COMPUTER GRAPHICS AND IMAGE PROCESSING 5, 280-288 (1976)

Circle Generators for Display Devices

BertHOLD K. P. HORN

Arlificial Intelligence Laboralory, Massachusells Instilule of Technology,
Cambridge, Massachusells 02139

Communicated by A. Rosenfeld

Received July 28, 1975

Simple methods of generating digital approximations to circles and other types of
curves are described.

The short notes [1, 2] published in this Journal discussiong methods for pro-
ducing circles on graphic output devices do not address the problem of efficiently
generating contiguous sets of dots lying on the discrete grid characteristic of the
display device. Methods for producing such discrete approximations of circles
efficiently are of importance both for the traditional C.R.T. point-displays,
driven by a display processor, and the increasingly popular raster-scanned de-
vices, using a frame-buffer memory.

No claim is made for the originality of the scheme presented here—it has no
doubt been reinvented innumerable times, and the author would not be surprised
if it was, in fact, embodied in display hardware somewherc. The hope is that
presenting the method here may save somebody some effort. It is simple to
develop the circle generator by analogy with an ordinary vector generator. A
brief exposition of a line-generating scheme follows for this reason.

1. A LINE GENERATOR

As a discrete approximation to the straight line bz = ay, one would like a
set of contiguous grid points as near as possible to the line. If the line lies in the
first octant, one can clearly pick one point in each vertical column that will be
no more than one-half of the grid interval removed vertically from the line. If
the point just below the line is as far from the line as the nearest one above it,
we will arbitrarily pick the lower one. The points so defined lie on or above the
line bz = a(y 4+ }) and below the line bz = a(y — %). Evidently only one point
in each vertical column lies between these limits, so all the grid points falling in
the band defined by the two lines will in fact be used.

One way to generate these points is to calculate y = [bax/a — 71 for each
vertical column. (Here [s7 signifies the smallest integer not smaller than s.) This

280

Copyright © 1976 by Academic Press, Inc.
All rights of reproduction in any form reserved.

CIRCLE GENIERATORS 281

method requires multiplication and division. Generating the points sequentially
and performing incremental calculations is more cfficient.

Advancing from one column to the next is achieved by incrementing x. If the
point defined by this new value of & and the previous value of y falls below the
lower edge of the aeceptable band, then the grid point directly above it is the
desired next point. That is, if s = be — a{y + %) > 0, then y should be incre-
mented, too. It is simple to keep track of the value of s. It is initially set to —%a
and b is added to it whenever @ is incremented and a is subtracted from it when-
ever y is incremented. The function vector (a, b) performs these computations.
(This is essentially Bresenham'’s algorithm [57.)

Simply swapping ¢ and y will produce lines in the second octant. Negating
2 ory or both takes care of the other possible direetions. Finally, adding an offset
allows veetors to start at arbitrary grid points. The functions line (ao, yo, 21, y1)
and plot (z, y) take care of the required bookkeeping.

Note that only fixed-point additions and subtractions are required. (Sinee
bar — ay can take on only integer values, the potential round-off in ealeulating
—3a, for a odd, can be ignored.) Note also that —a <'s < b, so only as many
bits (plus a sign bit) are needed to store s as are required for a, b, x, and y.

line (vo, yo. &1, Y1) @ —axy — Xo; b=y — Yo
negate_v «— f; negate_y «— f; swap_ay «— f
if @ <0, then @ — —a; negate_w ¢
if b < 0, then b — —b; negate_y «— ¢
if @ < b, then a e b swap_wy «— |
veetor (a, b)

end
veetor (a, b): re—0y—0;s— —a/2
dountil v > «
plot (v, y);s—s+b,r—a+1
ifs >0 thense—s—a;y—y—+1
end
end
plot (&, ¥): if swap_xy, then v oy
if negate_y, then y «— —y
if negate_x, then v «— —ux
point (x + 2o, ¥ + y0)
end.

