface" given a

shaded image. In figure 12(a), is the input to (he
algorithm, while figure 12(c) is what the gradient field
that is construeted by this algorithm looks like when
illuminated in the same way as the original surfaee.
Figurc 12(b) shows wha( (he original surface looks like
when il1uminated from another direction. As a test, we
should check whether the computed gradient field looks
the same under these illuminating eonditions. But
behold, it does nOI! In Figure l2(d) we sec what we
get when we use the other illuminating condition. The
"trick" here is that the problem of shape from shading
is hcavily underconstrained if we are only eomputing
a gradient field and not cnforcing integrability. There
are many solutions and we can, in fact, impose addi
tional constraints. The underlying gradient field here
was computed by solving the photometrie stereo equa
tions (Woodham 1978, 1979, 1980a, 1989) for the two
images in figures 12(c) and (d) under thc two assumed
lighting eonditions.40
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Fig. 9. Emergenl global organization of local nonlinear ileTalive proccss. Neighboring patehcs coaIcscc. as conical singularitics are absorbcd
by coaIcscing wilh othcr singularitics. or by being pushc:d IOYo3rds a COlIIOIIr where the surracc oriclllalion is disconlinuous.. The final solution
is a sphcrical cap resling on a plane.

The new algorithm has also been applied 10 synthetie
images generated from more complicated surfaces such
as digital terrain models (DTMs) used earlier in re
search on interpretation of satellite images of hilly ter
rain (Horn and Bachman 1978; Sjobcrg and Horn 1983)
and in automatie generation of shaded overlays for
topographie maps (Horn 1981). These synthetie images
wcre somewhat larger (the one used for figure 1 is of
size 231XI78, for example). In this case, the simple
algorithm, presented in section 5.3, using a regulariz
ing term would often get trapped in a local minimum
of the errar function after a small number of iterations,
while the modified algorithm presented in section 5.6,
exploiting the linearization of the reflectance map, was
able to proceed to a solution to machine precision after
a few thousand iterations. Most of the surface normals
typically were already within a degree or so ofthe cor
rect direction after a few hundred iterations.

The c10seness of approach to the true solution depends
on several of the implementation details discussed
earlier. In particular, it was helpfullo usc the old values
of p and q for the reference point in the linearization
of R(p, q), rather than any of the other choices sug
gested earlier. Also, it helps 10 use the diagonal averag
ing scheme in lhe iteration for height rather than the
scheme based on edge-adjacent neighbors.

7.3 Real Shaded lmnges

The new algorithm has also been applied to a few real
images, mostly aerial photographs and images taken
by spacecraft. Shown here (figures 13 anti l4) are the
results obtained from a I08x128 palCh ofa 1024xl024
SPOT satellite image (CNES-Central National Experi
mental Station, France) laken in 1988 oftbe HunlSVilIe,
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Fig. Xl Whal happens ...·hen Ihc algorithm is confmnted ....ith an impossible shaded image? The input Image heTe (001 s/n'..n) is a circularl)'
symmetlic dark smudgc in a unilOrml)' bright sunound. Thc light 5OUI'CC iSISliumed 10 be near the \·ie\I'('r. The algorilhm findsl ''Solution''
....ith I single conical singularit)'.

Alabama region. The ground resolution of such images,
that is, the spacing bctween piclure cells projected on
the surface, is 10 meters. The area of inlerest is Monte
Sano State P'drk. a lrce-covered hilly region east of
Huntsville.

The algorithm was run with frce boundary condi
tions on both height and gradient. With real data. there
Iypically is no exact solution. and the error terms can
nOI bc reduced 10 zero. Correspondingly, wilh free
boundary conditions. Ihe iteralion is nOI stable when
the regularizer is relllClYed completely, so thcre is a limit
on how small onc can make "-'. Onc side-effect of this
is thaI the reconstrucled surface is somewhat smoother
than thc real surface and consequent.ly the vertical relief
is anenuated somewhat. The actual vertical reliefhere,
for example, is about 250 m, while thc overall relief
in thc reconstruction is a bit less than 200 m.

