Fan-Beam Reconstruction Methods

BERTHOLD K. P. HORN

Abstract

In a previous paper a technique was developed for finding reconstruction algorithms for arbitrary ray-sanıpling schemes. The resulting algorithms use a general linear operator, the kernel of which depends on the details of the scanning geometry. Here this method is applied to the problem of reconstructing density distributions from arbitrary fan-beam data. The general fan-beam method is then specialized to a number of scanning geometries of practical importance. Included are two cases where the kernel of the general linear operator can be factored and rewritten as a function of the difference of coordinates only and the superposition integral consequently simplifies into a convolution integral. Algorithms for these special cases of the fan-beam problem have been developed previously by others. In the general case, however, Fourier transforms and convolutions do not apply, and linear space-variant operators must be used. As a demonstration, details of a fan-beam method for data obtained with uniform ray-sampling density are developed.

Review

IIN a previous paper [1], a technique was developed for finding reconstruction algorithms applicable to arbitrary raysampling schemes. This general method was applied to the problem of reconstruction from parallel-beam data with uneven spacing between rays and uncven spacing between projections. The results were based on Radon's famous integral [2]

$$
\begin{equation*}
f(r, \phi)=\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} \int_{-\infty}^{\infty}\left(-\frac{1}{l}\right) \frac{\partial}{\partial l} p(l, \theta) d l d \theta \tag{1}
\end{equation*}
$$

where $p(l, \theta)$ is the density integral or ray sum measured along the ray inclined θ with respect to a vertical axis and passing within a distance l from the center of the region being scanned (see Fig. 1). Further, $f(r, \phi)$ is the density at the point with polar coordinates (r, ϕ) in this region, while $t=l-r \cos (\theta-\phi)$ is the perpendicular distance between the ray and this point.

When ray sums in a given projection are spaced evenly in l, and projections are spaced evenly in θ, a simple reconstruction method can be found directly from (1) by approximating both integrals by sums and approximating the partial derivative by an appropriate first difference.

Uniform Scanning Coordinates

When spacing is uneven, it is helpful to introduce first new ray-sampling coordinates ξ and η, chosen so that successive rays in a generalized projection correspond to evenly spaced values of ξ, while successive projections correspond to evenly spaced values of η. Radon's integral can then be transformed to this new coordinate system using the Jacobian,

$$
\begin{equation*}
J=\frac{\partial l}{\partial \xi} \cdot \frac{\partial \theta}{\partial \eta}-\frac{\partial l}{\partial \eta} \cdot \frac{\partial \theta}{\partial \xi} \tag{2}
\end{equation*}
$$

[^0]

Fig. 1.
and (1) becomes

$$
\begin{equation*}
f(r, \phi)=\frac{1}{4 \pi^{2}} \iint\left(-\frac{1}{t}\right) \frac{\partial p}{\partial l} J(\xi, \eta) d \xi d \eta . \tag{3}
\end{equation*}
$$

It is possible to show that this can be rewritten as

$$
\begin{equation*}
f(r, \phi)=\frac{1}{4 \pi^{2}} \iint\left(-\frac{1}{t}\right)\left(\frac{\partial p}{\partial \xi} \cdot \frac{\partial \theta}{\partial \eta}-\frac{\partial p}{\partial \eta} \cdot \frac{\partial \theta}{\partial \xi}\right) d \xi d \eta \tag{4}
\end{equation*}
$$

It is not clear whether this forms a good basis for a reconstruction algorithm in the general case, since it seems to imply that computations must be carried out across projections as well as within projections.

General Parallel-Beam Method

In the previous paper [1], the emphasis was on parallel-ray scanning; and, in this case, l is a function of ξ only, while θ is a function of η only. The Jacobian then reduces to

$$
\begin{equation*}
J=\frac{\partial l}{\partial \xi} \cdot \frac{\partial \theta}{\partial \eta} \tag{5}
\end{equation*}
$$

and (4) simplifies as follows

$$
\begin{equation*}
f(r, \phi)=\frac{1}{4 \pi^{2}} \int\left[\int\left(-\frac{1}{l} \frac{\partial p}{\partial \xi}\right) d \xi\right] \frac{\partial \theta}{\partial \eta} d \eta . \tag{6}
\end{equation*}
$$

Here $t=l-l^{\prime}$, where $l=l(\xi)$, while $l^{\prime}=l\left(\xi^{\prime}\right)$, and ξ^{\prime} is the value of ξ associated with the ray that passes through the point (r, ϕ). The above can be conveniently split into an outer and an inner integral

$$
\begin{align*}
f(r, \phi) & =\frac{1}{4 \pi^{2}} \int g\left(\xi^{\prime}, \eta\right) \frac{\partial \theta}{\partial \eta} d \eta \tag{7}\\
g\left(\xi^{\prime}, \eta\right) & =-\int \frac{1}{l(\xi)-l\left(\xi^{\prime}\right)} \frac{\partial}{\partial \xi} p(\xi, \eta) d \xi . \tag{8}
\end{align*}
$$

Fig. 2.

If these integrals are approximated by sums, one obtains

$$
\begin{align*}
f(r, \phi) & \approx \frac{1}{4 \pi^{2}} \sum_{j} g_{j}\left(\xi^{\prime}\right) \delta \theta_{j} \tag{9}\\
g_{i^{\prime} j} & =-\sum_{i} \frac{\left(p_{i j}-p_{(i-1) j}\right)}{\left(l_{i}-l_{i^{\prime}}^{\prime}\right)} . \tag{10}
\end{align*}
$$

This straightforward set of equations is one result of the analysis in the previous paper [1, eqs. (29), (40)]. Here $\delta \theta_{j}=\left(\theta_{j+1}{ }^{-}\right.$ $\left.\theta_{j-1}\right) / 2$ is the angular interval associated with the j th projection, while $l_{i}^{\prime}=\left(l_{i}+l_{i+1}\right) / 2$ is the value of l corresponding to the center of the i th beam. The left edge of the beam striking the i th detector corresponds to l_{i} and the right edge to l_{i+1} (see I'ig. 2). The density integral obtained from the i th detector in the j th projection is $p_{i j}$.

