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INTRODUCTION.

In this paper, we analyze the relationship between actuator torques and

joint angular accelerations for a device with three rotational degrees of free-

dom, such as a "leg" on a locomotory system or the first three joints of a

manipulator or "arm". The kind of analysis we present here leads to a clear

understanding of the effects of varying inertia, joint-interactions and cori-

olis forces and forms the basis for simulations of such systems and, most im-

portantly, design of control systems. It is likely that high speed control

of articulated kinematic chains is not possible without this kind of detailed

understanding; conversely, we show that the computations required of such a

control system are manageable.

Initially, we restrict our attention to arrangements with no offsets be-

tween links, as shown in figure 1. Later, we consider a more realistic case,

the MIT-Scheinman electric arm, which has offsets, as do many practical devices.

Further, we model links as thin rods and, finally, consider more complicated

mass distributions at the end of the paper.

We use rather primitive techniques in order to avoid possible complications

due to the potential difficulty of visualizing angular rotation vectors and

components of inertia matrices. The same results, however, could be obtained

using such advanced notions, with little savings in effort and considerable

loss of insight.



NOTATIONAL CONVENTIONS.

The links, modelled as thin rods (see figures 2 and 3), are numbered

starting with the base. The base, link 0, is rigidly attached to a fixed

Cartesian coordinate system with the z-axis pointing up through the column,

link 1. Joints are number systematically, with joint i connecting link (i - 1)

to link i. Thus the "hip" or "shoulder" is joint 2, with the "knee" or

"elbow" being joint 3.

The lengths of the links will be zl' Z2 and 13, with masses ml, m2 and

m3. The joint-angles will be called el,. e2 and e3 and the angular velocities

represented as 61' 62, and 63. At times it is convenient to use vector nota-

tion with

a = (el, e2' e3)

-= (61' i2' 83)

Clearly, @ together with a specify the state of the device completely.
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PLAN OF ACTION.

We treat each link in turn: first, we calculate the velocity of each point

in the link as a function of the joint-angle rate; second, we calculate the

total kinetic energy in each link; third, we calculate the torques required

to support the motion of that link; and, finally, we add up the torques

required to move all links to obtain the total torque that must be applied by

each actuator. We calculate gravity components of torque at the very end.



REVIEW OF BASIC MECHANICS.

It is convenient to calculate the total kinetic energy of each link by

dividing it into infinitesimal parts and integrating along the length of each

link. The kinetic energy of a particle of mass m moving with velocity v is,

of course, (1/2)mv 2 . Thus we can obtain the total kinetic energy of a link

from

K f v2 (s) ds
0

where s is distance along the link and v(s) is the velocity at a point located

a distance s from one end. Here we have assumed that all the mass is concen-

trated along a line and is distributed uniformly from one end to the other

with linear density m/t. More complicated models require more difficult analy-

sis and are warranted only if measurements can be made of the actual mass-dis-

tribution in particular limbs.

We find that, in general, v(s) is of the form

v2(s) = a + bs + cs2

Then clearly

m b2 c3
K [at. + b + c3



CALCULATION OF ACTUATOR TORQUES.

The easiest technique is based on the Euler-Lagrange formula,

T d aK aK
1 dt a1 a

where bi is the angular velocity

d d
1i dt i

and Ti is the torque required at joint i to support the motion. K is the

kinetic energy. This may look complicated, but, in fact, is very convenient.

In general, if the potential energy term is added in, this calculation leads

to n equations for a device with n degrees of freedom.

n n
T.i = Gi(e) + Z I i (e) en + n

S j = 1 1J j =

n
- Cijk(e) e. e

k=j k

Here Ti, the actuator torque required at joint i, is made up of three components.

The first is the gravitational term obtained from the potential energy P,

1 ao

The second term is a sum of products of inertias and angular accelerations

e9, where



d2
ej = dt ej

This term is thus composed of the inertial forces needed to accelerate the

links along the desired trajectory.

The third term is a double sum of velocity product terms and constitutes

the torque required to balance Coriolis forces; these include the centrifugal

forces. Note that all three kinds of coefficients Gi, Iij and Cij k are

functions of the configuration, e, only, where

e = (el,' 82' 3 ... 0)

That is, they do not depend on

fact, we find that these terms

cosines of the joint-angles.