At the time of this experimem, the viewing gcometry
and the light sourcc position were not aV'dilable. nor
was information on atmospheric conditions or sensor
calibration. The atJnospheric scattcr component was
estimated by looking in regions that appcar 10 bc
shadowed, where Ihe reflected light cornponent is ex
pecled to be small (Woodham 198Ob: Horn and Sjoberg
1983). The produci of illumination. surface albedo. and
camera sensitivity was estimated by looking in regions
thai appeared to be lumed to more or less face the light
source. Unfortunately the range of grcy levels in the
region of interest was rather small (23-42), since the
sensor had been adjusted so that it could cover the full
dynamic range nceded for the adjacent urban area.
which was much brighler (21-149).·1 Also, comparison
ofthe left and right images indicales that there may be
a cerlain dcgrcc of aliasing in these images.
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Fig. /J. Graphical depiclion of inslllbilities and the cffocts of programming crrors. In lhe top row are shown inmbilitics I"Csulting from too
mpid rcduction of lhe penalty tenn for dcparluI"C from smoolhness. The middle row shows Ihc resuhs of various programming errors. The
bouorn row shows w.lVes of instability propagaling inwams frorn a fTee boundary.

The light souree elevation was estimated by assum
ing that the average brightness of the image was ap
proximately equal to the eosine of the angle between
the average loeal surfaee normal and the light souree
direetion. The polar angle of the light souree (90 0

minus the elevation aoove the horizon) can then be
found if one assumes further that the average local sur
face nonnal is approximately vertical. For this image,
this method yielded a polar angle of abaut 65~ or an
elevation of 25 c:

The light souree azimuth, that is, the projection of
the direetion toward the light source inta the image
plane, was first estimated to be abaut 60 0 c10ckwise
from the x·axis of the image, based on the directions
of what appear to be shadows of tall buildings in the
downtow"n area ofHuntsVille, as weil as some other im
age features. Attempts to use Pentland's method
(Pentland 1984) for estimation of the source azimuth

failed, as did Lee and Rosenfeld's refinement of that
method (Lee and Rosenfeld 1985). A reasonable diree
tion was found by instead eomputing the axis of least
inenia Ihrough the origin (Horn 1986) of a seattergram
of the brightness gradient (Ex, E). There is a two way
ambiguity in the result (eorresponding to the usual con
vex versus concave interpretations of a surface) that can
be resolved by other methods. Despite the emde nature
of the scattergram, resulting from the coarse quantiza
tion of image irradiance measurements, an acceptable
azimuth of betwcen 60 0 and 65 0 was found in this
fashion.

Finally, it was possible to refine this estimate ofthe
azimuth by running the shape from shading algorithm
for various source azimuths and recording the remain
ing solution errors after many iterations. There was a
broad minimum near an azimuth of 65 c: This method
of estimating the source azimuth, while computationally
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(b)

(d)

Fig. 12. Ncw onc-Slcp shapc-from-shading algorithm, See lexl!

expensive, scems 10 be relativcly reliablc, since theTe
does nOI appear to be a systematic deformation of thc
surface thai can compensate for a change in azimuth
of the light SOUTee whilc yiclding a similar shaded
image. Unfortunately thc same cannat be said of the
elevation angle of light souree position, since tilting thc
surface abau! an axis perpendicular 10 thc light SOUTee
position, in such a way as to maintain thc angle be
twccn the average surface normal and thc direction 10
the light SOU Tee, produces a similar shadcd image-at
lcast 10 first order.

Shown in figure 13 is a regislcred stereo-pair of
SPOT images of thc Mante Sano Statc Park region.

NQle that Ihe Iighl comes from the lower fight (not the

upper left, as is common in artistic renderings of
sculpted surfaces). The stereo pair is shown here so
that the reader can gct a beller idea of Ihe aClUal sur
face shape. The algorithm, when presenled with the
left image of Ihe pair, ca1culates a shapc used 10 generate
Ihe synlhetic stereo pair in figure 14. (The vertical relief
has been exaggerated slightly in the computation ofthe
synthetic stereo pair in order to partially compcnsate
for Ihe attenuation of vertical relief mentioncd carlier.·Z)

Another way of presenling the resulling shape is as
a contour map. Shown in Figure 15(a) is a portion of
the USGS 7.5' quadrangle of the Huntsville Alabama
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Fi,. /J. A stereo pair of SPOT salellile images of M()fIle Sano StaU: part: east of HUnl$Ville. Alabama. T1w: left subimage of tOS x 128 picture
cells is used as input b' the dlape fmm sbiing a1gorilhm.

