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SHAPE FROM SHADING : A METHOD FOR OBTAINING

THE SHAPE OF A SMOOTH OPAQUE OBJECT FROM ON E VIEW*

Abstrac t

A method will be described for finding the shape of a smoot h

opaque object from a monocular image, given a knowledge of the

surface photometry, the position of the light-source and certai n

auxiliary information to resolve ambiguities . This method i s

complementary to the use of stereoscopy which relies on matchin g

up sharp detail and will fail on smooth objects . Until now the

image processing of single views has been restricted to object s

which can meaningfully be considered two-dimensional or bounded

by plane surfaces .

It is possible to derive a first-order non-linear partial differ -

ential equation in two unknowns relating the intensity at the imag e

points to the shape of the object . This equation can be solved by

means of an equivalent set of five ordinary differential equations .

A curve traced out by solving this set of equations for one set o f

starting values is called a characteristic strip . Starting one o f

these strips from each point on some initial curve will produce th e

whole solution surface . The initial curves can usually be construct -

ed around so-called singular points .

A number of applications of this method will be discussed includin g

one to lunar topography and one to the scanning electron microscope .

In both of these cases great simplifications occur in the equations .

A note on polyhedra follows and a quantitative theory of facial make -

up is touched upon .

An implementation of some of these ideas on the PDP-6 computer wit h

its attached image-dissector camera at the Artificial Intelligenc e

Laboratory will be described, and also a nose-recognition program .

*This report reproduces a thesis of the same title submitted t o

the Department of Electrical Engineering, Massachusetts Institut e
of Technology, in partial fulfillment of the requirements for th e
degree of Doctor of Philosophy, June 1970 .
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Figure	 1 : Pictures of a nose with superimposed characteristi c
solutions and contours . Shape determined from the
shading (not intensity contours) . See section 4 . 3
for details .
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1 .

	

INTRODUCTION :

1 .1 SHADING AS A MONOCULAR DEPTH CUE :

Consider a smooth object known to have a uniform surface . An

image of such an object will exhibit shading (gradations o f

reflected light intensity) which can he used to determine it s

shape, given only a picture from a single viewpoint . This i s

not obvious since at each point in the image we know only th e

reflectivity at the corresponding object point .

	

For some

points (called singular points here) the reflectivity doe s

uniquely determine the local normal, but for almost al l

points it does not . The shape of the surface cannot be foun d

by local operations alone .

SENSO R

Figure 2 : Definition of the incident (i), emittance (e )

and phase angle (g) .
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For many surfaces the fraction of the incident tight which i s

scattered in a given direction is a smooth function of th e

angles involved . It is convenient to think of the situatio n

as depending on three angles : the incident angle (betwee n

local normal and incident ray), the emittance (or emergent )

angle (between local normal and emitted ray) and the phas e

angle (between incident and emitted rays) .

It can be shown that the shape can be obtained from th e

shading if we know the reflectivity function and the positio n

of the light-source(s) . The reflectivity and the gradient o f

the surface can be related by a non-linear first-orde r

partial differential equation in two unknowns . The recip e

for solving this equation is to set up an equivalent set o f

five ordinary differential equations (three for th e

coordinates and two for the components of the gradient) an d

then to integrate these numerically along certain curve d

paths on the object called characteristics [5] .

	

For while we

cannot determine the gradient

	

locally, we can,

	

roughl y

speaking, determine its component in one special direction .

Then taking a small step in this direction, we can repeat th e

process - the curve traced out on the object in this manne r

is called a characteristic .

	

Its projection on the imag e

plane will he referred to as the base characteristic .

	

Th e

shape of the visible surface of the object is thus given as a
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sequence of coordinates on some such curves along it s

surface .

An initial known curve on the object is needed to start the

solution . Such a curve can usually be constructed near th e

singular points mentioned earlier using the known ` loca l

normal . The only additional information needed is the

distance to the singular point and whether the surface i s

convex or concave w .r .t . the observer at this point - suc h

ambiguities arise in several other instances in the proces s

of solution as will be seen .

Figure 3 : Image of a sphere and a stereo-pair of th e

characteristic curves obtained from the shading .

To solve the equations, the reflectivity as a function of t h e

three angles must be known, as well as the geometry relatin g

light-source, object and observer .

	

Multiple or extended
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light-sources

	

increase the

	

complexity of the

	

solution

algorithm presented .

	

But all

	

of this

	

initially neede d

information can be deduced from the image if a calibratio n

object of known shape is present in the same

	

image .

Furthermore,

	

incorrect assumptions about the reflectivit y

function and the position of the light-source(s) can lead t o

inconsistencies in the solution and

	

it may be possible t o

utilize this

	

information in the absence of a calibration

object .

In practice it is found that if the object is at all complex ,

its image will be segmented by edges . Some of these ar e

purely visual, due to the occlusion of one surface b y

another, others are angular edges (also called joints here )

on a single object .

	

Another kind of edge is the ambiguit y

edge .

	

This is an edge which the characteristics canno t

cross, indicating an ambiguity which cannot be resolve d

locally .

	

One can solve inside each region bounded by thes e

various edges, but some global or external knowledge i s

needed to match up the regions . In the case of an angula r

edge on the object one can integrate up to the edge and the n

use the known location of the edge as an initial curve fo r

another region (provided one resolves the ambiguity presen t

here, as on all initial curves) .
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A very similar situation also obtains when one bridges a

shadow. Since one edge of the shadow and the position o f

the light source is known, we can trace along the ray s

grazing the edge until the corresponding image points fall on

an illuminated region .

	

Since we know the path of each ray ,

we can calculate the coordinates of the point where i t

impinges on the object . The edge of the shadow (which nee d

not be on the same object) can now serve as an initial curv e

from which to continue the solution .

A number of interesting applications of this method can b e

mentioned . The first of these concerns the scanning electro n

microscope (SEM) which produces images which are particularl y

easy to interpret, since the intensity recorded is a functio n

of the slope of the object at that point and is thus a form

of shading (as opposed to optical and transmission electron

microscopes which produce

	

intensities which depend

	

on

thickness and optical or electron density) .

	

The geometry o f

the

	

scanning

	

electron

	

microscope

	

allows

	

severa l

simplifications

	

in the algorithm for determining shape fro m

shading (e .g . there are no shadows) . Because of the rando m

access capability of the beam of this microscope it should b e

easy and useful to combine it with a small computer to obtai n

three-dimensional information directly .



Page 1 2

Another

	

important application

	

lies in the determination o f

lunar topography .

	

Here the special reflectivity function o f

the material in the maria of the moon allows a very grea t

simplification of the equations used

	

in the shape-from -

shading algorithm .

	

The equations

	

in fact reduce to on e

integral which has to be evaluated along each of a family o f

predetermined straight lines

	

in the image, making for hig h

accuracy . This problem was first tackled for areas near th e

terminator (the dividing line between the illuminated and th e

unilluminated part of the moon ' s disk) by J . van Diggelen a t

the Astronomical Institute of the Netherlands in 1951 [2] an d

solved by T . Rindfleisch at the Jet Propulsion Laboratory i n

1966 [4] and the method applied to several pictures returne d

by the Ranger spacecraft .

	

This gave the first indicatio n

that the general solution discussed here might be possible .

It should be pointed out that this method is complementary t o

the use of stereopsis, since the latter will match up shar p

detail and edges while the shading information will determin e

the shape of the smooth portions of the surface .

So far we have assumed that the surface is uniform in it s

photometric properties .

	

Any non-uniformity will cause thi s

algorithm to determine an incorrect shape .

	

This is one o f

the uses of facial make-up ; by darkening certain slopes they
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can be made to appear steeper for example .

	

In some case s

surface-markings can

	

be

	

detected

	

if

	

they

	

lend

	

t o

discontinuities of the calculated shape .

Judging by our wide use of monocular pictures (photographs o r

even paintings and woodcuts) of people and other smoot h

objects, humans are good at interpreting shading information .

The short-comings of our method which are related to the

shading information available can be expected to be found i n

human visual perception too .

	

It will of course be difficul t

to decide whether the visual

	

system actually determines th e

shape

	

quantitatively or

	

whether it

	

uses the shadin g

information in a very qualitative way only .

	

A quantitativ e

determination would involve operations more complicated tha n

those

	

used in

	

edge-finding for

	

example .

	

Since th e

information is not

	

local,

	

the surface-shape calculation s

cannot be carried out entirely in parallel .

1 .2 HISTORY OF THE PROBLEM :

After formulating the image illumination equation as the

basis of a method of finding shape from shading, a literatur e

search was performed to see if a solution had previously been

obtained .

	

The literature on perception has only a few
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conjectures on the possibility of determining shape from th e

monocular dept h-cue of shading . Photog rammetry does not pa y

much attention to the reflectivity function, but only variou s

integrals of it, measured by such devices as the integratin g

photometer .

	

With few exceptions machine perception so fa r

has been restricted to objects which can usefully b e

considered two-dimensional and objects bounded by plane s

(polyhedra) .

The one relevant research was found in the paper on luna r

topography by T . Rindfleisch [4] which gives complete detail s

of a solution obtained in the form of an

	

integral in th e

special case of the reflectivity function of the moon .

	

Thi s

raised the hope that a general solution existed . Th e

( x ' , y ' , r) coordinate system used in [4] leads to intractabl e

equations - but we found a solution using a differen t

coordinate system, (x ' ,y ' ,z) . As a check the solution fo r

lunar topography was rederived from this set of equation s

(Rindfleisch found his solution in quite a different manner -

searching for predetermined curves

	

in the image along whic h

the surface can be found as some integral

	

involving th e

measured image illumination) .

	

A first program (old SHADE )

was then written which solved along one characteristic at a

time using various predictor-corrector-modifier methods

	

[7] .
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Another program (REFLEC) was used to measure the reflectivit y

function from a calibration sphere . Various short-comings o f

our image-dissector sensing

	

device were affecting

	

th e

accuracy of these measurements . Since very little was known

about the characteristics of this device on other tha n

theoretical grounds [9], a program (TEXTUR) was developed t o

measure various properties such as resolution,

	

signal t o

noise

	

ratio, drift,

	

settling time, scatter and pinholes i n

the photocathode . An attempt was then made to provid e

software to compensate for some defects such as distortio n

and non-uniform sensitivity, using measurements from tes t

patterns (DISTOR) .

These techniques allowed an estimation of what accuracy ca n

be achieved under optimal conditions . The program ha d

numerous problems when dealing with objects other than simpl e

convex ones (mostly because it solved each characteristi c

separately) and as must be apparent, was sensitive t o

imperfections

	

in the sensing device (partly because of th e

way it obtained intensity gradients) .

After the defects in the first program had been found, and a

decision made to rewrite it, a great simplification of th e

main equations was found using a different coordinate syste m

(x,y,z ) and a slight extension of standard vector notation
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(the voluminous equations for the

	

inconvenient coordinat e

system (x    ,z) are not reproduced here) .

	

An unfortunat e

but unimportant side-effect is an increase in the complexit y

of the derivation of the lunar- topography integral . The new

equations and numerous changes in the method of solution wer e

incorporated in a new program (new SHADE) which was les s

sensitive to the various shortcomings of our image-dissector .

This program can handle objects somewhat more complicate d

than its predecessor and solves all characteristics at the

same time .

In parallel with the programming work, theoretical effort s

were made to define and get around some of the difficultie s

of the method of shape from shading . Of particular interes t

were applications where the equations simplify greatly .

Unfortunately the massive simplification found in the case o f

lunar topography is unique . Of most interest are the case s

where we have some advance knowledge of the characteristic s

(for lunar topography they are completely independent of th e

image - for the scanning electron microscope they are path s

of steepest descent) .
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1 .3 PREVIEW OF CHAPTERS - GUIDE TO THE HURRIED READER :

References to articles and books listed at the end will be b y

numbers enclosed in brackets . Numbers contained i n

parentheses refer to sections and subsections in this work .

In an attempt to he complete, a few subsections were include d

which will have only limited appeal to some

	

readers ; hence

this guide .

Chapter 1 provides an

	

introduction to the depth-cue o f

shading, its

	

use

	

in determining shape and

	

its history .

Chapter 2 develops the necessary equations

	

in

	

detail ,

starting with the

	

definition of the reflectivity function .

Subsections 2 .1 .2 to 2 .1 .4 and 2 .2 can well he skipped by th e

hurried reader .

	

In

	

section

	

2 .3 the partial

	

differentia l

equation

	

is obtained, the vector differentiation notatio n

introduced

	

and

	

an

	

equivalent set

	

of

	

five ordinary

differential equations derived .