It is convenient to think

sum of the kinetic energies of

joint angle velocities (or accelerations). In

are polynomials in link lengths and sines and

of the total kinetic energy of the device as a

the individual links,

n
K= z K.

j=l J

and to calculate the total torque required of a particular actuator as a sum of

components, each obtained by applying the Euler-Lagrange equation to a component

of the kinetic energy,

n

T = E T..
1 j = 1 lj
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where Tij is the actuator torque required at joint i to support the motion

of link j.

d K. aK.
T d



THE UPRIGHT COLUMN,

If we model this link as a thin rod, it will have no inertia and not im-

pede accelerations about its axis at all. It is more realistic to model it as

a cylinder of uniform mass distribution. If it has height H, radius R and

mass ml, it has inertia

2

mlR
1l 2

To introduce the techniques used later for the other links, we calculate this

from first principles. The volume of the cylinder is

V = tR 2H

Consequently, its mass density is ml/(wR2H).

Now consider a cylindrical shell of thickness ds at distance s from the

axis as in figure 4. It has mass

S2SH
dm = ,•-••H ds

Particles in this shell move with velocity gi1 when the column rotates at angular

rate eO. The kinetic energy of the cylindrical shell is then

(dm) [Sl ]2 s3 92 ds

Integrating over the whole cylinder we find the total kinetic energy is



K• - 1 s ds R=- () (

The term I 1 = mR2/2 is the inertia of the upright column, link 1, about its

axis of rotation.
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ACTUATOR TORQUES REQUIRED TO SUPPORT MOTION OF LINK 1.

We are now ready to apply the Euler-Lagrange equations to find the required

actuator torques.

d aK1 aK1
11 dt ag1 ae1

where

aK1
and

a K1

1 = I1 1

T11 dt (I1 )

T11 = Ii 1

This rather obvious conclusion shows that we need only an inertial torque to

support this motion. No other joints are affected.
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THE SECOND LINK.

Link 2 is modelled as a thin rod of mass m2 and length £2 (see figures 5

and 6). To compress long expressions we adopt a convention for trigonometric

terms:

i = cos(e )

cij = cos(e i + ej)

si = sin(ei)

sij = cos(e i + j)

The infinitesimal particle z of length ds has mass

m2
dm = ds

First we determine the velocity of this particle; it can be found by differenti-

ating its position with respect to time. Let r = (x,y,z) be the particle's posi-

tion in reference to the rectangular coordinate system introduced earlier. If

i, j, k are unit vectors in the directions x, y, z respectively, then,

r = S[(c1s2) i + (s1l2) j + (c2)k]

Taking the derivative we get the velocity

v = s5[(-s ls2 + c c212) i + (Clels2 + S1C202) i + (-s2 2 )k]

and
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To calculate the kinetic energy we need only the square of the absolute value

of the velocity,

V2 = v * v = s2[(-S 1lS2 + C C2 2 )2 + (C1 1 S2 + S1C2 2)2 + (s2 2)2]

v2 = S2[s2 2 + 6]

Finally, the kinetic energy is

K2 = m2 [ + + f2 s2 ds
2 o2 2

That is,

K2 =r 2 2[S2 4+ 2]K2 6 m ,2 C2 2 1 2
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ACTUATOR TORQUES REQUIRED TO SUPPORT MOTION OF LINK 2:

First, we find the required derivatives:

and 2  1and -2 3 m2 22[s 2c2 )1

3K2 1 2 [s2 ]

i 3 222
and 2 - m t2[63 2 2 2

2)y. 1u- a2 es2c22i 1 + se

K = ' m23L 2 [ 22

Finally, using the Euler-Lagrange equation,

aK 2  1 2
1a 3 m22se
1

+ 2s2c2 1 2]

3K2 =1 Z2

"52 -S 2 2 [3"2 - s2c26'

aK20 -2 0

ael

d 2aK)
T12  dt a6dt 2

1

aK2
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ANALYSIS OF TORQUE COMPONENTS.