Finally, note that $g_{j}\left(\xi^{\prime}\right)$ has to be found by interpolation from the discrete set of values $\left\{g_{i^{\prime} j}\right\}$. If linear interpolation is to be used, one can work with the values $g_{i^{\prime} j}$ and $g_{\left(i^{\prime}+1\right) j}$. where

$$
\begin{equation*}
l_{i}^{\prime} \leqslant l\left(\xi^{\prime}\right)<l_{i+1}^{\prime} \tag{11}
\end{equation*}
$$

Relation to Convolution-Backprojection Mfthod

By splitting the second sum and rearranging its terms. one arrives at an alternate form [1, eq. (38)]

$$
\begin{equation*}
g_{i^{\prime} j}=\frac{4}{\left(l_{i^{\prime}+1}-l_{i^{\prime}}\right)} p_{i^{\prime} j}-\sum_{i \neq i^{\prime}} \frac{\left(l_{i+1} l_{i}\right)}{\left(l_{i+1}-l_{i^{\prime}}^{\prime}\right)\left(l_{i}-l_{i^{\prime}}^{\prime}\right)} p_{i j} \tag{12}
\end{equation*}
$$

That is, the sequence $\left\{g_{i j}\right\}$ is obtained from the sequence $\left\{p_{i j}\right\}$ by a general linear operator. This is similar to a convolution except that the weights or filter coefficients are spatially variant.

One has only to fix the width of the detectors. at $\delta /$ say, to be able to relate this result to the well-known convolutionalbackprojection method. In this case

$$
\begin{equation*}
\delta_{l} g_{i^{\prime} j}=\left[4 p_{i^{\prime} j}-\sum_{i \neq i^{\prime}} \frac{4}{4\left(i-i^{\prime}\right)^{2}-1} p_{i j}\right] \tag{13}
\end{equation*}
$$

This amounts to convolution of $\left\{p_{i j}\right\}$ with a filter function F_{k}, where

$$
\begin{equation*}
r_{k}=-\frac{4}{4 k^{2}-1}, \quad \text { for } k \neq 0 \text { and } r_{0}=4 \tag{14}
\end{equation*}
$$

This happens to be the particular set of filter coefficients popularized by Shepp and Logan [3].
My previous paper contains other formulations for this problem as well as a simulation of the method for reconstruc-

Fig. 3.
tion from ray sums collected with uneven spacing $\{1\}$. The main point is that convolutions are inappropriate in the general case and must be replaced by spatially varying operators or superposition integrals.

Reconstruction for Arbitrary Ray-Sampling; Schemes

In the general case, equation (4) does not seem to provide a good starting point for analysis. Instead it is lelpful first to remove the partial derivative from Radon's integral (1) by partial integration. This has to be done carcfully since the inner integral is improper. The integrand is unhounded in any neighborhood including $l=l^{\prime}$. Cauchy's principal value is

$$
\lim _{l \rightarrow 0}\left\{\int_{\infty}^{l^{\prime}-\epsilon}\left(-\frac{1}{l}\right) \frac{\partial}{\partial l} p(l, 0) d l+\int_{l^{\prime}+c}^{+\infty}\left(-\frac{1}{l}\right) \frac{\partial}{\partial l} p(l, 0) d l\right\} .
$$

Integrating by parts one obtains [1, eq. (8)]

$$
\begin{equation*}
f(r, \phi)=\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} \lim _{\epsilon \rightarrow 0} \int_{\infty}^{\infty} F_{\epsilon}(t) p(l, \theta) d l d \theta \tag{16}
\end{equation*}
$$

where

$$
F_{c}(t)= \begin{cases}1 / \epsilon^{2}, & \text { for }|t|<\epsilon \tag{17:1}\\ -1 / t^{2}, & \text { for }|t| \geqslant \epsilon\end{cases}
$$

Introduction of the transformation to uniform samning coordinates $(\xi$. η) now leads to

$$
\begin{align*}
f(r, \phi) & =\frac{1}{4 \pi^{2}} \int g(r, \phi, \eta) d \eta \tag{18}\\
g(r, \phi, \eta) & =\lim _{\epsilon \rightarrow 0} \int F_{e}(t) J(\xi, \eta) p(\xi, \eta) d \xi . \tag{19}
\end{align*}
$$

This forms the basis for reconstruction methods for arbitrary ray-sampling schemes. In this paper the concern will be with techniques for reconstructing density distributions from ray sums collected using fan beams (see Fig. 3). Modern apparatus for computerized tomographic analysis typically produces projection data in this form and there is a practical need for aceurate and rapid reconstruction methods for a
variety of different schemes for sampling the fan beam. Such methods had been found previously for two special geometries [4]-|6]. Ifere techniques will be developed that can be used for arhitrary ray-sum collection schemes.

Before continuing to the fan-beam case, the reader may want to consult an alternative analysis of the same general problem [7] which could equally well form a starting point for this paper.

Solirce: Positions Distributed Arouni) the Circumberince of a Circle

Let the source be located at $(D, \pi / 2+\beta$) where D is the radius of the circle (see Fig. 1). Let a ray be emitted in a direction that makes an angle α with the source-to-origin line. Clearly α and β are as good for specifying a particular ray as l and 0 are. For fan beams, these new parameters will be more directly useful, and so the relationships between the two sets of variables will be needed. Front Fig. I

$$
\begin{array}{lll}
l=D \sin \alpha & \text { and } & 0=\alpha+\beta \\
\alpha=\sin ^{-1}(l / D) & \text { and } & \beta=\theta \cdot \sin ^{-1}(l / D) . \tag{21}
\end{array}
$$