	

Section 2 .3 is perhaps th e

most important section . Sections 2 .12 to 2 .16 deal with some

miscellaneous implications and may be omitted without loss o f

continuity .

Chapter 3 describes in detail some practical situations wher e

the special conditions encountered make use of the method o f

determining

	

shape-from-shading

	

particularly

	

attractive .
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Section 3 .1 deals with the scanning electron microscope . Th e

reader should be warned about the tedious derivation of th e

simple

	

integral for the case of lunar topography in 3 .2 .

Omitting subsection 3 .2 .3 will avoid the bulk of th e

algebraic detail, and most of the conclusions will be foun d

anyway in subsection 3 .2 .4 .

Chapter 4 describes the experiments carried out with the tw o

programs (using the results developed in chapter 2) to obtai n

shapes from images projected on an image dissector camer a

attached to the PDP-6 computer in the Artificial Intelligenc e

Laboratory . Section 4 .1 deals with the less successful firs t

program, and contains details on auxiliary routines . Section

4 .2 deals with

	

the second program

	

which solves

	

the

characteristics

	

in parallel and also uses the importan t

sharpening process .

	

Sections 4 .1 and 4 .2 are next

	

i n

importance to section 2 .3 .

Section 4 .3 describes an application to a recognition task -

that of nose-recognition . Section 4 .4 contains an overal l

summary and conclusions about the capabilities of the metho d

of shape-from-shading, with subsection 4 .4 .1 givin g

suggestions for future investigations . This is followed by a

list of references .
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2 . THEORETICAL RESULTS :

2 . 1 THE REFLECTIVITY FUNCTION :

2 .1 .1 DEFINITION OF THE REFLECTIVITY FUNCTION :

Figure 4 : Illustration of the variables used in th e

definition of the reflectivity function .

Consider a surface element of size dS inclined i w .r .t .

	

the

incident

	

ray and e w .r .t . the emitted ray (The angles ar e

measured

	

w .r .t .

	

the normal) .

	

Let

	

the

	

incident

	

ligh t

intensity be I, per unit area perpendicular to the

	

inciden t

ray .

	

The amount of light falling on the surface element i s

then I I cos(i) dS .

Let the emitted ray have intensity I 2 per unit solid angl e

per unit area perpendicular to the emitted ray .

	

So the
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tan(a) =

	

cos(e)cos(g) - cos(i )

cos(e)sin(g )

cos(A)

	

cos(g) - cos(i)cos(e )

sin(i)sin(e )

Figure 5 : Definition of the azimuth angle (A) and th e

projection of the emittance angle on the phase -

angle plane -(a) .
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amount of light intercepted by an area subtending a soli d

angle dw at the surface element will be I z cos(e) dS dw . Th e

reflectivity function phi(i,e,g) is then defined to be I2/I1 .

If we want to be more precise about what units the intensit y

is measured in, we have to take into account the spectra l

distribution of the light emitted by the source, as well a s

the spectral sensitivity of the sensor (with this proviso w e

can speak of watts per unit area and watts per unit soli d

angle per unit area etc .) . We need not he too concerned wit h

this if we either use white paint, or measure th e

reflectivity function with the same equipment later used i n

the shape-from-shading algorithm .

	

It should he noted tha t

for

	

most

	

surfaces the

	

reflectivity function

	

is no t

independent of the color of the light used . Typically the

specular component of the reflected light, being reflecte d

before it has penetrated far into the surface, will b e

unchanged, while the matt component will he colored b y

pigments in the surface coating .

Several other definitions of the reflectivity function are i n

use which are multiples of the one defined here by pi, 2 ,

cos(e) and/or cos(?) . The specific formulation chosen her e

makes the equation relating the incident light intensity t o

the image illumination very simple .



Page 2 2

2 .1 .2 FUNCTIONS DERIVED FROM THE REFLECTIVITY FUNCTION :

The

	

next few subsections ( 2 . 1 . 2 . 1 ,

	

2 . 1 .2 .2 and 2 .1 .2 .3) are

included to relate the

	

reflectivity functions to those mor e

commonly mentioned in the literature .

	

Some readers may wan t

to skip these subsections .

2 .1 .2 .1 THE INTEGRATING PHOTOMETER :

A flat sample of the surface under investigation is mounte d

in the center of a hollow sphere coated on the inside with a

highly reflective matt substance .

	

Through one small hole ' a

light

	

ray enters and impinges on the sample with inciden t

angle i . A photosensitive device is introduced throug h

another small hole and measures an intensity proportional t o

the light scattered by the sample into all directions .

The total intensity measured is :
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Figure 6 : A gonio-photometer (used for measuring

reflectivity functions) .

Figure 7 : An integrating photometer .
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2 pi pi/2.

I

	

I I2 cos(e) dS sin(e) de d A
0 0

pi/2

i .e . :

	

J

	

/ 	 phi(i,e,g) I1 cos(e) dS sin(e) de d A

Where

	

cos(g) = cos(i) cos(e) + sin(i) sin(e) cos (A )

The total incident intensity is I cos(i) dS .

	

The fraction o f

light reflected is then :

1+r ~-rr/2

f

0

b(i) = [ 	 phi (i,e,g) * (1/2) * sin(2e) de dA ]/cos(i )

This function of the incident angle i has been measured fo r

many paints and pigments, while the reflectivity function 4
)

is known for very few surfaces . Since it is difficult t o

relate measurements of I1 to measurements of total reflecte d

intensity, the device is

	

usually calibrated with the sampl e

replaced by a standard of known high reflectivity (e .g . Mg O

or BaSO 4 powder reflect more than 99%, of the incident

	

ligh t

in the visible spectrum) .
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Figure 8 : Illustration showing quantities appearing in th e

integral for the integrating photometer .

Figure 9 : Illustration showing quantities appearing in the

integral for the Bond albedo .
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2 .1 .2 .2 PERFECT DIFFUSERS -- LAMBERT 'S LAW :

Surfaces made of finely divided powder usually closel y

approximate what has been called a Lambertian reflector o r

perfect diffuser . Lambertian emission was first defined fo r

black-body radiation and is such that the surface of the bod y

appears equally bright from all directions .

	

In the contex t

of reflectivity functions we call a surface 	 Lambertian i f

= k cos(i)

	

(the cos(i)

	

accounts

	

for the variation

	

i n

incident

	

radiation) .

	

For the highly reflective standard s

mentioned above, we chose k such that all the incident

	

ligh t

is reflected .

k = 1/pi

In addition to the various multiplicative factors shown

above, a normalized reflectivity function is also used ,

where :

rhophi'(i,e,g)= phi(i,e,g)

(1/2)*sin(2e) de dA = 1

rho is called the normal albedo and phi '(0,0,0) = 1 .
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2 .1 .2 .3 THE BOND ALBEDO :

Another integral of the reflectivity function which is use d

is the Bond albedo,

	

defined by astronomers as the ratio o f

total

	

reflected light from a sphere divided by the tota l

incident light .

If the incident intensity is I1 , then the ratio of

	

reflecte d

light to incident light

pi/2

t is :

fb = [ I1	 b(i) 2 pi r sin(i) cos(i) di ]/(I pi r2 )

0
pi/2

b(i) sin(2 i) d i

0
pi/2	2 pi	pi/2

 sin(i) sin(2e) de dA d i

o 





2 . 1 .3 THE DISCRIMINANT 1+2IEG-(I2+E2+G2) :

In this

	

subsection a discriminant

	

is

	

developed which i s

needed in the program implementing the shape-from-shadin g

algorithm .

	

This section can be skipped without

	

loss o f

continuity .
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The three angles i, e and g, being the sides of a spherica l

triangle, have to satisfy the following relationships :

i+e > g, e+g > i and g+ i> e

It

	

is often convenient to express these three relationship s

in terms of the cosines I, E and C of the three angles .

	

We

first note that only one of the relationships could fail at a

time .

	

For example if i+e < g :

	

i+2e < g+e

	

i .e . 	 i <	 g+e an d

	

2i+e < g+i

	

i .e .

	

e < g+ i

The angles are all positive and less than TT .

	

Now assume

that the condition i+e < g holds, then :

cos(i+e) > cos(g )

since cosine is monotonic decreasing for angles between 0 an d

pi . Expanding we get :

cos(i) cos(e) - cos(g) > sin(i) sin(e )

Since the

	

right-hand side

	

is positive,

	

the left-hand sid e

will be too and we can square the expression . Using I, E and
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G to stand for the cosines of i, e and g we get :

(IE-G )2 > (1-I2)(1-E2) i .e .

1+2 IEG-(I2+E2+G2) < 0

We now have to prove the converse i .e . if the angles ca n

indeed form a spherical triangle then the discriminant wil l

be positive . Since i < e+g we have g > i-e and similarl y

since e < i+g we have g >, e-1, so :

g

	

and similarly i > Ig-el and e > li-g l

Applying the cosine as before we get :

cos(g) - cos(i) cos(e)

	

sin(i) sin(e )

cos(i) - cos(e) cos(g) < sin(e) sin(g )

cos(e) - cos(g) cos(i) 	 < sin(g) sin(i )

From i+e < g etc . we get the same inequalities with the sig n

reversed on the left-hand side . We needed to go to th e

trouble of showing that these inequalities hold for absolut e

values

	

of the

	

left-hand

	

side,

	

since

	

it no

	

longer

	

i s

constraint to be positive . So we have :
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	 IE-Gl <	 sin(i) sin(e )

	

(EG-Il

	

sin(e) sin(g )

	

IGI-El

	

sin(g) sin(i )

Multiplying we get :

(IE-G)(EG-I)(GI-E)l

	

(1-I1)(1-E1)(1-G1 )

Using one of the two signs for the right-hand side an d

expanding we get :

(1-IEG)(1+2IEG-(I1 +E z+G2 )) > 0

Since III, IEI and 'GI < 1 we have (1-IEG) >, 0 and hence :

1+2IEG-(I ' +E'"+G2 ) >, 0

2 .1 .4 REFLECTIVITY FUNCTIONS AN P THEIR MEASUREMENT :

Surfaces where the three parameters 1, e and g are no t

sufficient to fully determine the reflectivity are unsuitabl e

for this analysis (or at least reduce the possible accuracy) .

Examples are translucent objects and those with non-isotropi c

surface properties (e .g . the mineral commonly called tiger-
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eye, hair, thin wax) . Perhaps the most important determinan t

of the reflectivity function is the micro-structure of th e

surface (i .e . that structure smaller than the resolution o f

the sensor used in the determination of the reflectivity) an d

different

	

reflectivity functions may apply at differen t

magnifications -(in addition, at

	

high magnification

	

object s

become increasingly translucent) . It is best then to

determine the reflectivity function under conditions simila r

to those used in the determination of the shape of th e

object .

One way to measure the reflectivity function is to employ a

gonio-photometer fitted with a small flat sample of the

surface to be investigated .

	

The device can be set for an y

combination of incident, emittance and phase angles .

To avoid having to move the source and the sensor into al l

possible positions w .r .t . a flat sample of the surface whe n

measuring the reflectivity function, it is convenient to hav e

a test-object which presents all possible values of i and e

for a given g .

	

(The constraints are i+e < g, e+g < i an d

g+i < e ) .

	

Use of such an object is greatly simplified b y

using a telephoto lens and a distant source, giving almost

constant g .

	

It is convenient to tabulate the reflectivit y

versus i and e for each of a series of values of g . A sphere
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is perhaps the easiest test-object to use if one is willin g

to live with the decreasing accuracy in determining e as on e

approaches the edge .

One could also have an object of known shape in the sam e

scene as the object to be analysed . This solves the proble m

of having to know the source location and the transfe r

properties of the image forming system as well . In some

cases objects of known shape and surface characteristic s

differing from those of the object under study are useful -

for example a sphere with specular reflectivity can pinpoin t

the

	

location of the light-sources (e .g . the eyes in a face) .

2 .1 .5 MATHEMATICAL MODELS OF SURFACES :

A number of attempts have been made to predict reflectivit y

functions on a theoretical basis starting with some assume d

micro-structure of the surface .

	

White matt surfaces ar e

usually finely divided grains

	

of transparent material (e .g .

snow and crushed glass) .

	

White paint usually consists o f

transparent	 ' p igment ' particles (e .g . of S I02 or T iO 2 ) o f

high refractive index (1 .7 to 2 .8) and small size

	

(optimall y

about the wavelength of visible

	

light) suspended in a

transparent medium of low refractive index (1 .3 say) .

	

If one
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TRANSPAREN T

Figure 10 : Model of surface-structure .