The two components of )2 represent inertial and coriolis factors. First,

note that (1/3)m 2 2s2 is the inertia of link 2 about the vertical axis. Multi-

plying this by the angular acceleration of joint 1 gives us the torque re-

quired to produce that angular acceleration. The second term, containing a

product of angular velocities is a coriolis force factor which vanishes when

10 = 0, 62 = 0 or e2 is an integer multiple of 900 since

2s2c2 = sin(202)

This torque term has to do with the change in kinetic energy when the inertia

about the vertical axis is changed -- it is the term which speeds up a spinning

ice skater when (s)he pulls in his(her) arms and slows him(her) down as the

arms are stretched out. It shows one of many interactions between motions for

which it is hard to get an intuitive grasp.

The components of 12 are even easier to understand. The first term is just

the inertial force needed to accelerate link 2, since the inertia of link 2

about joint 2 is simply (1/3)m2t2. The last term is a centrifugal force term,

which again is zero when e2 is an integer multiple of 900. It represents the

tendency for the second link to become horizontal as a result of rotation about

the vertical axis.
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THE THIRD AND LAST LINK.

Link 3 is modelled as a thin rod of mass m3 and length z3 (see figures 7

and 8). The location r of the infinitesimal particle of length ds and mass dm

is found first, where

dmi 3 ds
3

We find that,

r c 1(C2s2 + s 23)i'+ s1( 2s2' ss23) * (12c2 + s c23) k

Differentiation with respect to tiie,

v = [-s1 1( 2s2 + s s23) + c1(12c262 + s c23( 2 + 3)) +

[Cl6102s2 + s s23) + s1 (12c2 2 + s c23(62 + ' 3 ))]j +

[-.2s2Y 2 - s s23( 2+ 3)]k

Then,

V2 = V V=

1 (a2s2+ss23)2+ (.2C26 2 + S c23(02 + 63)) +

[-.2s2 2 - s s23 (2 + 23)]2
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v2 = (•2S2 + 2 2 s 2 2 3 s2 2 2 2 23
+ s23S2) 62 + £2"2 + 2£ 2 c3 2 (e2•2 2 2 2 (62

(e2 + 6e3)2 s 2

+ s2s23 = cos(e 2 - ('2 + '3)) = c3 .

K3= /fk33 2 0

2 + £2£3S2S23 +
3 2 );2

3 23 1

(2 + e3
)2]

That is,

2 2 £23s2s23

£2
S2 )2 +

3 23 1

(Z + Z2 t3 C3 +

3 2£3*( ) 6

2 2

3 23+

This finally is the kinetic energy link 3!

Since c2c23

+ e3 )s +

m3V2 ~3 dsk3

becomes

m3
K3 2

+ 26e2 + 3c32( 2 + e3) +

m

K3 2

2 +2
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PARTIAL DERIVATIVES NEEDED.

a K3
-=0
1

(2 s 2c2 + 3(c2s232 2 2 Z2 3 (c2 s2 3

[(k2 3 s2c23 +

2 2

+ s2c23) s 2 3 c2 3 ) el

2 c2
3 s c 2

3 S23 23) 1

[2(£~222 + 3s2s232 2 2 3 2 S223

3 [2
2 [2( 2

£a

+ s2 s e 23 23'i1

S 2

+ k2,3c3 33) 2

m3 2 (2 93c3 +2

(2 z3c3

2£e2

33) e3 ]

23 2 23

3 ) e2 83]

aK3

ao2

aK
3

De3 (-2 k3s3)62 + (- 2 k3 s 3 ) 8263]

aK3

a K3

De2

aK3
a3

m3
2

Sm3

2-



m3 2
- [2(k2s2 + 2 3 s 2 s2 3 + 3

2(2 s2c2 2 + 2a 3(c22s23 + s2c23( 2

22 2

+ 63)) + 3 233C23(6 + 33)) 1]

m33 [2(k2 + k92 3 c3
,2 -' 

2+ 3 (9223c3

2(-g2,3s363)62 + (-2k3s363 )63]

2t2

+ 3e2
m3

(2 2 3c3

2j2

+ e3 + (-9,2 3s363 )2
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d A3)

1
s23) e +

d (K3

2

2 32

3
+

d AK3

3
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ACTUATOR TORQUES REQUIRED TO SUPPORT MOTION OF LINK 3.

d (K3
1 3 dt W91

aK3

Be I

13 [2(12s2 + ~232s23 +
T1 3-ý -2- ,22.23s2s23

3 s23) 1

2(2t~s 2c 2 + £2 3 (c 2 s 2 3

212
+ s2c23 + 3 s23c23 ) 6162 +

2(z2 3s2c23 + s23c23) 3l

d aK3
T23

= l 2)2

aK3

Be2

+ 12 13 c3 +
+ 23

3 ) 2e (2 3c3 +

g-)3 **
3) '3

+ 3-(21 s 2c + 2 3(c2s23 + s2c23 )