Ag. 14. A s)'nthetie stereo pair computed (rom the solution obtaincd by the ncw shape from shading algorithm.

area, with the area eovercd by the left satellite
photograph outlined, while figure 15(b) shows a eon
tour map derived from a smoothed form of Ihe solu
tion obtained by the shape-from-shading algorithm.
This is not a comparison that is likely to be flaltering
to the shape-from-shading algorithm, since we know
that it is not very good at recovering the lower spatial
frequencies. Conversely, the shape-from-shading
algorithm flnds a lot of detailed surface undulations that
cannot be represcnted in a contour map. For this reason
the surface must bc smoothed or "generalized" before
contours can be drJ.wn.

For want of a beller assumption, the spacecraft was
at first assumed to be vertically above the region of in
tercst when the image was taken. Judging from lateral
displacements of surface features it appears. however,

that the left image was actually laken from a position
that is about 15 0 aW'J.y from the nadir, in the direction
of the negative x-axis of the image coordinate system
(and the right image from a position roughly the same
amount in the other direclion). This means thai the
computed result rcally applies to a tilted coordinate
system. But more imponantiy, therc is a distonion intro
duced by a poor estimate ofthe source dircction occa
sioned by the assumption that average surface normal
is parallel to the z-axis in the camera coordinate system.
Anempts wcre made to compensate for this by
eSlimating the source dircction based on the assump
tion that the average surface nonnal was tilted 15 0 in
the camera coordinate system. The TCConstroction pro
duced in this fashion was then rotated in Ihe .tZ-plane
to bring it back into a1ignment with IDeal venical. While
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Fig. /5. (alA portion of the USGS IOpographic map of thc: HURlSViI1c:, Alaharna area OOYering Montc: Saoo Stalc park, willltbc approximale
area OOYercd by thc Ieft salellilC image OUllined. The rcctanglc: is 3543' by 4200' (1080 m by 1280 m) and the ronIOur ißlcrval is 20' (6.1
m). (b) ConlOUr mapdc:riYCd frum a smoot!Icd version ortbe solution oblained by thc shapc fmm shading a1gorithm from the Ic:fl salClIiIC imagc:.

lhe result produced in this way was better in certain
ways (lhe lateral displacement of terrain features was
greatly reduced), it was worse in others (induding a
small till of the resull in the y direction). 1be moral
is that 10 obrain quantiratively meaningful resuhs, Orte
needs 10 know aeeurately where the light source is in
the camera coordinate system-and, if the result is 10
be relatcd to some external coordinate system, then the
camera position and attitude in that coordinate system
needs to be known also.

The algorithm has, by the way, also been applied
to some images of Mars taken by the Viking Orbiter.
Dut sinee the "ground truth" is not (yet) available in
the case of the Mars images, it is not possible to say
mueh about the accuracy of the recovered surface orien
ration field.

7.4 Rating the Difficulty 0/ Shape-Jrom-Shading
Problems

Experiments with synthetic shaded images suggests that
eertain shape·from-shading problems are relatively
easy, while others are quite difficult. First oe all, basso
relievo surfaces (those with only low slopes) are easy
to deal with (see also section 2.6) in comparison with
alto-relievo surfaces (those with steep SIOpes).43 The

digital temlin model used for the experiment illustrated
in figure I falls in the latter category, since the sides
oe the glacial cirque are steep and the individual gullies
steeper still.