OPAQUE REFLECTIVE SUBSTANCE

Figure 11 : Another model used in the derivation o f

theoretical reflectivity functions .
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chooses a somewhat regular arrangement of suspended particle s

of uniform size and makes some very restrictive assumptions ,

one can derive a reflectivity function and study it s

dependence on various parameters describing the model of th e

surface .

Another type of surface

	

is that of a highly reflectiv e

material (such as a metal) where the light

	

rays do no t

penetrate into the material . Choosing a particular type o f

surface depression and a statistical distribution of the siz e

of these, one can again derive a reflectivity function . Onl y

a few such models have been studied and little hope exist s

for modelling real surfaces well enough and still deriving a

closed expression for the reflectivity function .

2 .2 CALCULATION OF IMAGE ILLUMINATION :

The equations derived in this section are only included fo r

reference, since the program to be described later avoid s

their use by means of a normalization of the image intensity .

These

	

equations do

	

have their

	

importance however i n

justifying the choice of definition

	

for the

	

reflectivit y

function and

	

in

	

designing optical

	

systems

	

used

	

i n

experimentation with the shape-from-shading method .
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dAi

Figure 12 : Diagram of optical system and quantities needed

in the calculation of image illumination .

Let d be the diameter of the pupil of the image formin g

device, f0 its focal length and M the image magnification

(the ratio of the length of a line in the image to th e

corresponding parallel line on the object) .

Let a portion of the object surface of area dAo be incline d

at angle e to the line from it to the image-forming device .

Its image will have an area of dAi = dA0 M2/cos(e) .

Let the incident intensity at the object patch be I1 per uni t

area perpendicular to the incident ray .

	

Then the emergen t

intensity per unit solid angle will be I2 = I1 phi(i,e,g) .

	

Th e

light captured by the image forming device is I2. dA dw/cos(e )

where dw is the solid angle formed by the cone of angle a .
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dw = 2pi (1-cos (a/2)) = 4pi s in (a/4 )

We would like to express this in terms of M and the so-calle d

f-number f,, :

fn = 1/(2 sin(b/2))

= J `
1 /4)+(1+h:)''(fo/d)''

	

= (1+l)(fo/d) if (fo/d)> 1

The f-number usually indicated on the lens-barrel is (fo/d )

or3(114)+(fa /d)''

fn-(1/4) = (1+F,i)''(fe/d)'
_

(1+M)(fa/d )
cos (Q/2) =

cos (Qt/2) =

dw = 2Tr (1 -

2-rr	 	 if f„> 1
(4f„'+M 3 -1 )

The intensity per unit area in the image is :

jiM/4) +(1+M) '" ( fp / d )'"

(4f„-1 )

(4 fn+1 -1 )

)
(4 fn+ t. 11

-1)
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I 3 = I,. [dA,/(coo(e) t ' )]-, [cos(e)/dA ] d w

= I 1 dw/t1 '

	

-

	

I 2 2rr/(4 f;) if M < 1

	

I 3 = I1 i dw/ M =

	

I,

	

2rr/ (4 f„' ) if M< 1

It becomes apparent why we chose to define the reflectivit y

function the way we did and also why one might want factor s

of Tr and/or 2 in the definition . It should be noted that i n

practice one does not usually employ this equation, bu t

rather normalizes the expressions used .

2 .3 THE IMAGE ILLUMINATION EQUATION :

This section contains the derivation of the imag e

illumination equation and the analytical formulation of th e

shape-from-shading problem .

2 .3 .1 PREVIEW OF HOW TO OBTAIN THE PARTIAL DIFFERENTIA L

EQUATION :

At a known point on the object we can calculate g . We woul d

like to find the gradient (or at least its component in on e

direction) at this point so as to be able to continue th e

solution to a neighboring point .

	

Measurement of the light



Figure 13 : Details of the geometry of image illuminatio n

and projection in the imaging system .
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reflected tells us something about i and e . Since only on e

measurement is involved, we cannot generally hope t o

determine both i and e locally, but only a relation betwee n

the two .

	

There are exceptional points where the normal

	

i s

locally

	

fully determined and this

	

is

	

useful

	

in findin g

initial conditions

	

as explained

	

later .

	

This situation

	

i s

contrary to that obtaining in the use of texture gradient s

(see section 2 .16) where the gradient

	

is known

	

locall y

(except

	

for a two-way ambiguity) .

	

In obtaining a solution

from the shading, only a global approach will work .

Collapse the two principal planes of the image-forming syste m

together, forming the x-y plane . Let the 2-axis coincide

with the optical axis and extend toward the object . Let f h e

the exit pupil to image plane distance and assume that th e

image and object space refractive indexes are equal .

Let t he the ratio of image illumination to object

	

luminanc e

(can be found from laws of optics - see section 2 .2) . Le t

a(x,y,z) be the incident light intensity (usually constant o r

obeys some inverse square law) . Let A(x,y,z) = t*a(x,y,z )

Let r = (x,y,z) be a point on the object and r ' = (x ' ,y ' ,f )
rt

the corresponding point in the image .
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b(x ' ,y ' )

	

is the

	

intensity measured at the

	

image poin t

(x',y ' ) .

Let I = cos(i), E = cos(e) and G = cos(g) .

We have

	

A(r) phi(I,E,G) = b(r ' )
rt

Let p and q be the partial derivatives of w . r .t . x and y .

We would like to show that this equation involves x, y, z, p

and q only .

2 .3 .2 NOTATION FOR VECTOR DIFFERENTIATION :

If A is a vector (3-tuple), then A = IA| is the magnitude of

A . Also let Ahat = A/ A

	

be the corresponding unit vector .
At	 At	 N

Consider the dot-product A .B as matrix multiplication of the

1 by 3 matrix A by the 3 by 1 matrix B' (the transpose of B) .

Consider partial differentiation w .r .t . a vector as the 3 -

tuple whose components are found by differentiating w .rat .

each component in turn . Then for example :

A



Page 4 1

At times we will also need the partial derivatives of vector s

w.r.t . vectors .

	

These are defined as 3 by 3 matrices (th e

first row being the

	

result of differentiating w .r .t . th e

first component and so on), then for example :

1 0 0
A A = 0 1 0
.' w

	

0 0 1

We will also use partial derivatives of dot-products of uni t

vectors w .r .t . vectors .

	

For example :

X = A .8

	

and we wan t XA

To avoid finding AA we write A X = A .B and then :

AAX + A XA= A.B
y

	

~/

	

N

Extending the definition of dot-product

	

in the appropriat e

way we find :

1 0 0 „ TA
A .B = 0 1 0 B = B

A X A = B - X AN N

	

N

n

	

n
X A = (1/A)(B - X A)
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2 .3 .3 THE EQUATION IS A FIRST-ORDER NON-LINEAR P .D .E . :

If the

	

reflectivity function is 	 phi(I,E,G),

	

the normalize d

incident light intensity at the point r = (x,y,z) is A(r) an d

the intensity at the corresponding image point r ' = (x ' ,y ' , f)

is b( r ' ), then :

A(r) phi(I,E,G) = b(r' )

This image illumination equation is the main equation studie d

here .

	

When finding a solution we assume A(r) and	 phi(I,E,G )

are known and b(r ' ) is obtained from the image .

	

We want t o

show that the equation is a first-order non-linear partia l

differential equation in two

	

independent variables, i .e . a n

equation of the form :

F(x, y , z, p , q) = 0

where p = z_x and q = z_y are the partial derivatives ofz

w .r .t . x and y respectively .

	

From the simple projection
geometry we have :

r ' = (f/z)*r
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Where f is th e

care of image

appropriately .

functions o f

surface at the

ex it pup! I

e reversa l

I t 	remains

x . y . z . p

point r is rt

to image plane distance .

	

We took

by orienting the x' and y ' axe s

remains to show that

	

I, E and G ar e

and q . An inward normal to th e

n = (- p , -q, 1) .
N

Let the

	

light-source be at N5 = (xs,ys,zs) .

	

Then the

incident

	

ray

	

will be

	

,rt = r - ,rs , and

	

the emergen t

ray -re = -r .

	

Clearly then :

A
I = n . r t , E = n . e and G = r ;, . re

Where the ^ ' s denote unit vectors . ALL the terms thu s

involve only x, y, z, p and q . It follows that we are dealin g

with a first-order non-linear partial differential equatio n

in the two unknowns x and y .

2 .3 .4 SOME DERIVATIVES NEEDED IN THE SOLUTION :

When solving the P .D .E . by the method of characteristics w e

will need the following partial derivatives (see sectio n

2 .5), which it is convenient to introduce here, following th e

expansion of I, E and G in terms of dot-products .

	

Using th e

results developed in subsection 2 .3 .2 we get :
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r = Ir

	

= (1/r i, )(n

	

- I r t: )
M

	

A `

	

A

In = (1/n )(r - I n )

	

N

	

N

E r = Ere = (1/rt )(n - E re )
N

E h = (1/n )(re - E

	

)

	

N

	

'r

G~ = Gr + G~.e = (1/re)(rz - G re ) + (1/r L )(re - G
A.

)
M

	

IV

	

P/

	

ry

	

N

C y, = 0

2 .3 .5 THE

	

EQUIVALENT SET

	

OF ORDINARY

	

DIFFERENTIA L

EQUATIONS :

The usual method of dealing with a first-order non-linea r

partial differential equation is to solve an equivalent se t

of five ordinary differential equations :

x = Fp,

	

y = F9 ,

	

= p Fp + qF9

p = -F, - pFa

	

and

	

q = -Fr

	

qFz.

The dot denotes differentiation w .r .t .

	

s, a parameter whic h

varies with distance along a characteristic strip .

	

Th e

subscripts denote partial derivatives .

	

These equations ar e

solved along so-called characteristic strips (see [5],

	

pag e

24) .

	

The characteristic strip are the characteristic curve s

I
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described earlier (values of x, y and z) plus the values of p

and q on them .

Since we can multiply the equation F = 0 by any non-zer o

smooth function >(x, y, z, p, q) without altering th e

solution surface, we can obtain a different set of equations :

x = ) % Ff ,

	

y - F9

	

_ ~(pFp + qFq )

p = \(-F), - pF;) and

	

q ='A(-Fy - qFz )

The solution to this new set of equations will differ only i n

the values of the parameter s at any given point . Fo r

example if we let

= 1//F 1; + Fy + (pF P
+ qF9 ) z

the

	

parameter

	

s

	

gives

	

us

	

arc-length

	

along

	

th e

characteristics .

	

This

	

is used

	

in the programs to b e

described later .

	

Of course we can only do this

	

if th e

denominator is not zero ; at singular points and ambiguit y

edges it will be zero (i .e . Fp = F 9 = 0 and N4oo) . A

different choice for >s will be used later in the discussio n

of the scanning electron microscope (section 3 .1) .
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2 .3 .6 OUTLINE OF PROOF OF EQUIVALENCE. OF THE SET O F

O .D .E . ' S TO THE P.D.E. :

In this subsection the equivalence of the five ordinar y

differential equations to the image illumination equation i s

discussed . The reader who believes the equivalence holds ma y

well skip this subsection !

At a given point (x0 , y0 , z2 .) the equation F(x, y, z, p, q) =

0 represents a relation between p and q . That is, it confine s

the possible solution normals at this point to a one -

parameter family of direct ions [5] :

(p (a), q (a), -1 )

Increments in the feasible tangent planes thus satisfy :

dz = p0(a) dx + q0(a) d y

Differentiating w .rat . alpha we get :

0 = p; (a) dx + qp (a) d y

(Dashes are derivatives w .r .t . alpha in this subsection) .

	

Bu t

by differentiating the equation F(x, y,

	

p, q) = 0 w .r .t .
alpha
we also get :
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F p po(a) + F l q ;( ) = 0

Hence :

	

dx/F P = dy/F e

What

	

we need now are

	

similar equations for feasibl e

increments in z, p and q . First we have :

dE = p dx + q d y

in the solution surface (this surface

	

is selected from al l

possible ones by choosing one passing through a given initia l

curve - see later, subsection 2 .3 .7) .

	

Hence :

dZ/(pF p + qF9 ) _ (p dx + q dy)/( p F l, + qFy )

= dx/F P = dy/F 9

Finally differentiating F(x, y, z, p, q) = 0 w .r .t . x and y :

Fx + Fzp + Fp p„ + Fq q ,( = 0

Fy + F.aq + Fp py + Fq q ), = 0

alp

	

aV z
but py = q x

	

axay

	

=

	

aya x

dP/(F).+pF;) = - (p x dx + pydy)/(p,,F p + p y F9 ) = - dx/F P

dq/(F),+qF.) = - ( g x dx + g y dy)/(q x Fp + g y Fl ) _ - dy/Fq
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dx/Fp = dy/F9 = dE/(Prp + qF9 )

-dp / (F x + p FI ) = - d q / (Fy + q FI )

Introducing the parameter s we get the five

	

O .D .E . ' s

mentioned earlier .