-2,2 3s3 2 3 - 3s3 3

d aK3 aK3
T33 = -- ( 3 3

s 2 3 c2 3 ) 9 -

m3  2+3,
T33 = -[(l213c3  •3

22•

(2 3s2c23 + s

3+
3 3

23c23) 1 +

(12 3 s 3 ) i2

m3
T2 3 2(.e

T237 f-2(2 2
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GRAVITATIONAL TORQUE COMPONENTS IN SIMPLE CASE.

If gravity acts along the z-axis and has magnitude g, then the potential

energy of the device can be found easily from the vertical positions of the

centers of mass of the two links.

z 2 cz2 T C2 and z3 ( 2c2 + - c23)

So the total potential energy is

[ 2  •3

P = g[m2 2 2 + m3( 2c2  2 c23)]

So the torque components are simply

2g ae2 m2 2 2 m3( 222 -s23)]

and

T - aP = g[m s23]
T3 g ae3 g 3 2 2338

These components may simply be added to the components already found for inertial

and coriolis torques.
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GRAVITY COMPENSATION IN GENERAL CASE.

The position of the center of mass of link 2 is

r2 = 1- (ClS 2)
+ (Ss 2)j + (c2)k]

If g = (gl',g2' 3 )

tential energy is

is the vector of gravitational acceleration, then the po-

2 =  -2 9)m2  2  - [cls 2g1 + sls 2g2 + c2g3

Similarly, the position of the center of mass of link 3 is

z s L3 s 3 3
3 = C( 2s 2 + 23)i + s1(12s2 + s23) + ( 2c2 + c23

P3  - 3  9)1113

3 33 3
-m3[c1(£252 + •-s 23)g1 + s12( 2s2 + - s23)g2 + ('2c2 + 2 c23)g3]

The total potential energy is the sum of P2 and P3. The gravity compensation

torques can be found from P by differentiation.
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T - P S(M 2 + 3
9g 1 s - 2  S2 - m3( 2s2 + •-s 2 3))g I +

( 2 3
cl1( 2 Z- 2 + m3 2s2 + 2 23))g 2

aP c
T2g 9 3 2 cl(m2

1 2s1(m2 --c2 +

c2 + m3(k2c2 +

£3m3(~2c 2 + -c 23))g 2 +

(-m2 2
m3( 2s2 + 3

2- s23 ))g3

T3g= - 3 =m 3[cl(-c 23 + 1( c23  3 93s2 c23)g 2 - s23 g3]

c23))g I +
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MASS CONCENTRATION AT THE END OF LINK 2.

Let there be an additional mass M2 attached at the end of link 2. Its velocity

squared is

v2 = Z2 [S2 6 + 62]

K 2 M X2 S2 62 1s6
2 2 2 1 22

So the torque components would come to

T = M2 "H2 [s2  + 2s2c2 1 2]

T2 = M2 •[" 2 - s2c2Q]
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MASS CONCENTRATION AT THE END OF LINK 3 -- LOAD CARRIED.

Let there be an additional mass M3 attached at the end of link 3.

velocity squared is

V2 = (a2s2 + 3s23) + + 132 3c3 2 + e3) 3 (e2 3+ 3)2

K3 = M3[( 2s2 + £3s23)242 + (X2+ 29.2t c3 + 2+

2t3(12c3 + 3) 263 ]

aK'3
a3

1

+ t3s23)(x2c2 + 3c23) 1i

= M3[( 2s2 + L3s23) 3c23 B •2 33•• - 2 3s3 2 3

M3[(2 + 2 2 3c 3 + ') Q2 + "3(L2c3 + "3) 63]

aK

ae2 M3[(2s2

aK

3e

aK'

aTK
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aK'

d 3 = M3  2  3 2 3 3

d aK M
t -\ 3) = M3[(E2s2 3 3s23)2 1 + 2(z2s 2 + t3s23)(t2c202 + £3c23( 2 + 03))01]

d 3) M3[(k2 + 2£21 c3 + Z) 02 + z3(z2 c3 + £3)
T(-43)2 =M3 2 + 2 3c3 3 2 3 2c3 3 03