If ξ and η are uniform scanning coordinates, then it is natural tolet

$$
\begin{equation*}
\alpha=\alpha(\xi) \text { and } \beta=\beta(\eta) \tag{22}
\end{equation*}
$$

where α and β are continuous differentiable monotonic functions of ξ and η. Then (sce (2))

$$
\begin{equation*}
J=\frac{\partial l}{\partial \xi} \frac{\partial \theta}{\partial \eta} \text { since } \frac{\partial l}{\partial \eta}=0 \tag{23}
\end{equation*}
$$

Further. since $\theta=\alpha+\beta$.

$$
\begin{equation*}
J=\frac{\partial l}{\partial \alpha} \frac{\partial \alpha}{\partial \xi} \frac{\partial \beta}{\partial \eta}=\frac{\partial \beta}{\partial \eta} D \cos \alpha \frac{\partial \alpha}{\partial \xi} . \tag{24}
\end{equation*}
$$

Now J is a factor in the inner integral (19), but the first term of the above product can clearly be brought out of the inner integral and incorporated into the outer integral (18). The last term of the product will depend on the way in which rays in a fan are sampled. This corresponds to the placement of detectors in the fan and depends on the scanning scheme used. We will study several cases alter developing a few inore tools that will be needed.

The Pirplenidicular Distance from a Point to a Ray for Fan Beams

I'rom the diagram (Fig. 4) we can develop a useful new way of writing t, the distance between a given ray (α, β) and a given point (r, ϕ)

$$
\begin{equation*}
t=K \sin \left(\alpha-\alpha^{\prime}\right) \tag{25}
\end{equation*}
$$

where, by the cosine rule for triangles (see Fig. 5),

$$
\begin{equation*}
K^{2}=r^{2}+D^{2}+2 r D \sin (\beta-\phi) \tag{26}
\end{equation*}
$$

Here α^{\prime} is the value of α corresponding to a ray from the source which passes directly through the given point (r, ϕ). Note that K^{\prime} is simply the distance from the source to the point (r, ϕ) and thus clearly does not depend on α. From the diagram we can calculate α^{\prime} as follows (see Fig. 5):

$$
K \sin \alpha^{\prime}=r \cos (\beta-\phi)
$$

Fig. 4.

Fig. 5.
and

$$
\begin{equation*}
K^{r} \cos \alpha^{\prime}=D+r \sin (\beta-\phi) \tag{27}
\end{equation*}
$$

and so,

$$
\begin{equation*}
\tan \alpha^{\prime}=\frac{r \cos (\beta-\phi)}{[D+r \sin (\beta-\phi)]} \tag{28}
\end{equation*}
$$

Some Properties of the Filtering Function
Note that if $c \neq 0$, then

$$
\begin{equation*}
F_{c}(c t)=\frac{1}{c^{2}} F_{c / c}(t) \tag{29}
\end{equation*}
$$

This result can be easily checked by separately considering the cases $|c t|<\epsilon$ and $|c t| \geqslant \epsilon$. From this it follows that

$$
\begin{equation*}
\int_{-\infty}^{\infty} F_{e}(c t) d t=0 \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \int_{-\infty}^{\infty} F_{\epsilon}(c t) a(t) d t=\frac{1}{c^{2}} \lim _{\epsilon \rightarrow 0} \int_{-\infty}^{\infty} F_{\epsilon}(t) u(t) d t \tag{31}
\end{equation*}
$$

Furthermore if $|h(t)| \geqslant b_{0}>0$ is continuous and differentiable with respect to t

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \int_{-\infty}^{\infty} F_{\epsilon}[b(t) t] a(t) d t=\lim _{\epsilon \rightarrow 0} \int_{-\infty}^{\infty} F_{\epsilon}(t) \frac{a(t)}{b^{2}(t)} d t \tag{32}
\end{equation*}
$$

These results are useful in deriving the general reconstruction formula for fan-beam scanning schemes.

Reconstruction Algorithm for Arbitrary Fan-Beam Geometrifs

Using the general result for reconstruction (18), (19) based on Radon's inversion formula [2] and using the expressions for t and J just derived, we have

$$
\begin{align*}
f(r, \phi) & =\frac{1}{4 \pi^{2}} \int g^{\prime}(r, \phi, \eta) \frac{\partial \beta}{\partial \xi} d \eta \tag{33}\\
g^{\prime}(r, \phi, \eta) & =\lim _{\epsilon \rightarrow 0} \int F_{\mathrm{C}}\left[K \sin \left(\alpha-\alpha^{\prime}\right)\right] D \cos \alpha \frac{\partial \alpha}{\partial \xi} p(\xi, \eta) d \xi . \tag{34}
\end{align*}
$$

According to a result just developed (31), the factor K can be extracted from the argument of the filter function F. Since K does not depend on α it can be further removed from the inner integral (34) and placed into the outer integral (33). The inner integral then no longer contains terms which depend explicitly on r and ϕ. only terms which are a function of α^{\prime}. So the above can be rewritten

$$
\begin{align*}
f^{\prime}(r, \phi) & =\frac{1}{4 \pi^{2}} \int g^{\prime \prime}\left(\alpha^{\prime}, \eta\right)\left(1 / K^{2}\right) \frac{\partial \beta}{\partial \eta} d \eta \tag{35}\\
g^{\prime \prime}\left(\alpha^{\prime}, \eta\right) & =\lim _{\epsilon \rightarrow 0} \int F_{\epsilon}\left[\sin \left(\alpha-\alpha^{\prime}\right)\right] D \cos \alpha \frac{\partial \alpha}{\partial \xi} p(\xi, \eta) d \xi \tag{36}
\end{align*}
$$

From the fact that the inner integral is a function of α^{\prime}, and not r and ϕ explicitly, we conclude that the reconstruction algorithm can be arranged efficiently. That is, for all fan beam schemes with source positions on the circumference of a circle and sampling of the fan independent of source position, one need not explicitly calculate the contribution of each ray to each point in the reconstruction.
We are now ready to develop specific reconstruction methods for a variety of fan-sampling schemes. Some special schemes will lead to simplifications which can be interpreted as premultiplication, convolution and post-multiplication. In general, however, the inner integral remains in the form of a general linear operator or superposition integral.