	

We have shown that a solution to th e

P .O .E . must also satisfy theses five O .D .E . ' s .

	

It is a

	

bi t

more difficult to show that a solution to these O .D .E . ' s i s

necessarily a solution of the P .D .E . (see (5], page 28) .

Basically it needs to be shown that the equations for p and q

produce results which continue to be consistent (i .e . equa l

to the partial derivatives of z w .r .t . x and y) .

2 .3 .1 INITIAL CONDITIONS NEEDED :

To select a particular solution surface amongst all possibl e

solution surfaces one needs to specify an initial curv e

through which the solution surface must pass :

x = x(t), y = y(t) and z = z(t )

Along this curve we must satisfy :
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z ' (t) = p x ' (t) +q y ' (t )

F(x(t), y(t), z(t), p(t), q(t)) = 0

Here the dash represents differentiation w .r .t . t . This pai r

of non-linear equations allows one to find p(t) and q(t )

along the initial curve (there may be more than one solution ,

in which case there will be more than one solution surface) .

The characteristic strips sprout from this initial curve an d

the solution surface can be described parametrically :

x = x(s,t), y=y(s,t), z = z(s,t) an d

p = p(s,t), q = q(s,t )

2 .4 .SIMPLIFYING CONDITIONS AND UNIFORM ILLUMINATION :

Since the general equations are fairly complex it is of grea t

interest to find simplifying conditions . Some of these ar e

presented here, others will be found described in chapter 3 .

1 . DISTANT SOURCE :

	

(Collimated source or the object subtends

a small angle at the source)
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Figure 14 : Characteristic strips sprouting from a n

initial curve .

Figure 15 : Illustration showing quantities appearing in th e

integral for the case of uniform illuminatio n

(Similar to Figure 8) .
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A r .r ;. = 0 and for a truly distant source :



Replace r . by kri and let k -> infinity then:

I,. = 0 	 In unchange d

E,, = 0 , E„ unchange d

_ (1/re)(rL - G r¢ ) , G N = 0
A

	

In addition choosing the z-axis along

	

removes furthe r

terms .

2 . DISTANT CAMERA : (Telephoto lens or the object subtends a

small angle at the camera )

Replace re by kit and let k-~oo then :

I,. and I n unchange d

Er = 0 , E ,, unchange d

Cr

	

(1/ri )( re - G r~) , G I , =

0 In addition choosing thez-axis along

	

r e removes furthe r

terms .
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3. DISTANT SOURCE AND DISTANT CAMERA :

 = 0 , I unchange d

E = 0 , E , unchange d

GGn = 0

Most practical situations are an approximation of thi s

case .

4. SOURCE AT THE CAMERA :

r . = r e

	

I = E and G= 1

I . = Er , unchange d Ir

I „ = E„ unchanged

G= 0 and G„ = 0

5. DISTANT SOURCE AT DISTANT CAMERA :

I 1.= E

	

= G,. = 0

I, = E„ unchanged, G „ = 0

Choosing the object to be on the z-axis removes furthe r

terms . This is the simplest possible case .
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6 . UNIFORM ILLUMINATION :

Uniform illumination

	

(or an approximation thereof) i s

f a i r l y common and might at f i r s t sight appear not to f i t

into our framework . This subsection shows th e

equivalence of uniform illumination to one where a point -

source is at the camera and a different reflectivit y

function obtains .

The integrals here are analogous to the ones obtained fo r

the integrating photometer except that we have constan t

emittance angle rather than constant incident angle .

	

I f

the incident light intensity is I I per unit area oriente d

in any direction, then it is easy to show that I1/pi fall s

per unit solid angle per unit area perpendicular to

	

it .

The emitted light per unit solid angle per unit are a

perpendicular to the emitted ray is thus :

pi/2-

I I y-1 (e) = I, (1/Tr)(J

	

(4(i,e,g)*(1/2)-'<sin(2i) di dA

	

)

/cos(e )

This

	

is the same situation as if we had a source at th e

camera and a reflectivity function such that :
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OE,E,1) = ~(E )

(Except that for uniform illumination a certain amount o f

self-shadowing can occur for non-convex objects )

2 .5 THE FIVE O .D .Ea ' S FOR THE IMAGE. ILLUMINATIOPI EQUATION :

F(x, y, z, p , q ) = A(r) cf(I,E,G) - b(r ' ) = 0
N

We know A(r) and i(I,E,G ), and obtain b(r ' ) from the image a

We need Fx ,

	

F )„

	

F ? and F 9 .

	

Since r = (x,y,z) an d

n = (-p,-q, 1 ) we can get a ll of these derivatives from F r
N

	

N
and F .

FN = A(r) c r(I,E,G) + A h,(r) cl)(I,E,G) - b r ( N' )w

	

N

	

N

FL, = A(r)
M1

Let

	

a = (I,E,G)

	

then :

~r= of. 0. a

	

and el)

	

= i.

	

a

Note that a and a h are 3 by 3 matrices, the rows of which we
-

computed in a previous subsection (2 .3 .4) .
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nl/rz)( ; - I r )
(1/re)(n - E r )

V1/re)(r i - G E t ) + (1/r,;)(re-G r ` )

	

rl/r%

	

-I/r L

	

0

	

1 ~N 1

	

1/re

	

0

	

-E/re

	

r .
0

	

(1/rc-C/r()

	

(1/rt-G/re)J \~e 1

Note that this

	

is the product of two 3 by 3 matrices a
Similarly :

r(1 /n) (r, - I 'r;) -\
(1/n)(r e - E PI )

	

I/n

	

1/n 0
N

	

-E/n

	

0

	

1/n

	

r u
0

	

0

	

0

	

re

The calculation of b (r ' ) from b ,(r ' ) will be described i n
section 2 .7 .

.-

	

=„
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2 . 6 CAMERA PROJECTION EQUATIONS :

The projection equations derived here are used in sectio n

2 .7 .

So far we have assumed the camera to be at the origi n

oriented with its optical axis directed along the z-axis an d

the image-plane x ' and y ' axes parallel to the x and y axes .

Moving the camera from the origin introduces only a mino r

change in the equations . If however the camera is oriente d

in a different way, some of the equations become mor e

complicated .

Let R be the orthonormal 3 by 3 matrix which takes the z-axi s

into the optical axis and the x and y axes into the x ' and y '

axes . Then :

f
r ' = (R r ),y

	

N
(R r) . '

where 2 = (0,0,1) is the unit vector along the a-axis in th e

image coordinate system, r ' is the vector from the exit -

pupil to the image point in the same coordinate system .

If two images are taken with the camera oriented differently ,

the area recorded in both images will be spatially distorted
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only .

	

That is, a simple transformation will

	

take the on e

image into the other .

( R 1. R ,
rl

Where R, and R, are the two rotation matrices and f, and f,,

the corresponding exit pupil to image plane distances .

	

Thi s

transformation is useful if one wishes to orient the optica l

axis along r,4 or r e (to simplify the equations for th e

derivatives) .

2 .7 OBTAINING INTENSITY GRADIENTS :

To evaluate the derivative Fr (section 2 .5) we need b r (r' ) .

(R I R ;' z ;) .2 f,

b (r ' ) = b

	

r► ,~,

	

r

	

rN

	

N

	

ti

f

	

f Rr . 2
= Rr --

	

- (Rr)	
N

	

,....y.
(Rr) .2

	

(Rrai) :

	

N -

	

N -

r r

f

	

(Rr) (R2 )
(R -

	

)
(Rr) .

	

(Rr) . 2
r

	

e~

In the simple case that the camera is oriented properly :
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1

	

0

	

0

R =

	

0

	

1

	

0

0

	

0

	

1

f 0

	

0 r z
r 0

	

1

	

0
(1

r . 2r .1 0

	

0

	

1
Nw

f 1

	

0 0 f 0 0

N N

x
= - 0

	

1

	

0 -- 0 0 y

2 0

	

0

	

1 z '' 0 0 a

f

	

1

	

0

	

-x/ z
= -

	

0

	

1

	

-y/i2
0

	

0

	

0

Written out in full we have :

(b x , by , bz ) = (f/z)[bx,, b y ,, -((x/a)b x , + (y/z)by,) ]

b X , and b y, are measured directly from the image .

Since the intensities measured from the image do not locall y

determine the normal, one might well ask what, roughly, suc h

measurements do determine . The components of the gradient o f

the

	

intensity are related to the second derivatives of th e

distance to the surface, while the

	

intensity

	

itself

	

i s

related to the magnitude of the first derivatives .	 Thi s

relationship becomes exact for the case of a distant sourc e

at a distant camera (section

	

2a5, case 5 ;

	

see also 3 .1 .2) .

It should be noted that the equation for F r (section 2 .5 )
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also involves Ar .

	

Usually A is fairly constant over the are a
N

of the object recorded in the image, or at least satisfies a

simple inverse-square equation .

If A = (re /ri)z , then Ar. = -2(re/ri.),r,;

Where r ; is the incident vector, and r` is the length of the

incident vector to the singular point .

2 .8 OBTAINING INITIAL CONDITIONS :

It would be a great disadvantage if one always required a n

initial curve to start the solution from . Fortunately it i s

usually possible to calculate some initial curve if one make s

some assumptions about the surface and uses the specia l

points where the reflectivity uniquely determines the loca l

normal - these points will be called singular points .

2a8 .1 USE OF THE SINGULAR POINTS :

The singular points are the brightest or the darkest point s

(depending on the reflectivity function) . At all othe r

points the normal cannot be locally determined . The singular
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points are points corresponding to values of i and e fo r

which the reflectivity is a unique global maximum or minimum .

These may be either extrema in the calculus sense or at the

limiting values of the angles .

This method cannot be used if the surface does not contain a

surface element oriented in this special direction . Th e

points are found by looking for the brightest (or darkest )

points in the image .

All we still need to know then is the distance of this poin t

from the camera, but since one is usually only interested i n

relative distances this

	

is not a serious

	

restriction .

Unfortunately

	

it will

	

be found that the solution will no t

move from these singular points, I .e . X ' = y = 0 . This i s

an indication that the algorithm needs to be informed abou t

which way the surface is curved (convex or concave) . To mak e

this more concrete assume we have a distant source and ca n

thus calculate G at each image point .
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2 .8 .2 THE SOLUTION WILL NOT MOVE FROM A SINGULAR POINT :

Consider the variation of + with E first :

1. If the extremum occurs for 0<E<1 then 4E = 0 .

2. If the extremum occurs for E = 1 then n = re and hence
E„ = (1/n)(re - E n) = 0 .

A

	

ti

	

N

3. If the extremum occurs for E = 0 then nar = 0 an d

E h = ( 1/n)re .

	

That is, xp+yp-a=0 and E P = (1/nr)x an d

Eq = (1/nr)y .

x = +  (1/nr)x and y = i (1/nr) y
_ 4e (1/nr}(px+qy) = cl)  (1/nr) z

In case 1 and 2 we have +  E i, and 4  E 9 = 0 .

Now consider the variation of

	

with I :

1. If the extremum occurs for 0<I<1 then

	

= 0 .

A.

	

A.2. If the extremum occurs for I = 1 then n = r . and henc e
I h = (1/n) (Ni - I ~) = 0 .
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3 . If the extremum occurs for I = 0 then N .
to
= 0

	

an d

	

Ih = (1/n)r i, .

	

That is (x-x o   q  0 an d
N

	

N

Ip = (1/nrt)(x-x 0 ) and I 9 = (1/nri)(y-yo) .

=

	

(1/nri,)(x-x0),

	

y = t (1/nri)(y-y, )

= 4 (1/nrc)((x-x o )p + ( y -y0) q )

	

=

	

(1/nr`)(z-ZL, )

In case 1 and 2 we have il l I P and
4 .,

I 9 = O .

	

Now x = Fe and

	

= Ft and i = pFF +qF9 .

F„ = A(r) cl)(I,E,G )
~V

	

N

P =
chip + i:I E E P

19 =I 1 + 9' E

So in all combinations of cases 1 and 2 for E and cases 1 an d

2 for I we find x = y = 0 and hence also 2 = 0, therefore :

That is, the projection of the solution point into the i mag e

is not moving as the parameter s is changed .
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In the case E = 0 we find that even though x and y may b e

non-zero, x and y ' = O .