2£2 3s3 2 3 -3 2£3s3 3

d 3aK -
t(- ) = M3 3 ( 2c3 + 3)e2 + 3e - 2•3s3e23

T1 = M3[(2s2+ 93s23)201 +2(25s2 + 3s23)(t2c2 + t3c23)oe1 2 +

2X3c23 (2s 2 + 3s23) ;361]

T = M3 [(k + 22 3c3 + 12)2 + t3(.2c3 + 3) 3 -

2= M3 2 2 33 3 2 3 2c3 3 3

(2s2 + 3s23)( 2c2 + 3C23)0p - 2£2 3s3 2e3 -2 3s3 ]3

S= M3 3(2c3 + 3)2 + 3 3- 3c23(22 +  3s23)0 2 Y23S3•2

These expressions can be used to calculate additional torques required to support

the movements of a load carried by the third link.
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* GRAVITY COMPENSATION FOR THE MASS CONCENTRATIONS AT THE ENDS OF LINK 2 AND
LINK 3.

The position of the mass concentration at the end of link 2 is

R2 = 2 [(c 1 s 2)i + (S1 s2 )J + c2k]

and its potential energy is

P2 = 7(R2 9 g)M2 = -M2 2[c1ls2g1 + s1s2g2 + c293]

Similarly, the position of the mass concentration at the end of link 3 is

R3 = cl( 2s2 + t3s23)i + s1( 2s2 + z3s23)J + (t2c2 + 13c23)k

and its potential energy is

P3 -(R3  ? g)M3 = -M3[cl( 2s2 + '3s23)g1 + s1( 2s2 + 3s23)g2 +

(z2c2 + z3c23)g3]

The net potential energy of the mass concentrations is

p' = P. + P'

and the gravity compensation torques for the three links, on account of the

mass concentrations, are

Tig = e S- s(-M2 2 2 - M3( 2s2 + z3s23))g1 +

c1(M2 2s2 + M3(R2s2 +3s23))92
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= c (M2 2 c2
+ M3 (2c 2 k3 c2 3 ))g 1 +

sl (M22c2 + M3(z 2c2 + 3c23))2 -

(M2 2s2 + M3 (' 2 s 2 '3s23))3

Tg - 3- =3clc 2 3g1 + 3sc23g2 -3s 2 3 g3 )

Tý = -
aP'
ae

2
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THREE DEGREE OF FREEDOM DEVICE WITH OFFSETS.

In some manipulators and legs, trade-offs in the mechanical design dictate

a geometry with offsets between links as seen in figure 9, for example. Smaller

packaging, better strength and larger range of motion can be achieved this

way in return for a small increase in complexity of, control. The MIT-Scheinman

electric manipulator is an example of a device withl offsets. It will be found

that only a few extra terms appear in the expressions for the torques required

of the actuators. Obviously the torques required to support the motions of

link 1, the upright column, do not change, so we start with link 2.
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THE SECOND LINK IN A DEVICE WITH OFFSETS.

The position r of a particle on the second link can be found by considering

figures 10 and 11.

r = [sc 1s2  62sI]1 + [SSS2+ 2cl]J + [sc 2]k

Differentiating,

y= [-ss 1 1s2 + sc c282 - 62c~~ll +

[sc 1 1s2 + ss1c2 2- 62Sl1 l] + [-ss2 2]t

So,

V2 = S2S262 + (SC - 61)2 + S2S262

2 1 (s2 2 2 62oI 2 2

v2 = (62 + s2s2)52 - 2s6 2c2 le2 + s262

The kinetic energy can be found by integration

K 2 1 m2  ds
2 2 2

o22 2 2

K2 2 2[ 2 + 3 s2)21 Z262C2 1 e2 3 2
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TORQUES REQUIRED TO SUPPORT MOTION OF LINK 2.

aK2
- O

Ml
aK2  m2

and 2 2
'T2

m ( 2
-=- [2(62

+2
T

S2) 1 - 2 62 C2 6 2 ]

2 ]2

3 2

s2)'e"1 - £2c22"2

4 £2

3 s2c22 1 2 262 s2 ]

2 22
3 2 ' 2 + "2'2Y 1 6 21

T d aK2
12 dt (e

m2

T2 [2(62

aK2

ael

£2
2
3 s2) l - 22c2 2

4 2

3 2c22 1 2

d aK2
ý2 -ta)

[- £2 2c2' 1

m 2T•2
2122
3 2

2 2
2 2]
3 2c2 1

-ACTUATOR

+ x26 2S 2 e1 le2

aK2

1

aK2
2

m2 2:=• [2(6d aK2

1

d aK2 m2

= [-"2c22 1

Finally,

2 2s2e2

2p2.2 ;
[E3 s2c2 •
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THE THIRD LINK IN A DEVICE WITH OFFSETS.