1)tpically the brightness of a surfaee patch increases
the more it is turned toward the light source. If it is
turned too far, however, it becomes so steep that its
brightrtess once again decreases. There is a qualitative
difference between shape-from-shading problems where
none of the surface patches are tumed that far, and those
where some surface patches are so steep as to have
reduced brightness. In the latter ease, there appears to
be a sorl of two-way ambiguity loeally abaut whether
a pateh is dark beeause il has not been turned enough
to faee the light souree or whether it has been turned
100 far. This ensures that simplistic schemes will get
trapped in local minima where patches of the solution
have quite the wrong orientation. Similarly, the more
sophisticated scheme described here tak.es many more
iterations to unkink. the resulting ereases.

The transition between the two situations depends
on where the light source iso The difficulty is reduced
when the illumination is oblique (see also section 2.6).
Conversely, the problem is more severe when the light
source is at the viewer, in which case brightness
deereases with slope independent of the direction of
the surface gradient. This explains why the algorithm
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took longer to find the solulion in the case of the
spherical cap (figure 8) since it was illuminated by a
source near the viewer. It was more straightforv.'ard to
find the solutions for the truncated hexahedron and the
crnter-like surface (figures 6 and 7), both of which were
illuminated oblique1y. The above dichotomy is related
to another factor: problems where the relevant pan of
lhe reflectancc map is nearly linear in gradient are con
siderably easier to deal with than those in which the
reflectance map displays strong curvatures of iso
brightness contours.

Smooth surfaces. panicularly when convex., can be
rccovered easily. Surfaces with rapid undulations and
wrinkles, such as the digital terrain model surface
(figure I) are harder. Discontinuities in surface orien
tation are even more difficult to deal with. Note that,
with (he exception of the digitallerrain model, all of
lhe examples givcn here in-.ulve surfaces that have some
curves along which the surface orientation is not con
tinuous. 1lle spherical cap. for example, lies on aplanar
surface, with a discontinuity in surface orientation
where it touches the plane.

Problems where boundary conditions are not
available, and where there are no occluding boundaries
or singular poinl'l, are iIl posed, in the sense that an
infinite variety of surfaces could have given rise 10 the
observed shading. NOI 100 surprisingly these tend 10
lead to instabilities in the algorithm, panicularly when
Olle auempts~to reduce the penalty term for departure
from smoothness. In these eases instabilities ean be
damped out to some extent by enforcing the image
irradiance equation on the boundary by iterative ad
justment of the gradient eomputed from the discrete
approximalion of the natural boundary eonditions for
fJ and q. But results have not been promising enough
to be worth discussing here in more detail.

Thc Ilumber ofitemtions to converge to a good solu
tion appears 10 grow almost quadratically with image
sire (number ofrows or eolumns). This is because some
effeets havc to "diffuse" across the image. This means
that the tOlal amount of computation grows almost with
Ihe fourth power of the (linear) image size. It is weil
known lhal ordin.1ry iterative schemes for solving ellip
tic partial differential equations quickly damp OUI
higher spatial frequency errors, while low-frequency
components are removed vcry slowly. One way to deal
wilh this problem is to use compUlation on coarser grids
10 reduce the low spalial frequency components of Ihe
error. This is the elassic Illultigrid approach (Brandt

Im?, 1980, 1984: Hackbush 1985: and Trottenberg
1982). It is c1ear that a Irue multigrid implementation
(as opposed to a simple pyramid scheme)44 would be
required to pursue this approach further on larger im
ages.·4This is mostly to cut down on the computational
effort, bUI can also bc expccted to reduce even funher
the chance of geuing caughl in a loeal minimum ofthe
errar function. Implemcnlaüon, hCM"CVer. is ll()( trivial.
since the equations are nonlinear. and because there
are boundary conditions. 80lh of these factors com
plicate malters. and il is known thai poor implementa
tion can greatly reduce thc favorable con"ergence rate
of the hask multigrid schcme (Brandt ICJ1? 1980. 1984).

Altematively. one may wish 10 apply so-callcd direcl
methods for solving Poisson's equations (Simchony.
Chellappa, and Shao 1989).