All that remains is the case I = 0 . Here too x = y' = 0 ,

when the source is at the camera or if F is undetermined . We

have found no paints with an extremum for I = 0 where E wa s

determined (i .e . the global extremum was not unique) .

2 .8 .3 GETTING THE INITIAL CURVE FROM A SINGULAR POINT :

If the surface is conv ex (or concave) at the singular poin t

and we have a guess at the radius of curvature (from th e

overall size of the object for example) we can get around th e

problem of singular points by constructing small spherica l

caps on them. Difficulties will be encountered if this poin t

happens to be a saddle point (The presence of a saddle poin t

however usually indicates that other singular points exis t

where the surface is either convex or concave) .

Let S be the vector from the camera to the singular poin t

(found from its known image coordinates and its distance fro m

the camera) . R is the estimated radius of curvature an d rho

the distance we decide to step away from the singular poin t

(determined in practice by considerations of uncertainty in
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Figure 16 : Construction of the initial curve near a

singular point .

SINGULA R
POIN T

Figure 17 : Illustration portraying three solutions obtaine d

for varying initial radius of curvature -

showing the small effect which errors in th e

initial curve have on the solution .
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the position of the singular point and the desired detail i n

the solution) . The known normal at the singular point is N .
A, o

A

We construct a spherical cap with center S - RN o .
N

=

	

- r

S i = S + (R,-R)N 0

X = 9xN

	

where y = (0,1,0 )

Y = N ox X
N

Le t

Let

n
T(t)

	

[X cos(2Trt) + Y sin(2-rrt) )
N

	

N
0<t< 1

Points on the initial circle are then given b y

S t + T(t )

We also need an initial guess at p and q, so we construct N r ,

(an outward normal) :

N (t) = R 1 N

	

+ T(t )
N I

	

....0 N

The requirement for an

	

initial guess at the radius of

curvature

	

is not as restrictive as

	

it might seem, since th e

required accuracy is extremely low .

	

This is because

	

i s

usually very much smaller than R, and hence a change in R

affects the position of the initial curve very little .

	

Fve n

more importantly the values derived for p and q need not be
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accurate since they are only used as a first guess in a n

iterative method of finding p and q on the initial curv e

before starting the solution .

2 .9 NON-POINT SOURCES :

Uniform sources have already been dealt with . Perhaps th e

easiest other case is a circularly symmetric source at a

distance large compared to the dimensions of the object .

2 .9 .1 CIRCULARLY SYMMETRIC SOURCES :

Distant circularly symmetric sources can be replaced by a

point source after modifying the reflectivity function . On e

merely convolves the reflectivity function with the sprea d

function of the source (a bit of spherical trigonometry i s

involved here) . Strictly speaking one should perform th e

same operation with the entrance pupil of the camera since i t

too subtends a finite angle at the object and accepts a

bundle of light-rays . Since i
is smooth (except at I = 0 an d

I = 1) it will be changed very little except at these points .

The main change will be that 4 does not tend to 0 as I tend s

to 0, but rather for some negative value of I . Also the
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specular component will be more smeared out .

OBJECT

Figure 18 : Illustration of circularly symmetric source and

quantities used in the convolution .

Let the source intensity be I(a) per unit solid angle at

	

th e

angle a from its center when viewed from the object .

	

The n

the new reflectivity function phi'(I,E,G) is :



I( a



Where a0 is the total angular diameter of the source .

phi'(I,E,G )= 	 phi	 (I ' ,E,G ' ) a da dv

	

I(a) a da dv

0

	

oJo
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And

	

cos(A) _ (cos(g)-cos(i) cos(e))/(sin(i) sin(e) )
cos(i ' ) = cos(i) cos(a) + sin(i) sin(a) cos(v )
sin(SA) = sin(i ' ) sin(a)/sin(v )
cos (g ' ) = cos(A+gA) sin( V) sin(e) + cos (1 ' ) cos(e )

2 .9 .2 VULTIPLE SOURCES :

When the source distribution is not easily treated as abov e
one can introduce a different A K for each source and replac e
the main equation by :

2lA K (r) i(I t ,E,G k ) = b(r ' )

Difficulties in finding initial conditions will b e
encountered with multiple sources unless they are of specia l
kinds (e .g . a point source and a uniform source) .

2 .10 TYPES OF EDGES :

Several kinds of edges appear in an image - each with its ow n
properties and problems for our algorithm :
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1. Overlap - (occlusion of one object by another )

discontinuity in z . The program must detect this or i t

will erroneously continue a solution across such an edge .

2. Joints - (angular edges on an object) discontinuities i n

the derivatives of z . One cannot continue p and q acros s

such an edge . It is possible however to use the positio n

of the edge as a new initial curve . This and the previou s

condition can be detected as a step in the intensit y

distribution or from a highlight on the edge .

3. View edges - special case of 1 . , where no joint appears ,

i .e . the surface is smooth and E tends to 0 as we approac h

it .

	

This

	

is easily detected by the program during th e

calculation of the solution .

4. Shadow edges - here I tends to 0 as we approach the edg e

and again the program can easily detect this .

5. Other edge of shadow - if the shadow was bridged this edg e

may serve as a new initial curve .

6. Ambiguity edges - some are lines of aggregation o f

singular points (on which lambda -> infinity ) . The characteristic s

will not cross an ambiguity edge (see section 3 .1 .3) .
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2 .11 SHADOWS AND SELF--ILLUMINATION :

If the single source

	

is not at the camera,

	

shadows will

appear .

	

Solutions can be carried across shadows since th e

position of the source is known and one can construct a ra y

through the

	

last illuminated point and trace it

	

until

	

i t

meets another illuminated region .

	

Only the coordinates an d

not the local gradient of this new point will be known .

	

I t

is necessary to carry this operation out for al l

characteristics entering the shadow, producing a new initia l

curve at the other edge of the shadow where we can restar t

the solution .

	

In practice care has to be taken because o f

noisyness of the solution .

Self-illumination is a difficult problem to deal with

	

unles s

the object is convex or its albedo is low (less than 0 .4) .

An estimate of the effect of self-illumination can b e

obtained from a consideration of two semi-infinite mat t

planes joined at right angles .

	

These are illuminated from a

very great distance and such that the incident rays make a n

angle a with one of the planes . Let the reflectivity of the

surface obey lamberts taw and the fraction of the inciden t

light reflected be k . Contrast between two intensities I i an d

I 2 is usually defined to be :
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Figure 19 : Bridging a shadow .

Figure 20 : Two semi-infinite planes joined at right angles .

Used in the study of self-illumination .
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II

I1 + 12.
C =

If we ignore light

	

reflected more than once, we find th e

contrast between the two planes to be :

C1= tan(a -pi/4)

While

	

if the self-illumination is taken into account we get :

2 - k
C2=	tan(a - pi/4)

2 + k

Contrast is thus

	

reduced by a factor of

	

(2 - k)/(2 + k) .

This factor varies from 1/3 to 1 as k varies from 1 to O .

Note : the rest of chapter 2 contains some miscellaneous

items that did not fit in elsewhere .

2 .12 THE INVERSE PROBLEM - GENERATING HALF-TONE IMAGES :

The inverse problem of producing images of a specified scen e

with shading and shadows is vastly different from the metho d

of shape-from-shading .

	

Most programs written for thi s

purpose can be used for objects bounded by planes only .

	

Th e

main issues of optimization of the calculation of which
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surfaces are visible to the source and camera respectivel y

have been dealt with in some detail in recent work [8] .

Although the two problems are inverses of one another, th e

methods used are quite different .

An interesting problem of a mathematical nature (an d

incidentally with application to cutting wood-cuts) is tha t

of producing curved lines in a plane such that the density o f

lines is proportional to the shading in the image of som e

real or imagined object . Preferably one would like as smal l

a number of 'unnecessary ' breaks in the lines as possible ,

i .e . the lines should either close on themselves or leave th e

image . Another restriction one might apply is that the line s

should not cross (When producing wood-cuts one would mos t

likely also reflect some of the surface texture in the choic e

of lines) .

For a special case, a solution is immediately at hand .

	

Thi s

is the case where we have a distant camera at a distan t

source

	

(section -2 .4, case

	

5 ;

	

see also 3 .1 .2) and

	

a

reflectivity function

	

such that :

phi(I, I,1) = I = 1 l+qi~
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Here the contour lines give a solution, with no crossin g

lines and no 'unnecessary' breaks . One of the mos t

attractive feature of contour maps is perhaps just this fact

that they provide some shading information .

2 .13 HUMAN PERFORMANCE WITH MONOCULAR PICTURES :

Judging by the popularity of monocular pictures of people an d

other smooth objects, humans are good at interpreting shadin g

information . Since they use the same basic information a s

our shape-from-shading algorithm we expect to find simila r

short-comings (see section on facial make-up for example) .

Supposing the human visual system does not use the shadin g

information

	

in simple heuristic ways only, one might expec t

that the perception system ' solves ' the equations or a muc h

simplified form of them . Since this cannot be done locall y

(the way some portions of an edge-finding process might work )

it is difficult to suggest an elegant and simple mechanis m

and a place to look for it . Presumably it would have t o

involve computational waves travelling outward from th e

singular points .
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2 .14 ERRORS AND INCONSISTENCIES :

It

	

is difficult

	

to estimate analytically the error in th e

solution because the equations are so non-linear . 4), b, an d

A cannot be measured to better than 5 or 10% accuracy an d

numerous practical problems such as non-uniform sensitivit y

of the sensor have to be taken care of .

Only a simple error analysis can be presented here . Suppos e

we wish to determine the effect of varying inclinations o n

how a given error in the input data (intensity in the image )

relates to errors in the coordinates determined on th e

characteristics . We need to determine the rate of change o f

p w .r .t . b . Consider a particularly simple case, that of a

distant source at a distant camera (As has been mentione d

previously and will

	

be demonstrated in section 3 .1, th e

equations for this case are particularly simple) .

	

Nex t

assume that one of the gradient components, q say, is O .

We have b/A =_~(I) = 4(1 /3 1+p 2 +q' ) = 0/f l+p:\ )

Then

	

p =/1/(p (b/A)) 2- - 1 ,

We need to differentiate p w .r .t . the ratio l = b/A .



Page 7 6

Pt

	

(4 -' (1) ) 1/1 - ( i -' (t ))'"

For both I-p 0 and I -> 1, the error in p becomes very larg e

for a given error in 	 l (since in the first case phi '1(1) -3 0

and in the second case 4I(L) -) 1) .

	

This

	

is not ver y

surprising

	

since

	

in

	

the first

	

case we

	

are lookin g

perpendicularly down on the surface and I will vary ver y

slowly with p, while in the second case we have nea r

tangential incidence and small changes in the angle o f

incidence (and hence also I) will correspond to large change s

in p .

We note that

	

in this rather special case, the

	

erro r

contribution to the solution

	

is large in some areas, whil e

being small

	

in others where the incident angle is not t o

close to 0 or pi/2 .

	

The actual error will also depend on 4 - 1

and the error in measuring b/A . In a case with les s

restricted lighting conditions the relationship between th e

inclination of the surface and the error-rate will be mor e

complex .

We considered the derivative of p w .r .t . 1, since it is th e

integral of the error in p which constitutes the error i n

for any one characteristic .
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J0

s

	

s

e(s) =

	

S p(s) ds =

	

p

	

Sl(s) d s

Where e(s) is the error in a for a given characteristic as a

function of arc-distance from the singular p oint, Sp(s) i s

the error in p and El(s) is the error in 1 .

In this context one may also want to discuss inconsistencie s

in the solution . If either the lighting conditions or th e

reflectivity function are incorrectly specified, an incorrec t

shape will be calculated .

	

The shape determined may or ma y

not violate the requirement of smoothness . If the calculate d

shape is not smooth it can be concluded that the solution (a t

least in some region) is incorrect, and that the given sourc e

position or the given reflectivity function are incorrect .

It is easy to give examples of the case where fals e

assumption will lead to a smooth solution, as well as thos e

where we obtain solutions with discontinuities .

For simplicity consider a flat,

	

inclined surface

	

(z = x) .

The characteristics

	

will be straight lines

	

in this

	

plane ,

parallel to the x-z plane . Modifying the reflectivity of th e

surface to be increasingly darker with increasing x, w e

obtain a new solution which contains characteristics, agai n

parallel to the x-z plane, but curving toward large z for
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large x . This solution is smooth and contains no indicatio n

of an error .