The position r of a particle in the third link can be found from figures

12 and 13.

r = [(i2s2 + s s23 )c1

[(Y2s2 + s s23)s 1

[Y2c2 + s c23]k

Differentiating,

- 63s 1] i +

+ 63cl]j +

v [-(k 2s2 + s s23))s•1 - 63Cl 1 + (Y2c2 2 + sc23(e2 + 63))cl]i +

[(Z2s2 + s s23 )cl 1 - 63s1 1 + (k2c2 2 + sc23( 2 + +3))Sl]j +

[-2s2 ;2 - s s23 (2 +3 )]k

V2 = V . v = (k2S2 + S s23)2 + [-63 1 + £2C2 2 + SC23(2 + 3)] 2 +

[E-2s2e2 - s S23 (2 + 3 )]2
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That is,

v2 = (•S + S 23)2 + + + 2 + 2( + 63)2 + 263 2c2~~ +

2sy2c3 2( 2 + 6 3) - 263sc23 1(62 + 63)

v2 = (~22 + 2sz2s2s23  23 3 1) - 2 3(2c2 + S23el12

(£2 + 2st 2c3 + s2 ) 62 + (2sz 2c3 + 2s2)8263 + (S2)2 - 2s6 3c236301

K3 = I 3

0

1 3
V2ds2 3

3

m 2
K3 = 2-[(32s2 s2  + 62) •~ - 6 (2 c 2+)z 1 +S2 2 32 3S2S23 2 3 322 323 1 2

93 292

( 2 3c3 23 2 9 ( 2 3c3 + )2e3 +
32

(3 3 313 23 3 1
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PARTIAL DERIVATIVES NEEDED.

aK3

1

aK3

T'2

m3 2a2
-[(22S2c2 + 323(s23 +  c23) +  S23C23) +2 2 2 2 2 3 c2s23 + s2c23 3 23 c23 l

63(2x2s2 + k3s23) 1 2 + 3 3 23e361l

m3
=-- [(2 3 s2c23

2 323

+ -- s23 c23)E + 63(£3s23)~1~ 2 -

(2 3s3) (,2 2 3s3 2 3 3s23) 3

S3
- [2( 2s2S2 2 2 + z2 3S2s23

Z2

+ - S2  + 3 23 233 1

63(2+2c2 + k3c23)62 - 63(k3c23)53]

3  )2
-63(22c 2 +3c23) + 2(2 2 3c3 +3 2

2 +R2 1 3 3 e2+

m3
2 [192 3c3 +

2£2

3T)2

aK3

ae3

aK3

aK3
aK2

aK3

3

2 2

(2 3c3 + 3e3

2,2

+ 3 3 3 - 3c23 el

n
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S-2(as2 2 3s2s23

s2

3 2 + 62) -3 23 3 1

63(22c2 + k3 c2 3Yd2 - a3 (t 3 c2 3 )' 3 +

2{2£ s 2 c2e 2 + 2 3 (c 2 2 s 2 3 + s 2 c2 3 (e 2 + e3)) +

2£2
+ 83)} 61 + 3(2k 2 s 2 2 + x3S 2 3 (b2 + ;3))e2 +

63(.3s23(02 + ;3))Y3]

m3
32 -•- 3 (2t 2 c2 + z3 c 2 3

) e l + 2(1

2Z2
2 3c3 + )3 + 3 (2 + 2222  +

2(Z2 3 s 3 e3 ) 2 - (k2 k3 s 3 3 ) 3]

+ t2 3c3 +
£2
3 2

3 s23(2 + 3)) -

- 63 (t 3 c2 3 )~1 -

(x2 3s3;3 )2 + 63 (Y3 s 2 3(O2 + 13))Y1]

dt 3
1

d 3

ai

aK3
3
3

m
= - [(R2 3c3

2£2
+ )e2

2k23+ 3
S3 ~3
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ACTUATOR TORQUES REQUIRED TO SUPPORT MOTION OF LINK 3.