8 Conclusion

The original approach to the general shape-from
shading problem requircs numerical solUlion of Ihe
characleriSlic strip equations Ihal arise from thc first
order nonlincar panial differential equmion Ihat rdates
image irradiance to scene irradiance (Horn 1970. ImS).
\arialional approachcs 10 the problem inslead minimize
the sum of Ihe brightness error and a penalty term such
as a measure of depanure from smoothness. These
yield second-order partial diffcrenlial equalions whose
discrete approximation on a regular grid can be con
veniently solved by classic ilerative techniques from
numerical analysis. Several ofthese lllcthods, however.
compute surface orientation, not heighl. ;md do nOl en
sure that lhe resulting gradient field is integrable
(Ikeuchi and Horn 1981: Brooks lind Horn 1985). One
Ihus has, as a second slep. 10 find a surface whose gra
dient comcs elosest to lhe estimated gradient field in
a least~squarcs sense (see Ikeuchi 1984: Horn 1986. eh.
11; Horn und Brooks 1986).

The two stcps can be combincd. and lhe accuracy
ofthe estin13ted surface shape improved considcrably.
by alternately taking one step of the ileration for
rccovering surfacc orientation from brightness. and Olle
stcp of the iteration that recovers the surface that beSI
fits Ihe current estim;lle of thc surface gradient. This
idea can be formalized by setting Up::l vari3tiorul prob
lem involving both the surfacc height above a refercnce
plane and Ihe first pani::ll derivmives thcrcof. The
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resulting set of three coupled Euler equations can be
discretized and 5OlvOO much as lhe two coupled equa
lions are in the simpler methods thai recover only SUT
face orientalion.

Such an itcr,lIive scheme for recovering shape from
shading has been implemented. The new scheme
recovers height and gradient at the same time.
Linearization of lhe reflectance map abau! the local
average surface orientation greatly improves the per
formance of the new algorithm and could be used to
improve the performance of existing iterative shape
from-shading algorithms. The new algorithm has been
successfully applied to complex wrinkJed surfaces, even
surfaces with discontinuitics in the gradient.
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Notes

I. A gradient field is integrable ir il is Ihe grndienl or some sur
race height runction.

2. The gullies are sleep enough to Ix: or interest 10 ice c1imbcrs.
3. For additional examples or reeonslructions rrom shaded images.

sec seclion 7.
4. In lhe uample:$lrial. Ihe a1gorithm a1ways reroverallhe under

Iying surf:ace orientation exaetly al every pietuce cell. staning
from a random surface orkntlllion rlCld, providal!hal boundar)'
information was available. Sinct: lhe queslion ofu.niqueness of
sotutions !las TJOIlx:en lOIaI.Iy resoIved. one cannot Ix: quite cauin
thallhere may llOI be c:ases ....here. differenl soIulion mighl be
foond !hal nappens 10 also fil lhe given image dala exaetly.

5. In phoIocIinomelT)' il is CUSIOmaT)' to use an objed..:erllCral C(l()r

dinale sySiern. This is because surface shapc can bc compuled
atong profiles only ....hen strong additional conslraint is provided,
and such eonslrainlS arc bcSI expressed in an obje~1-eemercd

coordinate syslem. Working in an objccl-centered coordinale
system. ho....ever. makcs the fonnulalion or the sl1ape-from·
shading problem considerably mon: compln (sec, ror eum
pie. (Rindneb<:h 1966»).

6. Grey-Ievels are quanlized e:$linwes of image irradianee.
7. Tbc:[number is lhe ratio of the principaI diSlaIlCC 10 lhe di.lmeltt

of the apcnuI"C. !hal is_ fld.
8. Dip is Ihe angle belwcen a given surfaa: and the lJoriwnuI p13l1l: •

....l1ile 51rike is the direclion of the inlerseetion of the surface
and the horUonlat plane. Tbc: line ofinlersection is pcrpcndieular
10 lhe direction or sleepesl descent.

9. Luminancc longilude and lalitude are the longitude and Inlitude
or a poim on n sphere with lhe givcn orienlalion. llleasured in
aspherkaI coordinale sySlem .... ilh lhe poles al righl angles 10
boIh the direclion lo....ard the souree and lhe direetion lo....ard
lhe vie...-er.