If now we apply instead a surface coating which is normal fo r

positive y and darker for negative y, we obtain a solution i n

which the inconsistency is apparent . The characteristics i n

the solution for negative y are more inclined than those fo r

positive y, and a discontinuity exists at y = O .

Using this kind of approach one could determine which kind o f

surface markings are noticeable by an observer (i .e . lead t o

inconsistencies in the solution) and those which merely alte r

the apparent shape .

2 .15 WHAT ARE LIKELY SOURCE DISTRIBUTIONS ?

Since

	

the complexity of

	

the algorithm presented her e

increases

	

with

	

the

	

complexity

	

of

	

the

	

light-sourc e

distribution and since we only know how to bridge shadow s

cast by one source, it

	

is important to know which light -

source distributions occur in practice .

	

First one notes tha t

the situations found difficult by humans are almost certainl y

going to give difficulties to our algorithm .

	

For example ,

when two sources cast shadows (such as on a road lighted by
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widely spaced street-lamps) the shape of unfamiliar object s

becomes difficult to ascertain because of the

	

crosse d

shadows . If the incident intensity varies greatly from on e

image area to another (such as in a lightly wooded forest )

the tangle of lighted and dark areas makes perception mor e

difficult .

	

On the other hand one would expect ' natura l

conditions to be particularly easy .

	

That

	

is, one poin t

source somewhat above the observer (the sun) combined with a

very diffuse (almost uniform) source (the sky) .

	

The diffus e

source will not throw sharp shadows of its own . The absenc e

of either of the two sources makes vision only slightly mor e

difficult .

2 .15 .1 RELEVANCE TO PHOTOGRAPHY AND GRAPHICS :

One

	

would expect

	

photographers to

	

have something t o

contribute to this subject and introductory booklets on

artificial light photography confirm the above conclusions .

The beginner is advised to use a number of lights wit h

different characteristics as follows (Phrases of inexac t

meaning will be placed in quotes) :

1 . The main light - The

	

ideal main

	

light is a large spo t

light approximating the effect of the sun .

	

It is usually
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placed 45 degrees above and 45 degrees to the side of th e

subject .

	

Its purpose is to establish the ' form of th e

subject ' and fix the ratio of lighted to dark areas .

	

Th e

exact ratio is not important but the position of th e

source should result in good shading (which increases a s

the source is moved further from the camera) without to o

much shadow area

	

(in which detail is more difficult t o

perceive) .

2 . The

	

fill-in light

	

(or axial light)

	

- Its

	

purpose is t o

lighten slightly the shadows cast by the main light an d

approximates the effect of the sky .

	

It is placed near th e

camera to prevent it from casting its own shadows and t o

simulate the effect of uniform lighting

	

(see an earlie r

discussion of uniform illumination, section 2 .4 .6) .

	

Th e

appearance of shadows within shadows is considere d

extremely ' ugly ' and should be avoided since it makes th e

picture more difficult to interpret . The ratio of fill-i n

light

	

intensity to main light intensity is usually chose n

to be about 1 to 3 .

In addition a number of small sources may be used for extr a

effects :
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3. The accent light - Its purpose is to enliven the renderin g

by adding highlights and ' sparkle ' . It should be a smal l

collimated source which can be directed to Illuminat e

small sections of the subject . It is placed behind and t o

the side of the subject so that it cannot cast shadows o f

its own . This light can add catchlights (specula r

reflections such as on eyes or metal objects) and brigh t

outlines (particularly on hair) .

4. The background light - Its purpose is to ' separate ' th e

subject from the background . It illuminates th e

background only, such that the intensity reflected by th e

subject will nowhere match that of the background .

	

Thi s

ensures that the two can be easily ' separated '

	

i .e . th e

edge between them will be visible .

Other hints are that too many lights spoil the effect, havin g

the main-light at the camera creates a ' flat ' image, shadow s

crossing edges on the subject are to be avoided and tha t

light parts of the

	

image draw the attention of the viewer .

It is

	

interesting to note how much of what

	

is vaguel y

formulated in these

	

introductions to photography can b e

understood from the point of view of shading .
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2 .16 DETERMINING SHAPE FROM TEXTURE GRADIENTS :

A problem related to that of determining shape using shadin g

is that of determining shape from the depth-cue of textur e

gradients . A textured surface will produce an image i n

which the texture is distorted in a way reflecting both th e

direction and and the amount of the inclination of th e

surface . An image of a tilted surface with a random dot -

pattern for example will be compressed in one direction (th e

average distance between dots is decreased) by an amoun t

proportional to the

	

inclination of the surface .

	

Bot h

direction

	

and magnitude of the

	

gradient can thus be

determined - except for a two-way ambiguity .

In practice it may not always be easy to determine suc h

texture gradients reliably because of low resolution of th e

imaging device and scatter, causing a reduction in contrast .

Some simple textures may be handled by simple counting o r

distance measurements as suggested above, while mor e

complicated textures (e .g . a plastered wall) will need mor e

sophisticated techniques, such as two-dimensional correlatio n

(best obtained using the Fast-Fourier-Transform) . Some

experimentation with this technique showed promise, but di d

not supply very reliable gradients and the method was slow .
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The next problem is how to obtain the shape from the textur e

gradients . Starting at soma point (whose distance from th e

camera we assume known), we use some external knowledge t o

resolve the two-way ambiguity. We can now take a small ste p

in any direction and find the gradient at this new point .

Continuing in this way we trace out some curve on the surfac e

of the object (somewhat analogous to the characteristics i n

the shape-from-shading method, except that here the curve i s

quite arbitrary) .

Let s be the arc-distance along the curve, z o the distance t o

the initial point, and p and q the components of th e

gradient, then :

z(s)= zo+ ~(p,q).	ss

If one takes small enough steps, one can continue to resolv e

the ambiguity at each step by using the assumption o f

smoothness .

	

This can be done until we meet a point wher e

the gradient is zero .

	

To continue past such a point woul d

require some external knowledge to again resolve the two-wa y

ambiguity .

	

An aggregation of points with zero inclinatio n

can form an ambiguity edge which cannot he crossed .
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Clearly we can reach a given point through many paths

	

from

the

	

initial point .

	

This allows us some error checking, bu t

there certainly are better ways of making use of the exces s

information . For that is what we have, since we know fro m

the solution to the shape-from-shading that only one value i s

required at each point for the determination of the shape ,

while we here have two (the components of the gradient) .

Most commonly when faced with such an excess of informatio n

on can make use of some least-squares technique to improv e

the accuracy . Perhaps a relaxation method on a grid would b e

useful (The grid need not be rectangular) .
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3 . PRACTICAL APPLICATION :

3 .1 THE SCANNING ELECTRON MICROSCOPE :

This chapter deals with a few practical applications in whic h

the equations simplify considerably .

3 .1 .1 DESCRIPTION OF THE SCANNING ELECTRON MICROSCOPE :

This device uses an electron beam which is focused an d

deflected much like the beam of a cathode ray tube an d

impinges on a specimen in an evacuated chamber [11) . The

narrow ray penetrates into the specimen for some distance ,

creating secondary electrons along its path (a small numbe r

of electrons are reflected at the surface) . The depth o f

penetration, the spread and the number of secondary electron s

are all functions of the material of that portion of th e

specimen . The number of secondary electrons which reach th e

vacuum through the surface will depend strongly on th e

inclination of the surface w .r .t . the beam, being least whe n

it is perpendicular .

These relatively slow secondary electrons are then attracte d

by a positively charged grid and impinge on a phospor-coated
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Figure 21 : Sketch of a scanning electron microscope .

Figure 22 : Detail of electron beam impinging on specimen .
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photomultiplier .

	

In

	

this way a current

	

is generate d

proportional to the number of secondary electrons escapin g

the specimen . There are other modes of operation which d o

not however interest us here . The output is used to modulat e

the intensity of the beam in a cathode ray tube while bot h

beams are scanned synchronously in a T .V . like raster .

	

Th e

image created exhibits shading and is remarkably easy t o

interpret topgraphically . This is quite unlike the norma l

use of optical or transmission electron microscopes whic h

port ray density and thickness .

The magnification

	

is easily

	

increased by decreasing th e

deflection in the microscope . The resolution is poo r

compared to the transmission electron microscope because o f

the spread of the beam as it enters the specimen, but the

depth of field is much better than that of an optica l

microscope because of the very narrow beam (extremely high f -

number) . The higher field gradient on edges causes these t o

be outlined more brightly . This artifact, while appealing t o

people, may be a problem in the implementation of a compute r

algorithm for finding the shape .

Often the final analysis does not involve exact determination

of the shape or two stereo-images can be used, but there

propably are also important cases where the shape must be
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determined and the stereoscopic method is not applicable .

This may be because at the magnification used the specime n

appears smooth without significant surface detail or because

it is difficult to line up the second image . Since th e

equations for this case turn out to be so simple it should b e

rewarding to tie a scanning electron microscope directly int o

a small computer .

3 .1 .2 EQUATIONS FOR THE SCANNING ELECTRON MICROSCOPE :

A little thought shows that this is analogous to the case

where the source is at the camera (or equivalently we hav e

uniform i L luminat ion) ; for one thing, no shadows appear .

Next we note that at all but the lowest magnifications th e

projection is near-orthogonal .

	

Because of these two effect s

the five O .D .E . ' s simplify considerably :

x = Fr,

	

y
•
= Fq ,

	

•
= pFp + qF q

p = -F, - pF1 and a= -Fy - qF.

Now

	

FM

	

A

	

I

	

and F r

	

-b
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I = n ./n = 1/n

	

(where n =(-p,-q,1) )
N M

	

N

I n= (1/n)(2 - I n) = (2/n) - (1/n 3 )n
,y

	

N

	

/ice

	

N

	

~+

I p = (1/n 3 )p

	

and

	

Iq

	

= (1/n 3 ) q

Hence : x = Fp = (A i = /n3 ) p ,

	

= F9 = ( A i x /nl ) q

i = (A (K/n 3 ) (p + q 2 )

= -b,, and q = -b y

If 4, 2 # 0 everywhere, we can change to a new measure s alon g

the

	

characteristic

	

by

	

multiplying

	

a : l

	

equations by

= n 3 /(A 41 2 ) and we get :

•









x = p , y = q ,

	

= p + q

p = b x (n 3 /(A

	

q = by (n3 /(A 4_) )

This extremely simple case thus has characteristics which ar e

curves of steepest descent (or ascent) . Also note that the

equation for z does not couple back into the system o f

equations (due to the orthogonal projection) thus increasin g

accuracy .

	

The equations happen to be very similar to th e

e ikonel equations for the paths of light-rays in refractiv e

media .

	

It may be possible to find ready-made solutions t o

some special cases by using this analogy .
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We assumed that (1) I # 0 ;

	

this is equivalent to assuming tha t

an

	

inverse exists which allows us to find I from a

measurement of the image intensity :

q)(+(I,I,1)) = I

Let

	

t(x) = (1- y:(x))/(2y/(x) )

Then

	

1(4(I,I,1)) = (1/2) ::(p ' + q'" )

So we can find at each point the magnitude, but not th e

direction of the local gradient . This is very different fro m

the method of determining shape from texture gradient s

(section 2 .16), where we can locally determine the gradien t

except for a two-way ambiguity .

3 .1 .3 AMBIGUITIES AND AMBIGUITY EDGES :

This is an easy enough example to study

	

ambiguities .

Consider the two surfaces :

3

	

3
_ z + x ,

	

2 = z + ( x I

Clearly they cannot be distinguished from monocular view s

since their gradient magnitudes are

	

identical :

	

i .e .

	

the y

produce identical intensity distributions in the image .

	

This
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~

	

\AM131GUITY
/

	

'\4/-EDG E

\\ /7/7

	

/

Figure 23 : A locally determined ambiguity edge .

f = 1/ (x2 + y 2 -1) 2

Figure 24 : A globally determined ambiguity edge .

f = 1/(1
+x 2

+ (y- 1 ) 2 )

	

1/(1 +x2 + (y+ l) 2 )
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manifests

	

itself in a slowing down of the characteristics a s

they approach the line x = 0 (alternatively ) -) 00 ) .

	

The y

cannot cross this line aggregation of singular points . Not e

that the characteristics approach this line at right angle s

and that the edge is determined locally, each point on i t

being a singular point .

A second kind of ambiguity edge can occur parallel t o

characteristics, separating those which can he reached fro m

one singular point from those reachable only from another .

This kind of edge is not locally determined, since a chang e

in the surface is possible which removes one of the singula r

points and makes all the characteristics accessible from th e

other .