Uniform Sampling Along a Line at Right Angles to the Source-to-Origin Line

Rays are sampled evenly in λ (sec Fig. 6), so it is natural to let

$$
\begin{array}{r}
\xi=\lambda=D \tan \alpha \\
D \cos \alpha\left(\frac{\partial \alpha}{\partial \xi}\right)=\cos ^{3} \alpha \tag{38}
\end{array}
$$

Also,

$$
\sin \alpha=\frac{\xi}{\sqrt{D^{2}+\xi^{2}}}
$$

and

$$
\begin{equation*}
\cos \alpha=\frac{D}{\sqrt{D^{2}+\xi^{2}}} . \tag{39}
\end{equation*}
$$

Fig. 6.

So

$$
\begin{equation*}
D \cos \alpha\left(\frac{\partial \alpha}{\partial \xi}\right)=\frac{D^{3}}{\left[D^{2}+\xi^{2}\right]^{3 / 2}} \tag{40}
\end{equation*}
$$

Further, if we let α^{\prime} be the value of α corresponding to the ray through the point (r, ϕ) and ξ^{\prime} the corresponding value of ξ. then

$$
\sin \alpha^{\prime}=\frac{\xi^{\prime}}{\sqrt{D^{2}+\xi^{\prime 2}}}
$$

and

$$
\begin{equation*}
\cos \alpha^{\prime}=\frac{D}{\sqrt{D^{2}+\xi^{\prime 2}}} . \tag{+1}
\end{equation*}
$$

So.

$$
\begin{align*}
& \sin \left(\alpha \cdot \alpha^{\prime}\right)=\sin \alpha \cos \alpha^{\prime} \quad \sin \alpha^{\prime} \cos \alpha \tag{42}\\
& \sin \left(\alpha \cdot \alpha^{\prime}\right)=\frac{D}{\sqrt{D^{2}+\xi^{2}} \sqrt{D^{2}+\xi^{\prime 2}}}\left(\xi \cdot \xi^{\prime}\right) \tag{4.3}
\end{align*}
$$

Hence.

$$
\begin{align*}
g^{\prime \prime}\left(\xi^{\prime}, \beta\right)= & \lim _{\epsilon \rightarrow 0} \int F_{\epsilon}\left[\frac{1}{\sqrt{D^{2}+\xi^{\prime 2}}}\left(\xi \cdot \xi^{\prime}\right) \frac{D}{\sqrt{D^{2}+\xi^{2}}}\right] \\
& \cdot \frac{D^{3}}{\left[D^{2}+\xi^{2}\right]^{3 / 2}} p(\xi, \beta) d \xi . \tag{44}
\end{align*}
$$

We can move the multiplier of ($\xi \quad \xi^{\prime}$) out of the filter function F to get

$$
\begin{equation*}
\left.g^{\prime \prime}\left(\xi^{\prime}, \beta\right)=(I)^{2}+\xi^{\prime 2}\right) \lim _{\epsilon \rightarrow 0} \int F_{\epsilon}\left(\xi-\xi^{\prime}\right) \frac{D}{\sqrt{D^{2}+\xi^{2}}} p(\xi, \beta) d \xi \tag{45}
\end{equation*}
$$

Note that from (37) or (41)

$$
\begin{equation*}
\xi^{\prime}=D \tan \alpha^{\prime} \tag{46}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left(D^{2}+\xi^{\prime 2}\right)=D^{2} \sec ^{2} \alpha^{\prime} \tag{47}
\end{equation*}
$$

Also, combining this with the term $\left(1 / K^{2}\right)$ in the outer in-
tegral one gets

$$
\begin{equation*}
\frac{\left(D^{2}+\xi^{\prime 2}\right)}{K^{2}}=\frac{D^{2}}{\left[K \cos \alpha^{\prime}\right]^{2}}=\frac{D^{2}}{[D+r \sin (\beta-\phi)]^{2}} \tag{48}
\end{equation*}
$$

and so. finally.

$$
\begin{align*}
f(r, \phi) & =\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} g^{\prime \prime \prime}\left(\lambda^{\prime}, \beta\right) \frac{D^{2}}{[D+r \sin (\beta-\phi)]^{2}} d \beta \tag{49}\\
g^{\prime \prime \prime}\left(\lambda^{\prime}, \beta\right) & =\lim _{c \rightarrow 0} \int_{-\infty}^{+\infty} F_{\epsilon}\left(\lambda-\lambda^{\prime}\right) \frac{D}{\sqrt{D^{2}+\lambda^{2}}} p(\lambda, \beta) d \lambda
\end{align*}
$$

llere finally we have used the coordinate natural to this particular scanning scheme, namely λ, the distance from the origin at which the ray intersects the line drawn perpendicular to the source-to-origin line.

It is important to note that in this case the argument of the filter function F contains only the difference of the two parameters λ and λ^{\prime}. The above is thus almost like a convolution, except that one his to pre-multiply the projection data $\rho(\lambda, \beta)$ by a factor depending on the position of the ray in the tan. Similarly, the convolved data $g^{\prime \prime \prime}$ is used in the outer integral atter post-multiplication by a factor which depends on the position of the point (r, ϕ) in the fan currently being processed.