d aK3 a K3
1e

132T13= y- [2(•s% + 92 3s2s23 + s•2S3

63 (2t 2 c 2 + z3c23) 2 -6 3( 3c 2 3 ) 3 +

2(2 2s2c2 + t2t3(c2s23 + s2c23) +
2Z2
3 23c23 ) 12 +

s3(2t2s2 + 3s23) 2 + 2s3 323 2 2 3  63 33s23 +

233
23c23 (2s2 2•3 s23 ) Y31]

d aK3
T23= dt

2

aK3

ý2

m3
T2.3 -= -63 (2,2c2

(£2 3c3 +3Y -) 3

+ 3c23 + 2(a + 2 3c3 +

- (22s2 c2 + £223 (c2s23 +

P)'2 +

22)
s 2 C2 3 ) + -- s23c23 ) 2

2(,2£3s3) 2 3 - (32k3s3) 3

Note the cancellation of terms in ele2 and e3e8.

+ 62)3 1
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= d ( A )
T33  dt 3

m3T33- 2

aK3

ae 3

[-63 (3c23)'O + (k2 3c3 +

2 3

3c23( 2s2 + 3

Note cancellation of terms

s23 2•• + 3s3)

in 61 2, e2 3 and e3;1'

3 2•.2
3
3 3
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TORQUES REQUIRED TO SUPPORT GRAVITATIONAL FORCES.

The centerof gravity of link 2 is

r2 2 C1 2 2S1)1 + (2 Sl2 + 62 c1 )j + (2 c2 k

Its potential energy is,

£m2
2 -(r2 g9)m2 = -m2[(2- C1S 2 - 62 1)g1

£2
+ (2 S1S2 +

Z2
62c1)g2 + (2-c2)g3]

Similarly, the position of the center of gravity of link 3 is

S 3
+ 2-- s23)c1 - £ 3s11i + [(£2s2 +

£3
3 s23)s +

63c1 ] + [£2c2 + -c23]k

Its potential energy is

P3 -(r3 * 9)m3

£3 3

P = - m3 [( 2s2  s2 2 2 )c 13 191 2s2 + 2 s23)s1

3 + [63Clg2 + [£2c2 + -c 23 ]g3

The total potential energy is the sum of P2 and P3.
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Torques required then are:

3P 2
De 1 gl[-m2 (2- s1 2 + 2c ) -

3 3c + g2 [m2 (2- 1 s 2 - 62sl) +

3( 2s2 s23 1

23m3("2s2 + Z- -23) c1

m33s1]

aP 2 •
a 1[m2 •- -c1c2 +

92[2 2 - s1c2 + m3(2c2

m3(z2c2 +
3
-- c23 )c] +

23+ -- c2 3)s 1 ] +

£2 (3
93[-m2 2•- 2 - m3(£2s2 + • s23) ]

3P 1 3 cc 3 cae3 gm3 2 c23C I] + g2[m3 2 c23s1] + g3[-m3T3g
3g

£3
s 23]

2 23
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MASS CONCENTRATION AT THE END OF LINK 3 -- LOAD CARRIED.

v 2 2 2 32 3s2s23 + s3+ 3) -

263(z2c2 + 3c23) 1 2 + L2 + 212 3c3 + 21)6 +

(2 23c3 + 2) 2 3 + - 23 23 3 1

K3 = 1 M3v2
3 2 3

aK3
1e

M3[((2s2 + R3s23)( 2c2 + £3c23) 1
+ 63( 2s2 + 03s23) 1ee 2 +

1363s236361]

+ a3 3s23 1 2 2- 123s3( 2
+ e3)6 +

13 3s2303e1]

= M32[(2s + 2 2 3s2s23 + 23s23 3 6 1)i - 63(62c2 + l3c23)62 -

63 3C23033

= M3 '63(L2c2  + + + 2£2 3c3 + 3)2 +

(2 3c3 3+ )3

aK -

B2

M3(s2 + 3s23 )3c23•12

aK'