2. A CIRCLE GENERATOR

For the diserete approximation, one would like to pick a set of contiguous grid
points as near as possible to the eircle #* 4+ »? = 2 In the first octant one can
clearly pick one point in each horizontal row that will be no more than half the
grid interval removed horizontally from the civele. 1f the point just to the left
of the eirele happens to be as far from the cirele as the nearest point on the right,
we will arbitrarily pick the right one. The points so defined lie to the right of the
circle (x + 3)2 + 2 = »* and on or to the left of the cirele (v — £)2 + 2 = 2,

282 BERTHOLD K. P. HORN

[1G. 1. Points on the diserete display grid picked by the line generator,

Again only one point per horizontal row will lie between these limits, so all grid
points falling in the band defined by the two cireles will be used.
One could proceed now by ealeulating o = [(2 — ¢! 4+ % for cach of the

/ £
o f//;,{,/,_,%
I
T

Fia. 2. Sample output of the line generator.

CIRCLE GENERATORS 233

horizontal rows. (Here [s] signifies the largest integer not larger than s.) This is
obviously computationally inefficient and an inecremental scheme is to be preferred.

Advancing from one row to the next is achieved by incrementing y. If the
point defined by the previous value of @ and this new value of y falls to the right
of the right-hand edge of the acceptable band, then the grid point directly to its
left is chosen. That is, if s = (x — 3)* + %> — r* > 0, then x should be deere-
mented. It is again straightforward to update the value of s. It is initially set to
(=r+ 1 and (2y + 1) is added whenever y is incremented and (20 — 2) is
subtracted whenever « is decremented. The function scetor (r) performs these
operations.

Simply swapping and y will produce the arc of the cirele falling in the second
octant. Negating x or y or both generates the rest. Once again, an offsct can be
added to place the center of the circle in an arbitrary position. The functions
circle (zo, yo, 7) and plot (z, y) perform the required bookkeeping and iteration.

Note that only fixed-point additions and subtractions are needed (again, sinee
x? + y* — 2 can take on only integer values, the 1 in the initialization of s can
be ignored). Note also that —2z < s < 2y and so one more bit (plus a sign bit)
is required to store s as are needed for r, x and y.

circle (xo, 4o, 7): do for negatex = f, ¢
do for negatey = f, ¢
do for swap_xy = f, ¢
sector (1)

end
end
end
end
sector (r): re—r;y—0;s— —r
do untily >
plot (z,y);s—s+2y+1;y—y+1
ifs>0,thense—s —2r4+2;0—0—1
end
end
plot (x, ¥): if swap_xy, then z <y
if negate_y, then y «— —y
if negate_x, then x «— —u
point (x + o, ¥ + Yo)
end.

3. GENERALIZATIONS

Discrete approximations to lines connecting points not on the display grid
can be developed simply by using As instead of s in the ineremental calculations.
This is on the assumption that the lines do end on grid points of a grid & times
finer. For completely arbitrary end-points the value of s can be carried as a
floating point quantity. The same idea can be used for circles with noninteger
radii and centers not lying on the display grid.

The method also can be generalized to curves defined by arbitrary polynomials

284 BERTHOLD K. P. HORN

N
N
\(x-|/2 20’)/2 =2
NN
AN
(£33 /2’2_t2= 2
T
\
\
\
1l
]

Fia. 3. Points on the discerefe display grid picked by the circle generafor.

in z and y, including the conic sections. Conie sections ean be generated much in
the same way as circles, but higher-order curves require multiplications for the
incremental calculation of s, as well as dvnamic decisions about what octant

Fia. 4. Sample output of the circle generator.

CIRCLIS GENERATORS 285

the curve falls in, and more complicated terminating conditions. (See also Pitte-
way’s algorithm [6].)

The method described here for generating diserete approximations to circles
for display purposes has the advantage that it produces contiguous sets of points,
unlike the schemes of Denert [1] and Lappalainen [2]. It also requires only
fixed point addition and subtraction.