Discrete Λ pproximation

Finally, we have to approximate these integrals by sums because in practice only a finite set of ray sums is available:

$$
\begin{align*}
f^{\prime}(r, \phi) & \approx \frac{1}{4 \pi^{2}} \sum_{j} g_{j}\left(\lambda^{\prime}\right) \frac{D^{2}}{\left.[D)+r \sin \left(\beta_{j} \cdot \phi\right)\right]^{2}} \delta \beta_{j} \tag{51}\\
g_{i^{\prime} j} & =\sum_{i} F_{i-i} \frac{D}{\sqrt{D^{2}+\lambda_{i}^{z}}} l_{i j} \delta \lambda \tag{52}
\end{align*}
$$

Here

$$
\begin{equation*}
\lambda^{\prime}=D \tan \alpha^{\prime}=\frac{D r \cos \left(\beta_{j}-\phi\right)}{D+r \sin \left(\beta_{j}-\phi\right)} \tag{53}
\end{equation*}
$$

In the above set of reconstruction equations, $p_{i j}$ is the i th ray sum in the j th fan, while $\delta \lambda$ is the (fixed) interval between intersection of successive rays with the line perpendicular to the source-to-origin line. The angular interval associated with a particular fan is $\delta \beta_{j}$. where

$$
\begin{equation*}
\delta \beta_{j}=\left(\beta_{j+1}-\beta_{j-1}\right) / 2 \tag{54}
\end{equation*}
$$

The filter factors are

$$
\begin{align*}
& F_{k}=-\frac{w_{k}}{(k \delta \lambda)^{2}}, \quad k \neq 0 \tag{55}\\
& F_{0}=-2 \sum_{k=1}^{\infty} F_{k} \tag{56}
\end{align*}
$$

As mentioned in the paper on which this analysis is based, the weights $i^{\prime} k$ are chosen to provide good numerical approximations for the singular integral. Typical choices are:

1) $w_{k}=2$ for k even, $w_{k}=0$ for k odd
2) $u^{\prime} k=4 k^{2} /\left(4 k^{2}-1\right)$
3) $w_{k}=1$.

Note that the above operation can be viewed as a premultiplication of the ray sums by $D /\left[\left[D^{2}+\lambda_{i}^{2}\right]^{1 / 2}\right.$, followed by a convolution, with a final post-multiplication by $D^{2} /[D+$ $\left.r \sin \left(\beta_{j}-\phi\right)\right]^{2}$. While the method is not strictly convolutional, it can be conveniently viewed in this way. The above is one of two special cases of the fan-beam problem that had previously been solved [4], [5]. An attempt was made here to use similar notation to simplify comparison.

We ought to specify how $g_{j}\left(\lambda^{\prime}\right)$ is found from $g_{i}{ }^{\prime} j$. As in the previous paper [l], we approximate $g_{j}\left(\lambda^{\prime}\right)$ by interpolation. If we sample N rays uniformly along a segment of length L. of the line at right angles to the source-to-origin line, then $\delta \lambda=L /(N-1)$, and the i th ray corresponds to

$$
\begin{equation*}
\lambda_{i}=-L / 2+i \delta \lambda \tag{57}
\end{equation*}
$$

Consequently, $g_{j}\left(\lambda^{\prime}\right)$ is found by interpolation from $g_{i^{\prime} j}$ and $g_{(i \prime+1) j}$ where.

$$
\begin{equation*}
i^{\prime}=\left\lfloor\left(\lambda^{\prime}+L / 2\right) / \delta \lambda\right] \tag{58}
\end{equation*}
$$

In practice, of course, detectors would not be arranged on a line passing through the scanned space. The geometric transformations from a more distant linear detector array to positions on the line passing through the origin are fortunately trivial (see Fig. 3). Such an array of equally wide detectors positioned behind the object being scanned would have to move in synchrony with the source, so as to always remain perpendicular to the source-to-origin line. There is great interest in scanning schemes which can instead use a fixed array of detectors. One such arrangement will be discussed in the next section.

Even Sampling of Rays in Fan Angle

Even sampling of rays in fan angle α can be achicved easily using a set of equally wide detectors arrayed on a sector of a circle with eenter at the source position. Curiously equal spacing of samples in fan angle can also be achieved when these detectors are instead placed on a circle passing through the source, with center at the origin (see Fig. 7). This follows from the fact that the angle at the center is just twice the angle at the source, and so equal angular spacing of detectors when viewed from the origin corresponds to equal angular spacing of detectors when viewed from the source. Such an arrangement of detectors has an advantage in that the detectors could remain stationary during scanning if the potential mechanical conflict between source and detectors could be solved. In any case, it is natural here to let

$$
\begin{equation*}
\xi=\alpha \tag{59}
\end{equation*}
$$

So.

$$
\begin{equation*}
D \cos \alpha \frac{\partial \alpha}{\partial \xi}=D \cos \alpha \tag{60}
\end{equation*}
$$

Procecding as in the previous section, we obtain from (35) and (36),

$$
\begin{align*}
f(r, \phi) & =\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} g^{\prime \prime}\left(\alpha^{\prime}, \beta\right)\left(1 / K^{-2}\right) d \beta \tag{61}\\
g^{\prime \prime}\left(\alpha^{\prime}, \beta\right) & =\lim _{\epsilon \rightarrow 0} \int_{\pi / 2}^{+\pi / 2} F_{c}\left[\sin \left(\alpha-\alpha^{\prime}\right)\right] D \cos \alpha p(\alpha, \beta) d \alpha \tag{62}
\end{align*}
$$

Fig. 7.
where by (25).

$$
K^{2}=r^{2}+D^{2}+2 r D \sin (\beta \phi) .
$$

(0.3)

Next, we obtain the discrete approximation

$$
\begin{align*}
f(r . \phi) & \approx \frac{1}{4 \pi^{2}} \sum_{j} g_{j}\left(\alpha^{\prime}\right) \frac{1}{\left.r^{2}+D^{2}+2 r l\right) \sin \left(\beta_{j}-\zeta\right)} \delta \beta_{j} \tag{64}\\
g_{i^{\prime} j} & =\sum_{i} r_{i^{\prime}-i} D \cos \alpha_{i} r_{i j} \delta \alpha \tag{65}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha^{\prime}=\tan ^{-1}\left[\frac{r \cos \left(\beta_{j} \phi\right)}{n+r \sin \left(\beta_{j}-\phi\right)}\right] . \tag{66}
\end{equation*}
$$

Once again $p_{i j}$ is simply the i the ray sum in the j th fan, while $\delta \alpha$ is the (fixed) angular interval between rays in the fan. The angular interval associated with a particular fan $\delta \beta_{j}$ is as defined before (40). The filter factors are

$$
\begin{align*}
& F_{k}=-\frac{u_{k}^{\prime}}{\sin ^{2}(k \delta \alpha)}, \quad k \neq 0 \tag{67}\\
& F_{0}=-\sum_{k \neq 0} F_{k} . \tag{68}
\end{align*}
$$