	

This can be done without altering an area near tw o

given points previously separated by an ambiguity edge .

Both types of ambiguity edges occur in the general case bu t

are not so easily studied there . They divide the image int o

regions within each of which a solution can be obtained .

Typically most such regions will have one singular point fro m

which one may obtain initial conditions (provided one makes a

decision about whether the surface is concave or convex an d

knows the distance to the singular point) .
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3 .2 LUNAR TOPOGRAPHY :

3 .2 .1 INTRODUCTION TO LUNAR TOPOGRAPHY :

The other very interesting simplification to the genera l

shape from shading equations occurs when we introduce th e

special

	

reflectivity function which applies to the materia l

in the maria of the moon .

	

This in fact was the first shap e

from shading problem solved both theoretically and in a n

operating algorithm [4] . Using the special reflectivit y

function and the fact that the sun is a distant source, it i s

possible (but very tedious) to show that the equation s

simplify

	

so that

	

the base

	

characteristics (i

	

th e

projection of the characteristics on the image plane) becom e

straight lines radiating from the zero-phase point . Thi s

point corresponds to g = 0 and is directly opposite the su n

as seen from the camera . Actually this is true only when th e

sun

	

is located at negative z, for positive a (that is i n

front of the camera), the relevant point is the

	

phas e

point, directly in the sun .
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3 .2 .2 REFLECTIVITY FUNCTION FOR THE MARIA OF THE MOON :

The variation of light reflected from the surface of the moo n

with phase and inclination of the surface has been studie d

for a long time . At a given lunar phase g, all possibl e

combinations of incident angle .i and emittance angle e ar e

represented by some portion of the surface .

	

A fairly goo d

approximation is the Lommel-Seeliger formula El] :

i(I,E,G) =
(I/E) + > (G )

Where `'o is a constant and the function \(G) is defined by a

table .

	

This formula can also be derived from a simplifie d

model of the lunar surface .

	

A slight gain

	

in accuracy i s

possible if

	

r,

	

is allowed to vary with G as well .

	

I n

particular Fesenkov [1] finds the more accurate formula :

IA (I/E)(1 + cost'(«/2) )
4(I,E,G) =

(I/E) + •o(1 + tan ''(0(/2 ) )

Where as before :

G - (I/E )
tan («) =

	

/1 -

A recent theoretical model

	

is that of Ha p ke [3] whic h

corresponds fairly closely to the measured reflectivity
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function .

	

In most of these formulaes we find that for a

given G,

	

cl) is constant

	

for constant I/E .

	

The

	

lines o f

constant I/E are meridians .

At full moon, when G = 1 we find that the whole face ha s

constant luminosity . This is quite unlike the effect on a

sphere coated with a typical matt paint where the imag e

intensity would vary as :

/1 - (r/R)'r

Where R is the radius of the image and r the distance fro m

the centre of the image . The full moon thus has the same

appearance as a flat disc if one is used to objects wit h

normal matt surfaces .

	

This may explain the flat appearanc e

of the full moon .

3 .2 .3 DERIVATION OF THE SOLUTION FOR LUNAR TOPOGRAPHY :

3 .2 .3 .1 THE BASE CHARACTERISTICS :

In the case of pictures taken of the lunar surface from

nearby (e .g . from orbit) we have the following :
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1. Distant source (the moon subtends an angle of about .0 3

milli-radians at the sun) .

2. Near point source (the sun subtends an angle of about 1 0

milli-radians at the moon) .

3. Camera at the origin .

4. The reflectivity function is constant for constant I/E .

This is a property of the material of the maria of the

moon which has been known for some time .

We have (using results obtained in subsection 2 .3 .4) :

I . = 0

	

= (1/n)(r.- I n )

Er = (1/r)(n - E r)

	

E
t

= ( 1/n)(r,- E n )ry

	

S.

	

S.

Gr = (1/r)(?o- G C. )

	

G„ = 0

Where r o is a unit vector in the direction from the sun t o

the moon .

If I and E depend on some parameter s, while I/E is constant :

E. I s = 1 E 5

N
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Since i(I,E,G) is constant for constant I/E :
= I s +

	

E E S = 0

	

and therefore :
I 1x + E

	

= 0

I f I and E depend on some parameter k :

(1) z l k +EEx7(Ik - (I/E)E k ) = ( 1) 1. /E) (E I k - IE k )
x./e =

	

E = -(F 2'/I) + E

+= I k + 4E E K = E 2 c}s =/E (EI K - IF K )

Using some of our previous results we find :

EI,. - IE,. = -(I/r) (n - E r )
El, - IE,. = (E/n) r, - (E I/n)n - (I/n) r + ( EI/n) n
_ (1/n)[(r .n)r, - (r, .n)r] = ( 1/n)(rxr,)) n

1
(rx r o )x n

Nn u rr,

And since A,. = 0 :

We will ignore

	

F . for now, mainly because it has an ugl y
looking expansion .
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FN = AE2 (1)

	

r, )x n

(rr xro)x n~

(x,(z- q y)-X(zo -qyo),ya(i- p x)-y(2p-Px 0 ),z(xop+y,q)-2 d (xp+yq) )

n 1 rr ,

22 ,
Let x = -AE

n l rr,
where ()c o ,yo ,zo )

Note that A is a constant in this case .

x

	

y

	

x

	

ye
F ? = X --- (1 - q-) - (1 - q--)

2 0

	

z

	

z

	

2

y o

	

x

	

y

	

x o
F9 = X

	

(1 - p-) - -(1 - p-)
2

	

z

Now looking back at the five O .D .E . ' s :

x = Fr, y = Fr .

	

= pF P + qF9 = px + q y

= -Fx - pF2 ~

	

q = - Fy - qF,

Again we can decide to ignore p and q for the time being, an d

attempt to determine the behavior of the characteristics .

Our aim is to show that their projections in the image plan e

are straight lines independent of the scene . The behavior of

y against x is of little help and we next look at th e

projections in the image plane :
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x ' = x (f/a)

	

and y ' = y (f/E )

(x ' /f) = (l/e l )(xz-xz) = Mal") [xz-x(px+qy) ]

1

	

x

	

x
= - 1(1 - -p)x - - q y

z

	

z

	

z

	

-

X x,

	

x

	

y

	

x

	

x

	

y
- j-(1 - p- - q-) - -(1 - p- - q- )

X' X

	

,

	

x

	

x

	

y

-  (
X
- - -)(l - 

f

	

a z .

	

a

Similarly :

Y' X y,

	

y

	

x

	

y
= - ( (-- -)(l - p- - q - )

f

	

z a,

	

a

	

z

	

z

Now if the surface is not tangent to the ray from the camera :

E

	

0

	

i .e . r .n # 0

	

and therefore :
N N

x

	

y
(1 - p- - q-) # 0

If in addition d)x/E

	

0, A # 0 and z # 0, then we can divid e

the two equations :

. ,

	

yO -

	

y

y

	

 .





X0
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This

	

first-order ordinary differential equation for the bas e

characteristics is separable :

-dy '

	

dx

	

y_y

	

xe x
2,

	

f

	

i2 ,

	

f

Solving this we obtain :

y.

	

y '

	

x,

	

x '
log(- - -) .=' log(- - -) + log(c )

z,

	

f

	

f

Let the arbitrary constant c be tan(t) :

	 1	 (y0 _ y '

	

1

	

1 x, _ x

	

sin(t) ~ o

	





cos(t) z,

	

f

Thus the projections of the characteristics are straigh t

lines in the image plane emanating from the point :

	

r x .

	

y o

	

Z o

	

z o

If the sun is behind the plane of the image (z a > 0 - a s

would usually be the case for reasonable illumination an d

avoidance of extraneous light entering the lens) this poin t

is called the zero-phase point, since it corresponds to th e

point in the scene which is directly opposite the sun as see n

from the camera and hence g = O .

	

Because of the specia l

properties of the reflectivity function of the maria of th e

moon

	

intensity variations in this region are entirely due t o

0 )
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non-uniform surface properties rather than shape .

	

It is fo r

this

	

reason that this

	

point is not

	

usually included in th e

image but lies somewhat outside it in the image-plane . Thi s

will prove unfortunate later on when we have to inven t

initial conditions .

If the sun is in front of the image plane (z, < 0), th e

special point is the IT phase point, where the image of th e

sun would appear in the image-plane .

So the obvious simplification to the equations which woul d

arise if we let x, = yo = 0 cannot be exploited since we d o

not wish to orient the camera in this way .

We would tike to arrange for s, the parameter that varie s

along each characteristic, to correspond to arc-length . Thi s

can be achieved by multiplying each of the five O .D .E . ' s b y

, where :

	

X= -Xxsx	
1x

	

y

(1 - p- - q- )

f , -

	

s

	

_ (

	

f , , s

Then by choosing constants suitably :
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x x ' x,
-+ s cos(t )

a f z ,

y y y,
-+ s sin(t )

a f z o

Thus s gives arc length along the characteristics while th e

value of t selects a particular characteristic .

3 .2 .3 .2 THE INTEGRAL FOR z :

We next turn to a which we would like to find without solvin g

the messy equations for p and q .

•

	

X o

	

X

	

y o

	

y
= pX + py = X X p (- - -) + q(-- - )

z

	

a p

	

z

X s (p cos(t) + q sin(t) )

This is a good place to introduce some abbreviations o f

commonly occuring dot-products :

L = ( x-, y-) .

	

(cos(t), sin(t) )
zo zo

'C o
= (p, q) .

	

(,--)
a 0 a o
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N = (cos(t), sin(t) ) .

	

(p, q )

Note that L is predetermined (i .e . independent of the image )

and that L and M tend to 0 if the camera is pointed directl y

away from the sun (i .e . x o = yo = 0 )

	

x

	

y

(1 - p- - q-) = (1-M-sN )

	

z

	

- 1
X =

s (1-M-sN )

and so :

	

z = -~
N

(1-M-sN )

We now attempt to express this in terms of measureah le an d

calculable quantities (sea . G, I/E, s and t) . Since is/E 0

and differentiable it must be monotonic and hence have a n

inverse . That is, given b/A we will be able to calculate I/ E

(G is known at each point) .

r̂, , = (x 0  0 , ,) and r0 = /x1-,+y. + %

 e

	

y .
r = (x,y,z) = z(-+ s cos(t), -

z o

Let

	

Q = / s'' + 2sL + (ro )
z

+ s sin(t), 1)
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Then

	

r = 0

n = (-p, -q . I)

	

n =
/1

+ p'- + q1

n . r = z (1-M-sN )
N N

n .r0 = z 0 (1-14 )

r,
Let

	

T = sL + (-)

r• , .r = T z z 0

r, . r

	

- zz .

	

T z` 0
G =

	

T

r o r

	

rr,

	

Q r,

So we can calculate G for each point on the characteristic ,

independent of t and the scene .

	

Next we attempt to rewrit e

the expression for z in terms of I/E :

n .rb r .

	

(1-M)

	

z Q
I/E = n

.r
X

	

Xro

	

z(1-1•1-sN) r

.

sN
= Q- 1 +

r,

	

(1-M-sN )

z

	

(I/E) r,
z
•

_

	

r-- 1
s

	

Q

As mentioned before one can find an inverse .4i to

	

s .t . :
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(b/A,G) = I/ E

b

	

r, 1
- (-,G)*(-)- -
s

	

A

	

z ,

The usual tables for i in the case of the maria of the moo n

however are not usually given in terms of I/E and C, but

rather oc and g . Where :

C-I/ E
tan(M) =	

`l-G 2

oC is the projection of the emittance angle on the phase-

angle plane .

z p T

	

(i-M )
G - 

ro Q

	

r, (1-M-sN )

zo 1

	

r,

	

(1-M )
- - - + sL -
r, Q

	

(1-M-sN )

z,

	

s

	

N

	

z
 



(s+L) +

	

Q
r,,

	

Q

	

(1-P1-sN )

1-G z = 1 - ~x T
-

r, Q

Define

	

P = sgn (7,)
E o
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z

	

s 2 v
1-G =

	

P
Q re

G-I/E

	

1 (

	

N

	

Q1 + (s+L )

3 i
-G I-

	

P

	

1-h1-sN )

3 .2 .3 .3 THE INTEGRAL FOR r :

So far we have been working in the coordinates x ' , y ' and z .

The final result looks neater if we use r instead of z .

r =

r = zQ + z(s+L)/Q

(s+L )
Q +

	

(1 -h1-sN)

	

Q

2

r !