4. A CONNECT-THE-DOTS SCHIEEMIE

In many situations one is faced with an existing display device that has point-
and vector-generators, but no cirele-gencrators. For efficiency reasons, one might
accept an approximation produced by drawing vectors between points lying on
or near the cirele. Generating the required points by repeatedly evaluating
rcos (im/n) and rsin (ir/n) is computationally inefficient, as pointed out by
Dencert [1]. An alternative would be to preealeulate cos (w/n) and sin (x/n)
and perform successive ineremental rotations by matrix multiplication:

‘;r,, + 1!
Iyn + 1! -

{ cos (w/n) — sin (1r/n), ‘;v,,-
|

sin (w/n) cos (w/n)| 1yl

While this can be done without recourse to trigonometrie functions, floating point
arithmetic is still nceded.

Fortunately, methods exist for producing more or less evenly spaced points
lying very near the circumference of a circle, by algorithms that require only
fixed-point arithmetic. Ivan Sutherland used such a scheme in his SKETCHPAD
system [4].

The basic idea is to use a difference equation approximation to the differential
equations defining a circle,

dr/dg = —y and dy/df = x.
A suitable sct of difference equations might be
Tyl = Tn — yn///\" yn+1 = -Tn/k + Yn-

This sct of difference equations has a cocfficient matrix with determinant greater
than one and, in fact, (x.,® + y.id) = (1 + 1/82) (2.2 4+ v.?). So the points
generated lie on a spiral, not a circle. When implementing this scheme a common
programming bug is the use of the new value, 2,1, instead of x,, when ealculating
Yu+1. The corresponding equations are:

Tpet = Ty — yn/k Yny1 = -T’npl//\: + Yu-

Curiously this set of equations produces points in a bounded region, and it is
shown in the appendix that these points lic on an ellipse. This ellipse tends to a
circle as & is made larger and larger.

We are still faced with the use of floating-point arithmetic operations, how-
ever. What happens if we commit a sccond programming blunder and use fixed-
point arithmetic, simply truncating the result of the division? Surprisingly, the
points so generated still lie in a bounded region. For & in a certain range, the

284 BERTHOLD K. P. HORN

points even lie close to the expected cllipse. Clearly, if all points lie in a bounded
region on the display grid, there must be some duplication. IEventually the
algorithm will produce some point a second time. Since the next point is deter-
mined uniquely be the current point, the algorithm will retrace its steps from
there on.

Notice also that the operation of the algorithm is reversible sinee

Yn = Ynyr — ll'n«f-l,/k' T = Tuyp + .1/,./’/1(.

It follows that the first point retraced must be the initial point. This does not
mean, however, that the output will eyele after one revolution. The starting
point may, in fact, be reached only after several eircuits around the origin,
depending on the value of & and the position of the initial point. The function
circle_dots (2, yo, 1) performs the required operations.

circle_dots (xo, yo,): = —r; y — 0; step_point
dountil z = » Vy = 0, step_point

end

step_point point (xo + &, yo + ¥)
re—a —ylkiy—a/k+y

end.

It remains to discuss the choice of k. For small values of £, the approximate
ellipse will be quite cccentric, while for large values the steps become so smuall
that the figure degencrates into an octagon or square, beeause of truneation in
the arithmetic. This happens when k 1s near max (Jao!, |ya]), where (xg, yo) is
the initial point. In between, there is a wide range of values for & that will produce
satisfactory approximations to circles. Powers of two are particularly useful
since the division can then be replaced by a simple right-shift operation. The
function circle_line (g, yo, r) generates the polygonal approximation to the cirele
we have been developing.

circle_line (xo, yo, 1) @w 7, yu < 0; step_line
do while y, > 0Ay., < 0, step_line
line (Qf,. + xo, Yu + Yo, ¥ + @y, ’.1/0)

end
step_line: Xp X Yp < Yo

Iy — Ty — Yp/k; Yy — 2u/k + y,

line (2, + o, Y» + Yo, Ln + o, Yu + Yo)
end.

The points generated by this method lie quite close to the desired circle for
reasonable values of £. If for some reason higher aceuracy is desired one ean resort
to a variety of methods. First, it is simple to store multiples of v and y—in effect,
working internally with a finer grid. Because of the larger values of & possible on
this grid, a closer approximation to a cirele is possible. The values are truncated
on output.