Finally, one needs to detail the interpolation procedure for finding $g_{j}\left(\alpha^{\prime}\right)$ from the discrete set of values $g_{i^{\prime} j}$. If N rays are sampled uniformly along an are of angle A, then $\delta \alpha=A /(N-1)$. The i th ray then corresponds to

$$
\begin{equation*}
\alpha_{i}=-A / 2+i \delta a . \tag{69}
\end{equation*}
$$

Consequently. $g_{j}\left(\alpha^{\prime}\right)$ is found by interpolation from $g_{i^{\prime} j}$ and $g_{\left(i^{\prime}+1\right) j}$ where

$$
\begin{equation*}
i^{\prime}=\left\lfloor\left(\alpha^{\prime}+A / 2\right) / \delta \alpha\right\rfloor \tag{70}
\end{equation*}
$$

This reconstruction method may be viewed as a pre-multiplication of the ray sums by $D \cos \alpha_{i}$, followed by convolution. with a final post-multiplication by $\left.1 /\left[r^{2}+I\right)^{2}+2 r D \sin \left(\beta_{j}-\phi\right)\right]$. This is the second special case of the fan-bean reconstruction problem which had been solved previously [5]. [6].
Other fan-beam scanning geometries do not lead to such special case solutions however. Usually, a general linear operation is required. Fortunately, the method presented carlier
allows one to treat arbitrary fan-beam scanning geometries. We will study one in detail as an illustration.

A Mfihod with Uniform Sampling Density

Both of the scanning schemes discussed so far sample areas near the origin less densely than they do areas near the edge of the region of reconstruction. This can be seen when it is remembered that the ray-sampling density is the inverse of the Jacobian. $[1]$ and that for fan-beam scanning (24)

$$
\begin{equation*}
J=\frac{\partial \beta}{\partial \eta} D \cos \alpha \frac{\partial \alpha}{\partial \xi} . \tag{71}
\end{equation*}
$$

Now for the first method (38)

$$
\begin{equation*}
\text { 1) } \cos \alpha\left(\frac{\partial \alpha}{\partial \xi}\right)=\cos ^{3} \alpha \tag{72}
\end{equation*}
$$

while for the second method (66)

$$
\begin{equation*}
\text { I) } \cos \alpha\left(\frac{\partial \alpha}{\partial \xi}\right)=D \cos \alpha \tag{73}
\end{equation*}
$$

The result of this variation in sampling density is that reconstructions will have somewhat better resolution in outlying regions (particularly in the radial direction, less so in the tangential direction). While this effect is not very pronounced for fans that are fairly narrow, it is still of interest to investigate schemes providing uniform sampling density. That is,

$$
\begin{equation*}
D \cos \alpha\left(\frac{\partial \alpha}{\partial \xi}\right)=1 \tag{74}
\end{equation*}
$$

If this equation is integrated one finds

$$
\begin{equation*}
\xi=l=D \sin a \text {. } \tag{7.5}
\end{equation*}
$$

This means that ray are spaced evenly in their perpendicular distance l from the origin (see Fig. 8). No convenient arrangement of equally wide detectors will provide for sampling of the fan in this fashion, but clearly detectors of remving width arranged on either a straight or curved line can be used. Theit width will increase with distance from the central detector.
Now note that

$$
\begin{align*}
\sin \left(\alpha \quad \alpha^{\prime}\right)= & \sin \alpha \cos \alpha^{\prime} \quad \sin \alpha^{\prime} \cos \alpha \tag{76}\\
\sin \left(\alpha-\alpha^{\prime}\right)= & \cos \alpha^{\prime}\left(\tan \alpha \quad \tan \alpha^{\prime}\right) \cos \alpha \tag{77}\\
\sin \left(\alpha \quad \alpha^{\prime}\right)= & \frac{\sqrt{D^{2}-\xi^{\prime 2}}}{D}\left[\frac{\xi}{\sqrt{D^{2}-\xi^{2}}}-\frac{\xi^{\prime}}{\sqrt{D^{2}-\xi^{\prime 2}}}\right] \\
& \cdot \frac{\sqrt{D^{2}-\xi^{2}}}{D} \tag{78}
\end{align*}
$$

where $\xi^{\prime}=I$) sin a^{\prime}. Processing as before (using (35) and (36)), we get

$$
\begin{align*}
f(r . \phi)= & \frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} g^{\prime \prime}\left(l^{\prime}, \beta\right) \frac{D^{2}}{[D+r \sin (\beta-\phi)]^{2}} d \beta \tag{79}\\
g^{\prime \prime}\left(l^{\prime}, \beta\right)= & \lim _{\epsilon \rightarrow 0} \int_{-D}^{+D} F_{c}\left(\frac{l}{\sqrt{D^{2}-l^{2}}}-\frac{l^{\prime}}{\sqrt{D^{2}-l^{\prime 2}}}\right) \\
& \cdot \frac{1}{\left(D^{2}-l^{2}\right)} p^{(l, \beta)}(\beta l . \tag{180}
\end{align*}
$$

Fig. \boldsymbol{h}.
The following identity was used for the outer integral

$$
\begin{equation*}
\frac{1}{K^{2}} \cdot \frac{D^{+}}{D^{2}-l^{\prime 2}}=\frac{D^{4}}{K^{2} D^{2} \cos ^{2} \alpha^{\prime}}=\frac{D^{2}}{[D+r \sin (\beta-\phi)]^{2}} . \tag{81}
\end{equation*}
$$

Note that here l^{\prime} is the value of l for the ray inctined α^{\prime} to the source-to-origin line (see Fig. 8)

$$
\begin{equation*}
l^{\prime}=D \sin \alpha^{\prime} . \tag{82}
\end{equation*}
$$