3

aK3

aK'
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aK'3
a = M3 8[3 3 3C 23 a13

d 9aK-) ~l

+ ( 2 3 c3 + 3)•) 2 R63

M3 [ ( 2 s 2 + 223s2s23 +3
2 2  + 62)

3 + 2 2 3s2S 23 + £3 23 3 1

+ 3)) +

3( + 2 3c23)'2 - 3 3c23 3

2(,2s2 2+ 3s23)(Z 2c2 2 + P3c23( 2

63((2s2e 2 + k3s23( 2 + 63))5 2 +

63 3s23( 2 + ;3)63]

= M3~s 2 + 2 2 3s2s23 + s23 3+ )

63(z2s2 + £3c23 )V2 - 633c23e3+

2(t2s2 + t3s23)( 2c2 + 93c23)el 2

(2s2 + 3s2 3)63 2 + 26 3 2 s2 3 e2 3 +

63 3 2 36 + 2(+2s2 + 23) 3c23 3 1
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= M3 [-c 3( 2 c2 + £3 c2 3)e 1 + + 2 2a 3c3
+ ')2 +

(23 + + +3(2s2e2 3s23(2 + 33)) 
l -

-2 2 3s32 2 3s33 3

=M3 [-c 3( 2 c 2  3c2 + 2)2i 3c3 + 3)'e +

(k X. C + X2 )4+
(2 33 3 3 3+ 23 ('2S2 + 3s23) le 2

22 23s3 2 3 - 23 3 3 3 23 3 1]

3K'
d "3 )
Tt- a a M3 - 3 3c23 1 + (2 3 c + 3)2 3 +

63 3s23ael2 - 2 333 23 + 33s23 3 1

T1 =M 3 .[2 2 + 22 2 3 s 2 s 2 3 3+ c23 1 1

63(.2c2 + 3c23) 2 - &3P3c2323 + 2(z2s2 + 23s23)

(22c2 + £3c2 3) 1 e2 + (22s2 + £3 s2 3)63e2 +

263 2 s2 3e2 3 33s23 + 3 3 3 + 233c23( 2s2 + 23s23) 3o1

d aK

D2
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T2 = M3 [- 3 ( 2 c2  3c23 + 2 2 3c3 + 2

£3( 2 3  + 23)o3 - (22 + 3 2 3 )( 2 c2 + £3 c2 3 ) -1

2 2 3s3 2 3  2 3s3 3

T3 = M3 33c231 + 32c3 3) 2 +  3 3c2 3

(2s2 + 3 s2 3 )8 1 + 2 3 s3 b3]
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GRAVITY COMPENSATION FOR LOAD CARRIED.

The position of the load is,

r3 = (42s2 + t3s23)c1 - 63s1li + [(42s2 + t2s23)s1 +

63C ]J + E2c2 + 3c23)k

The potential energy is,

P3 = - 3 ' )M3 = -M3 [g1 ((L2s 2 
+ '3s23)c1 - 63s1) +

92(2s2 * 3s23)s1 + 63c1 ) + 93(2c2 + '3c23)]

Tig = M3  -91[(t 2s2 + 3s23)s1 + '3c ] +

92[(( 2s2 + t3s23)cl - 63s1]}

Tig = M3  1 (z2c2 + 3c23)c+ 92(R2c2 + 3c23)s1 -

93(z2s2 + 3s23)

T3g = M3 g 3c23cl+ g2 3c2 3s1 - g3 3s23
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SUMMARY AND CONCLUSIONS.

We have shown that detailed analysis of the dynamics of mechanical mani-

pulators is feasible and leads to complicated, but manageable equations. Such

equations may be used in the simulation of such devices or directly in control

systems based on open-loop computation of required joint torques. Simulations

may be used in the design or analysis of traditional control systems, which

can maintain stable control only for low speeds.

New kinds of control systems can be envisaged, where negative feedback is

only used to account for small errors which come about because of differences

between the actual device and the mathematical model used in deriving these

equations.

We have derived the necessary equations for devices with rotational de-

grees of freedom and no offsets (pages 10, 13, 19). Compensation for gravita-

tional forces have also been calculated for arbitrary orientation of the de-

vice (page 22) as have the torques required to move a load carried at the tip

of link 3 (page 25). Finally, compensation for gravitational forces on this

extra load were considered (page 26).

The same calculations were then repeated for a device with offsets

(pages 10, 29, 34, 35).
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