Secondly, one can make usc of the observation that @, in effect lags a half a
step behind y.. Using $(x, 4+ &..1) Improves matters considerably. The ellipse

CIRCLE GENERATORS 287

now generated has its major axis along the z-axis'and an eccentricity ¢ = 1/2k.
This becomes smaller more rapidly with increases in k than our previous value,
(It varied inversely with the square root of k.)

Finally, one can approximate the transformation to 2’ and y’ given in the
appendix. A good approximation is

1 1
o (2 1 —— vy = (x — 14+ —)
R y)(u-,)’ Vo~ (@ y)(+ 4k)

If k is a power of 2, this transformation again requires only addition, subtraction,
and shifting. This generates very accurate, evenly spaced sets of points.

The advantage of this algorithm over the one presented by Denert [1] is that
the points produced are evenly spaced and do not require prior commitment to
a fixed number of approximating vectors.

APPENDIX: SOLUTION OF THE PAIR OI' DIFFERENCE EQUATIONS
The set of difference equations
Tup1r = Tu — Yu/k Ynr1 = Tupt/k + Y.
also can be written as
Lupl = &u — Yu/k Tupr = To/k + (1 — 1/EDy..

The determinant of the corresponding coefficient matrix is 1. A solution can be
found by assuming that it has the form , = as™ and y, = bs" (where a, b, and s
may be complex). For |k| > 1, the solutions arc oscillatory and of equal ampli-
tude in x and y. The form of this solution (which is not presented here) suggests
the following simplifying substitution. Let

r 4y , rT—y
y

’

ST O+ a2y T - (2

1 1\} 1\?
L+ g) e+ (-5)v]
2 2k 2k

[0+3)7-(-3)v]

Substituting into the set of difference equations, one can show that

Then

~
I

S
[

1 [L— (1/4k)7]
~l"n+l’ = (1 -)-T'n’ + —— P
2k? k
[1— (1/4k7 1
yn+l’ = - —'*_———xﬂ’ + <1 - ﬁ)yn’-
k 2k

Clearly now
(-2:n+1,)2 + (yn+l,)2 = (xn’)z + (yn’)l-

288 BERTHOLD K. P. HORN

Su the-transfermed coordinates all fall on a circle and in fact each step produces
a new point at an-angle 8 ahead of the previous one, where cos (6) = 1 — 1/2k?
or sin (6/2) = 1/2k (for large k, we have 8§ = 1/k and, hence, therc are about
2wk steps per revolution).

Returning to the original variables we find

(@ + y)? 4 2 e
L4+ (1/26) 1= (1/2k) 1 — (1/4k?)

This is the equation of an ellipse. Here r is the distance from the origin at which
the ellipse crosses the z- and y-axes. The major axis lics along the line z = y
and has a half-length of r/(1 — 1/2k)%, while the minor axis, at right angles, has
a half-length r/(1 4+ 1/2k)*. The eccentricity of the ellipse is e = 1/(1 4+ k/2)%
When k becomes large, the ellipse tends to become nearly circular.

One way of understanding why these equations generate an cllipse rather than
a circle is to note that in effect v, lags a half a step (6/2) behind y, in its oscilla-
tion. This also explains why, when the steps become small, the ellipse rounds out
into a near-circle.

REFERENCES

1. Ii. Denert, A method for computing points of a eircle using only integers, Compuler Graphics
Image Processing 2, 1973, 83.

2. C. V. Kameswara Rao, Comment on a method for computing points of a cirele using only in-
tegers, Compuler Graphics Image Processing 4, 1975, 79.

3. H. I'reeman, A review of relevant problems in the processing of line-drawing data, in Automatic
Interpretation and Classification of I'mages, pp. 168-172, Academic Press, New York, 1969.

4. I. E. Sutherland, SKETCHPAD—A man-machine graphical communication system, in
Procecdings of the Joint Computer Conference, Detroit, Michigan, May 1963, p. 335.

5. J. IS. Bresenham, Algorithm for computer control of a digital plotter, IBM Systems J. 4, 1965,
25-30.

6. M. L. V. Pitteway, Algorithm for drawing ellipses and hyperbolae with a digital plotier,
Computer J. 10, 1967, 282-289,