(This use of l^{\prime} differs from that in the paraliel ray scanning schemes presented in the previous paper [1].)
Once again, a discrete approximation is required

$$
\begin{align*}
f(r, \phi) & \approx \frac{1}{4 \pi^{2}} \sum_{j} y_{j}\left(l^{\prime}\right) \frac{D^{2}}{\left[D+r \sin \left(\beta_{j}-\phi\right)\right]^{2}} \delta \beta_{j} \tag{83}\\
g_{i^{\prime} j} & =\sum_{i} l_{i^{\prime} i} \frac{1}{D^{2}-l_{i}^{2}} m_{i j} \delta l \tag{84}
\end{align*}
$$

where

$$
\begin{equation*}
l^{\prime}=D \sin \alpha^{\prime}=\frac{D r \cos \left(\beta_{j}-\phi\right)}{\sqrt{r^{2}+D^{2}+2 r D \sin \left(\beta_{j}-\phi\right)}} \tag{85}
\end{equation*}
$$

The filter factors are

$$
\begin{align*}
& \left.r_{i^{\prime} i}=\frac{w_{k}}{\left[\frac{l_{i}}{\sqrt{D^{2} \cdot l_{i}^{2}}}-\frac{l_{i}^{\prime}}{\sqrt{D^{2}-l_{i^{\prime}}^{2}}}\right.}\right]^{2}, \text { for } i \neq i^{\prime} \tag{86}\\
& \digamma_{i^{\prime} i^{\prime}}=-\sum_{i \neq i^{\prime}} F_{i^{\prime} i} . \tag{87}
\end{align*}
$$

In this case, then, as for most scanning schemes, a general lincar operator rather than a modified convolution must be used. The methods presented here permit the derivation of algorithms to deal with these problems. Note, by the way, that here the factors of $\sin \binom{\alpha}{\alpha^{\prime}}$ were split up in a similar fashion to that of the first two examples. This is not strictly necessary, since all three components can be accomodated as part of the filter function $F_{\mathrm{e}}\left(l, l^{\prime}\right)$ or $F_{i^{\prime} i}$, if so desired.

Another Method

The existence of an elegant method for reconstruction from parallel-beam data (equations (7) and (8) or (9) and (10)) which uses derivatives of projection data and does not de-
pend on arbitrary filter coefficients leads one to search for a similar expression for fan-beam reconstruction. Starting from the general form (4) does not seem to lead to such a result. Instead one may apply partial integration to the form of the inner integral shown in (36)

$$
g^{\prime \prime}\left(\alpha^{\prime}, \eta\right)=\lim _{\epsilon \rightarrow 0} \int_{\pi / 2}^{\pi / 2} r_{c}\left[\sin \left(\alpha-\alpha^{\prime}\right)\right] p(\alpha, \beta) D \cos \alpha d \alpha .
$$

(88)

If one lets $\sin \delta=\epsilon$, then

$$
\begin{align*}
g^{\prime \prime}\left(\alpha^{\prime}, \eta\right)= & \lim _{\epsilon \rightarrow 0}\left[\int_{-\pi / 2}^{\alpha^{\prime}-\delta} \frac{1}{\sin ^{2}\left(\alpha-\alpha^{\prime}\right)} p(\alpha, \beta) D\right) \cos \alpha d \alpha \\
& +\frac{1}{\epsilon^{2}} \int_{\alpha^{\prime}-\delta}^{\alpha^{\prime}+\delta} p(\alpha, \beta) D \cos \alpha d \alpha \\
& \left.\left.+\int_{a^{\prime}+\delta}^{+\pi / 2} \frac{1}{\sin ^{2}\left(\alpha \alpha^{\prime}\right)} p(\alpha, \beta) \eta\right) \cos \alpha d \alpha\right] . \tag{89}
\end{align*}
$$

Or.

$$
\begin{align*}
g^{\prime \prime}\left(\alpha^{\prime}, \eta\right)= & \lim _{\epsilon \rightarrow 0}\left[\int_{\pi / 2}^{\alpha^{\prime}-\delta}-\frac{\cos \left(\alpha-\alpha^{\prime}\right)}{\sin ^{2}\left(\alpha-\alpha^{\prime}\right)} p(\alpha, \beta) \frac{D \cos \alpha}{\cos \left(\alpha-\alpha^{\prime}\right)} d \alpha\right] \\
& \left.+\frac{2 \delta}{\epsilon^{2}} p\left(\alpha^{\prime}, \beta\right) 1\right) \cos \alpha^{\prime}+\lim _{c \rightarrow 0}\left[\int_{\alpha^{\prime}+\delta}^{+\pi / 2}\right. \\
& \left.-\frac{\cos \left(\alpha-\alpha^{\prime}\right)}{\sin ^{2}\left(\alpha-\alpha^{\prime}\right)} p(\alpha, \beta) \frac{D \cos \alpha}{\cos \left(\alpha-\alpha^{\prime}\right)} d \alpha\right] \tag{90}
\end{align*}
$$

That is,

$$
\begin{align*}
& {\left[\frac{D}{\sin \left(\alpha-\alpha^{\prime}\right)} p(\alpha, \beta) \frac{\cos \alpha}{\cos \left(\alpha-\alpha^{\prime}\right)}\right]_{-\pi / 2}^{\alpha^{\prime}-\delta}} \\
& \quad-\int_{-\pi / 2}^{\alpha^{\prime}-\delta} \frac{D}{\sin \left(\alpha-\alpha^{\prime}\right)} \frac{\partial}{\partial \alpha}\left[p(\alpha, \beta) \frac{\cos \alpha}{\cos \left(\alpha-\alpha^{\prime}\right)}\right] d \alpha \\
& \quad+\frac{2 D}{\delta} p\left(\alpha^{\prime}, \beta\right) \cos \alpha^{\prime}+\left[\frac{D}{\sin \left(\alpha-\alpha^{\prime}\right)} p(\alpha, \beta)\right. \\
& \\
& \left.\quad \cdot \frac{\cos \alpha}{\cos \left(\alpha-\alpha^{\prime}\right)}\right]_{\alpha^{\prime}+\delta}^{+\pi / 2}-\int_{\alpha^{\prime}+\delta}^{+\pi / 2} \frac{D}{\sin \left(\alpha-\alpha^{\prime}\right)} \frac{\partial}{\partial \alpha} \tag{91}\\
& \\
& \quad\left[p(\alpha, \beta) \cdot \frac{\cos \alpha}{\cos \left(\alpha-\alpha^{\prime}\right)}\right] d \alpha .
\end{align*}
$$