10. Incidence and emiuance ;lnglc:s are rneaningful quaJ1l:ilie:$ onl)'
when there is a single source; and tVen lhen there is. lwo-.....y
.mbiguily in surfilee orienlalion unless addilional information
is providal. 1lIc: same applies to luminalK% Jongiludc: and
lalilUde.

11. Tbc:re is a small problem. ho....ever.....ilh lhis rnethod ror spcei
rying thc direclion lo....ard the lighl source: A souree may bc
"behind" thc scene. wilh thc dircclion 10 the souree more Ihnn
'/(/2 away from lhe dircclion towllrd thc vicwer. In chis ClIse the
z-<:omponenl of lhe veclor poinling IOward Ihe Iighl souree is
negative.

12. Tbc coordillllics of gradicm SfNJet are p and q, Ihe slopes of
the surf:ace in lhe.l and y direclion respcelively.

13. NOIe!ha1 shape·from--shOlding melhods ace mOSI definilely n(}l

rcsuiCied 10 Larnbenian surfaca. Soch spcci;aJ surfaca rnm:ly
provide • convenienl pcdagOSica1 device for i1Ilß1Taling Roiic_.

14. Ifthere is a uniquc: muimum in ref1«1ed brighlnC:SS. iI is 00fl·

venienllo rcscale Ihe measuremeIW so lhallhis eXlremum cor
responds 10 E • I. The same npplies whcn thcre is a unique
minimum, as is lhe case for the 5Canning eleclTon mieroscopc
(SEM).

15. We see thaI C : s • P. : q,. so lhnl Ihe direclion spceified in
Ihe image by (c, s) is lhe direetion .. to....ard lhe !IOUrce:' thai
is, the projeclion inlo Ihe image plane or Ihc vttlor i towan!
lhe lighl souree.
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16. Iflhe funelionJis not monotonie, there will be more titan one
solution fOT eertain briglttness values, In this case one llUty need
to introduce assumptions about conlinuity of Iltc derivatives in
order to decide wlticlt solution to cltoose.

17. Tlte integnltion is, of COUlOe, earried out numerically. since Ilte
integrand is derivcd from image measurcments and not
rcpresenled as an analylic funetion.

18. l1Je reneetance map is rotationally symmetrie, for example. when
Iltc source is where the viewer iso OT wlten an extended source
is symmetrieally distributed aboul the dircction lOw.lTd the viewer.

19. Methods for reeOliering tlte shapes of polyhedral objects using
sltading on the faees and tlte direetions ofthe projections ofllte
edges into the image arc diseusscd in (Sugihara 1986) anti (Horn
1986).

20. Tlte same argument applies when tlte unique exlremum is a
minimum, as il is in tlte case of scanning electron microseope
(SEM) illUtges.

21. The shape-from·shading problem ean be formulated and soh-ed
wlten Ilte viewer and tlte lighl sourecs are not at a grcal distanee
(Rindfleisch 1966; Horn 1910, 1975), but then scene radiance
depends on posilion as weil as surfaee orientalion, and tlte na
tion of a renectance map is not direelly applieable.

22. A gradient·field (or ncedle diagmm) (P(X. y). q(x, y)} is integrable
iftherc exists some surface Iteighl funetion z(x, y) such Ihatp(x,
y) = z~(x, y) and q(x, y) = z,.(x, y), where tlte subscriplS denolC
partial derivatives.

23. Genenllly. a small patclt of a shaded image is infinilely am
biguous. Also. without integrability, Ihe problem of recovering
a gnldient field is generaHy ill posed. But ifwe impose integrabil
ily, and provide suitable boundary conditions, then Ihe sltape
from-shading problem is definitely /lQ/ i1l posed (Bruss 1982;
Deift and Sylvesler 1981; Bmoks 1983; Blake. Zisserman. and
Knowlcs 1985; Saxberg 1988).

24. Note that ..... here is /l0f a Lagrange multiplier, bUI a faelor that
balanees the relative contributions of the brightness error term
anti the ICI"QI measuring departure from SmootllIlCSS. Tl1:lt iso there
is no absolute commim imposed here. only a penalty term added
Ihat inereases willt departure from smoothncss.