As $\delta \rightarrow 0$ this becomes simply

$$
\begin{equation*}
-\int_{\pi / 2}^{+\pi / 2} \frac{D}{\sin \left(\alpha-\alpha^{\prime}\right)} \frac{\partial}{\partial \alpha}\left[p(\alpha, \beta) \frac{\cos \alpha}{\cos \left(\alpha-\alpha^{\prime}\right)}\right] d \alpha \tag{92}
\end{equation*}
$$

To summarize.

$$
\begin{equation*}
f(r, \phi)=\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} g\left(\alpha^{\prime}, \beta\right) \frac{D}{K^{2}(r, \phi, \beta)} d \beta \tag{93}
\end{equation*}
$$

Fig. 9.

$$
\begin{equation*}
g\left(\alpha^{\prime}, \beta\right)=-\int_{-\pi / 2}^{\pi / 2} \frac{1}{\sin \left(\alpha-\alpha^{\prime}\right)} \frac{\partial}{\partial \alpha}\left[p(\alpha, \beta) \frac{\cos \alpha}{\cos \left(\alpha-\alpha^{\prime}\right)}\right] d \alpha \tag{94}
\end{equation*}
$$

where, as before,

$$
\begin{align*}
K^{2} & =r^{2}+D^{2}+2 r D \sin (\beta-\phi) \tag{95}\\
\tan \alpha^{\prime} & =\frac{r \cos (\beta-\phi)}{[D+r \sin (\beta-\phi)]} \tag{96}
\end{align*}
$$

The discrete approximation is

$$
\begin{align*}
f(r, \phi) \approx & \frac{1}{4 \pi^{2}} \sum_{j} g_{j}\left(\alpha^{\prime}\right) \frac{D}{K^{2}\left(r, \phi, \beta_{j}\right)} \delta \beta_{j} \tag{97}\\
g_{i^{\prime} j}= & -\sum_{i} \frac{1}{\sin \left(\alpha_{i}-\alpha_{i^{\prime}}^{\prime}\right)}\left[p\left(\alpha_{i}, \beta\right) \frac{\cos \left(\alpha_{i}^{\prime}\right)}{\cos \left(\alpha_{i}^{\prime}-\alpha_{i^{\prime}}^{\prime}\right)}\right. \\
& \left.-p\left(\alpha_{i-1}, \beta\right) \frac{\cos \left(\alpha_{i-1}^{\prime}\right)}{\cos \left(\alpha_{i-1}^{\prime}-\alpha_{i}^{\prime}\right)}\right] \tag{98}
\end{align*}
$$

Here α_{i} corresponds to the left edge of the i th detector, while α_{i+1} marks its right edge (see Fig. 9). The ray sum seen by the i th detector is $p_{i j}$ and its center is at α_{i}^{\prime}.

Conclusion and Summary

The formulas for reconstruction from ray sums obtained by arbitrary sampling schemes were specialized to a system utilizing fan beams originating from sources on the circumference
of a circle. It was found that one need not calculate the contribution of each ray sum to each point explicitly, but that the calculation does involve the application of a general linear operator. In special cases, this linear operator becomes space invariant by a manipulation of the integrals, and the superposition integral simplifies into a convolution. Two examples of this were shown, both corresponding to previously known solutions to the fan-beam reconstruction problem for particular ray collection geometries.

To illustrate the utility of the new method, however, a third case was considered where the simplification does not occur. Previous techniques for finding reconstruction methods based on Fourier transforms cannot deal with it. Details of an algorithm were developed. The utility of the new methods for finding algorithms for arbitrary fan-beam scanning schemes is therefore apparent. The introduction of uniform scanning coordinates in particular is of great importance in finding reconstruction methods for the general case.

Acknowledgment

Figures are by Karen Prendergast. Gabor Herman provided helpful criticism and pointed out the similarity in aim of work on fast image reconstruction [7] and that presented in the last section of this paper.

References

[1] B. K. P. Horn, "Density reconstruction using arbitrary ray-sampling schemes," Proc. IEEE, vol. 66, pp. 551-562, May 1978.
[2] J. Radon, "Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltikeiten," Ber. Saechsische Akad. Wiss., vol. 69, pp. 262-278, 1917.
[3] L. A. Shepp and B. F. Logan, "The Fourier reconstruction of a head section," IEEE Trans. Nucl. Sci., vol. NS-21, pp. 21-43, 1973.
[4] A. V. Lakshminarayanan, "Reconstruction from divergent ray data," Dep. Computer Science Tech. Rep. TR-92, State University of New York at Buffalo, 1975.
[5] G. T. Herman, A. V. Lakshminarayanan, A. Naparstek, E. L. Ritman, R. A. Robb, and E. H. Wood, "Rapid computerized tomography," in Medical Data Processing. London, England: Taylor and Francis, Lid., 1976.
[6] G. T. Herman, A. V. Lakshminarayanan, and A. Naparstek, "Reconstruction using divergent-ray shadowgraphs," in Reconstruction Tomography in Diagnostic Radlology and Nuclear Medicine, M. M. Ter-Pogossian et al. Eds. Baltimore, MD: Univ. Park Press, 1977, pp. 105-1 17.
[7] G. T. Herman and A. Naparstek, "Fast image reconstruction based on a Radon inversion formula appropriate for rapidly collected data,"SIAM J. Appl. Math., vol. 33, pp. 511-513, 1977.

collecting data with fan beams

[^0]: Manuscript received January 15, 1979; revised July 27, 1979.
 The author is with the M.I.T. Artificial Intelligence Laboratory, 545 Technology Square, Cambridge, MA 02139.