25. Tltere are several methods for approximating tlte Laplacian
operator, including five-point and nine-point approximations. lt
is weil known Iltal. wltilc the nine-point approximalion involvcs
morc computation. ilS lowest-order error term Itas a Itigher order
Iltan that of the five-point approximation (Horn 1986).

26. Herc K = 4 whcn Ihe local avernge AI is computed using the
four cdge-adjacent neighbors. wltile K = 1013. when 1/5 of the
avernse of the corner-adjaeent nciShbolO is addcd 10 4/5 of the
averdge of the cdge-adjaeem neigltbors (see also scelion 6.2).

'll. These cquations are solved iterntively blxause the system of cqua
lions is so large and becausc oflhe factlltat Ilte reflectance map
R(p, q) is typically nonlinear.

28. The rcsuhing gradienl field is likely not to be integrable because
wc have not enforeed the eondilion P, = q~. whielt corresponds
to Zxy = Zw

29. Natural boundary conditions arise in variational problems wltere
no boundary eonditions are explicitly imposed (Courant and
Hilbert 1953).

30. The referenee gradient will, of course, be differenl at every pie
ture eell. but to avoid having subscript~ on the subscripts. wc
will simply denote the reference grddient at a partieular pieture
cell by (Po. qo).

31. l1Je new shape-from-shading algorithm. of course. workscqually
weil on synthetie shaded images of digital temlin models ob
taincd by other means. such as onc ofthe Les Diablerets regions
of Switzerland used in (Horn and Bachman 1978).

32. See (Lee 1988) for a pmof of convergence or an iterative shape
from-shading sclteme.

33. The ··red" and "blaek" squares are the eells fOT which Ilte sum
of the row and column indexes arc evcn an<! odd respeetively.

34. It may appear that this difficulty sterns from the use of s\aggered
grids. The problem is even m)rse when aligncd grids are used.
however. because the discretc cstimator of the Laplacian con
sistent with simple cenlnll differenee eSlimators oflhe first par
tial derivalives has a support that includes only ceHs that are 2f
away from Ihe center. And this form of the Laplacian openltor
is known to be badly behavcd. We find that there are Jour de
coupled subsets of cells in Ihis case.

35. Conversely. if Ilte basie melhod ltas a tendency to be unstable.
Ihen one can ··under·relax':....that is, Ust a value IX < I.

36. One can obtain good symhetie data. however, wilh an exaet
algebraie solution, by sampling Ihe heigltt on a regular discrcte
seI ofpoints and then cstimating the deriV"dlives numerieally. as
discussed in scetion 5.1. This was done here to generate most
of the e~mple5 shown in section 7.

n. The leSt illumination should be quite different from the illumina
lion used to genernte Ihe original image-preferrably lying in
a direelion tltat differs front the original sourcc direction by as
much as 'lrf2.

38. The input image is not shown. but is just like the last image in
Ilte scquenee shown. exeept Ihal left and right arc reverse<!.

39. Again, the inpul image is not shown. but is lik.e the last image
in the scquence sltown. e~cepl thatleft and righl are reverse<!.

40. There is no guarantce Ihalthere is a solution oflhe photometrie
stereo problem fOT surfaee orientation, gi\'en tm) arbitrary
brightness values. since Ilte two cquations are nonlinear. In the
partieular ease shown here. the dynamie nlnge of the Im) im
ages was suelt Ihm a solution could be found al all bUI aboul
a huntlrcd picturc eells.

41. The mapping finally cltosen took a grey level of22 into 0.0 and
a grey level of 43 into 1.0 nomJalized surface radiance.

42. While the basc-to-height ralio in the satellite images appears 10

be about 0.5. il was assumcd 10 be 0.75 for purposes oflhe com
putation of the synthetic slereo pair.

43. For more regarding lhe lerms basso-reliel'O, t1Jez;p-reliel'O and
aflo-reliel'O (see Koenderink. and van Doorn 1980).

44. A naive approach has one solve the cqualions on a coarse grid
first. with the results used as inilial conditions for a finer grid
solution after inlerpolation. True multigrid methods are more
comple~. bUI also have much better propcrties.
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