	

N

Qi (1-hl-sN)
Q

2
+ (s+L )

r = -(rP/Qt ) tan ( a )

Written out more fully, we have :
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sgn(z o ) ( r-)-LI
r

	

za

	

tan(o )
r,

s +2sL+(--)''
B o

The numerator is a fixed quantity for each characteristic ,

the denominator varies along each characteristic (but i s

independent of the scene), while tan(a) is obtained from th e

measurement of b/A and the known G (using the function \) .

The given ordinary differential equation for r has the simpl e

solution :

r(s)

	

J o

	

Q
= e

r(O)

s
tan (a )

-P

	

ds

where

	

L = x, cos(t) + y0 sin (t )

z o

	

2 0

r

an d

r(0) is the distance to the point from where the integration

was started .

To sum up : as one advances along each characteristic i n

turn, one calculates G, measures b/A and uses y to obtain
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tan(N), which is then used in the evaluation of the abov e

integral . The process is much simpler than the general shap e

from shading algorithm in that the base characteristics ar e

predetermined straight lines and only an integral needs to b e

evaluated . It is possible to write the above result in a

slightly more elegant form, which is the one derived by T .

Rindfle isch (for z D > 0) :

1

r(P)

	

f~ ;=xPl, (
N N

= e
r(P0 )

Where

	

s '

	

f s

N 0 = r,x r ' = -(f/z) (rif t° )

f

	

y

	

y.

	

x

	

x

	

xy0

	

x o y
-- az b ( (- - ° ), (2 - -), (

	

-

	

) )

= -fz 0 s(-sin(t), cos(t), y' cos(t) - x~sin(t) )

L

	

1

Now

	

L = x-° cos '' (t)+2-cos(t) sin(t)+
y
- sin(t )

z

x y

	

x i
N o = fzs 1+-°cos (t)-2° ° cost) sin(t)+

	

° sin (t )
2

	

i
~0

	

z0 z
O

	

z o

f 0 s P



Page 10 9

zxN, = - fa ns (cos(t), sin(t), 0 )

IixN,I = sfIE, l

I XN, I

	

|2rN . I

Cr' .
z)
L = (r.z) 2.

= (r .z)l /r t = (z/r) '" =
N V

The two ways of writing the integral are thus equivalent .

3 .2 .4 SOME COMMENTS ON THE INTEGRAL SOLUTION :

1. The base characteristics are predetermined straight line s

(independent of the image) . This makes for high accurac y

and ease in planning a picture taking mission .

2. Only a single

	

integral needs to be evaluated, not fiv e

differential equations .

3. The primary

	

input is the intensity, not its gradients ,

again making for high accuracy .

4. Although, as usual, the reflected light-intensity does no t

give a unique normal,

	

it does determine the

	

slop e

1

	

N .
= P

component

	

in

	

the direction

	

of the

	

characteristic .
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J . van Diggelen [2)

	

first noted a special case of thi s

when he solved the lunar topography problem for th e

special case of an area near the terminator

	

(lin e

separating sunlit from dark areas) .

	

The characteristic s

are such that the slope along them can be determine d

locally

	

The

	

slope

	

at

	

right

	

angles

	

to

	

the

characteristics cannot be determined locally .

5 . Although T . Rindfleisch [4]

	

did not mention

	

it

	

in hi s

paper it is very easy to bridge shadows since each light -

ray lies in a sun-camera-characteristic plane . Its imag e

can thus be traced on the base characteristic until w e

again meet a lighted area . One need not even make specia l

provisions

	

for this, but just use tan(o() for grazin g

incidence (intensity = 0) in the shaded section .

3 .3 APPLICATION TO OBJECTS BOUNDED BY PLANE SURFACES :

Since a great deal of image processing these days is applie d

to images of polyhedra one might enquire how one could appl y

this method to such objects . First we note that the mai n

features of these objects, the joints (angular edges on a n

object) and edges (where one object occludes another), are a

stumbling block to the application of our method developed so
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far .

	

Since we already know that the areas of more or les s

constant reflectivity are plane faces there is little poin t

in exploring them .

	

So a completely different approach i s

indicated . Firstly we might check whether a parsing of th e

scene obtained by some other method is correct in the sens e

that the intensities observed for the faces correspond t o

their inclinations (the information on the intensity of th e

faces is usally discarded) . It is not clear however what on e

might do if this test fails . Furthermore, the programs whic h

reduce the image to a line-drawing and tnen decide whic h

faces belong to each object cannot really determine th e

inclinations

	

of the

	

various faces

	

without additiona l

assumptions (orthogonality for example) .

One can however find the normals to each face directly from

the known slopes of the projection of the joints in the imag e

and the measured ref lect iv it ies . One must know which tine s

in the image are true joints (between two faces belonging t o

the same polyhedron) and which are fortuitous (edges betwee n

faces of different objects) .

	

For each normal we need two

values .

	

Each intensity gives us one non-linear equation an d

each slope of an image of a joint gives us another .

	

Th e

equation from the intensity is of course :
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A(r)

	

(I,E,G) - b(r ' ) = 0
h

	

N

Where we know that I, E and G are funct ions of p and q . There

will be one such equation for each face .

Where two faces with normals n and n 2 intersect, they form a

joint which will be seen in the image . Suppose two points on

th is image are ~A and B . Then a vector perpendicular to th e

plane through the joint and the camera is Ax B . Vie also know
N .v

	

that the joint must be parallel to n~xn z .

	

But AxB must b e

perpendicular to the joint hence :

(A X B)

	

(n
1x n2.

	

0) =

Figure 25 : Projection of a joint on a polyhedron on

the image .
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Each joint contributes one such equation .

	

Next we determin e

how

	

many faces must intersect

	

before we have enoug h

information for a solution .

	

Two faces intersecting give u s

two equations from the intensities and one from the s lobe o f

the image of the joint, while we need four unknowns .

	

A n

infinity of solutions thus exist .

	

With three faces a

solution is possible since we have

	

six equations

	

in si x

unknowns .

	

Because of the non-linearity of the e q uation s

more than one solution might exist . With a larger number o f

faces we always have at least enough information for a

solution and at times have more equations than unknowns whic h

may remove some of the remaining ambiguities and improve th e

accuracy .

	

In this way too it may he possible to discove r

which joints are really between faces of the same object .

3 .4 FACIAL MAKE-UP :

When a surface whose photometric properties are taken to b e

uniform is treated so as to change these properties in some

areas, the apparent shape is changed .

	

This of course is on e

of the uses of make-up .

	

The shape of a face for example ca n

he made to conform more closely to what a person thinks i s

currently considered ' ideal ' .

	

This

	

is achieved by makin g

some areas darker (causing them to appear steeper) and others
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Figure 26 : Illustration of the effect of facial make-up .

Figure 27 : Illustration of the effect of facial make-up .
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lighter, Areas lightened usually include singular points an d

cause a change in the apparent skin darkness (a normalization

effect) and will change the apparant sha p e in areas othe r

than the singular points .

These modifications can change the shape perceived whe n

viewed under the right lighting conditions . The effect wi l l

change somewhat with orientation and may at times disappea r

when no reasonable shape would give rise to the shadin g

observed .

	

Because of a number of surface oils the skin ha s

a specular component in its

	

reflectivity, it is also fairl y

translucent .

	

Both of these effects are sometimes controlle d

with talcum powder .

	

The removal of the specular component s

makes the surface appear more smooth .
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4 .

	

EXPERI1. ENTAL RESULTS :

4 .1 A PROGRAM SOLVING THE CHARACTERISTICS SEQUENTIALLY :

when the solution to the shape from shading problem had bee n

found using the inconvenient coordinate system (x ' , y ' , z), a

program was written which would solve the five O .D .E . ' s alon g

one characteristic at a time (the equations used are no t

reproduced here) . The input data was obtained from th e

image-dissector camera attached (at that time) to the PDP- 6

computer in the Artificial

	

Intelligence Laboratory .

	

Thi s

camera is a random access device : when given an x and a y

coordinate it returns a number proportional to the intensit y

at that point in the image . The program first searches for a

maximum in intensity, constructs a small spherical cap aroun d

it (to obtain an initial curve) and uses a standard numerica l

method (see subsection

	

4 .1 .2)

	

to solve the set of fiv e

ordinary differential equations .

The prime data

	

required in

	

this solution

	

is the

	

intensit y

gradient

	

(x ' and y ' derivatives of the intensity), which i s

obtained from the intensities measured for a small raster o f

points near the current x ' and y ' .

	

A linear function in x '

and

	

y '

	

is

	

fitted to

	

this set

	

of

	

intensities ;

	

th e

coefficients of x ' and y ' are the desired gradients .

	

The
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size of the raster is chosen to correspond to the step-siz e

used in the numerical

	

solution method, so that successiv e

rasters almost, but not quite, touch . In this way fai r

accuracy in the determination of the gradients is obtaine d

without toss in resolution .

If the

	

least-squares fit

	

is bad, indicating that surfac e

detail is being missed with the steps i ie used, or that th e

characteristic

	

is traversing an edge or joint, the solutio n

for this characteristic is halted and the solution starte d

for the next characteristic . Other reasons for terminatin g

the solution are that the characteristic has left the fiel d

of view of the image-dissector or reached a very dark region ,

most likely a shadow or the background . When either th e

(calculated) incident or emittance angles become very smal l

(indicating approach to an edge or shadow edge) or X ver y

large (indicating approach to another singular point or a n

ambiguity edge) the solution will also be stopped .

The data structure here is very simple ; just a record o f

various values ( x ' , y ' , z, intensity, p ' and q ' ) for eac h

point on each characteristic . The shape so determined can b e

displayed in perspective and stereo on a DEC 340 display .

The characteristics appear as dashed lines - each das h

representing a step in the integration (We chose

	

the



Page 11 8

parameter s so that each dash represents the same arc -

length) . The output can be photographed from the displa y

and plotted on a Calcomp plotter .

4 .1 .1 AUXILIARY ROUTINES :

A number of auxiliary routines needed to be written for thi s

program . First the Incompatable Time Sharing System (ITS )

on the PDP-6 does not support a FORTRAN style arithmeti c

language and all programming was done in assembly languag e

MIDAS) .

	

The large

	

amount of arithmetic

	

involved ,

particularly with the inconvenient notation and coordinat e

system used at first, made it imperative to incorporate

	

int o

the assembler the ability to handle arithmetic statements .

Next we constructed a package of useful routines whic h

handles floating point I/0, dynamic array allocation and eas y

generation of display lists for the DEC 340 . It also

includes routines for the standard arithmetic function s

(SQRT, SIN, LOG etc .)

	

and manipulation of vectors an d

matrices

	

(multiplication,

	

addition,

	

inversion

	

etc .) .

Interrupts, user defined operations and comman d

interpretation are dealt with as well . Some of the remainin g

routines will be briefly described in the next few sections .
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4 .1 .1 .1 STEREO PROJECTION AND OBJECT ROTATION :

Since it is important (particularly during the debuggin g

phase) to be able to visualize the shape being calculated ,

stereoscopic output on the display is provided .

Let ds be the separation of the eyes, f their distance fro m

the display and do the distance from the eyes to the origi n

of the coordinate system (usually chosen to be at th e

singular point from which the solution w s started) . The

coordinates of the left-eye and right-eye images of the poin t

(x,y,z) are then (xi,y ' ) and (x ;,y ' ) where :

x Qr = (x±ds/2)(f/(z+d,)) + ds/ 2
1

y '

	

=

	

y (f/(z+d 0 ) )

A pair of lenses is employed to focus on the surface of th e

display while converging on the apparent point (x,y,z) .

Obviously one needs to know the scaling of the display i n

terms of dsiplay units per mm .

One would like to be able to view the objects from various

sides and perhaps even have some rotational motion to gain a

greater perception of depth . To this end the object can b e

rotated around its origin (also offset and expanded in size) .
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x

DISPLAY
SURFAC E

EYES	

Eigure 28 : Stereo-projection of an object point .

PITCH

_)YAW

V
Y

Figure 29 : Definition of Pitch, Yaw and Roll .
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This was preferred over the more common method of allowin g

the eyes to be moved around in the object space .

To obtain any orientation with one matrix multipl icat ion, th e

three angles P (pitch), Y (yaw) and R (roll) are defined a s

rotations about the x, y and z axes respect ively . They are

applied in that order (order is important because rotation s

are not commutative) .

cos(R)

	

-sin(R) 0 cos(Y)

	

0

	

sin(Y) 0 0
A=

	

sin(R)

	

cos(R) 0 0

	

I

	

0 0
(1

cos(P) -sin(P )
0

	

0 1 -sin(Y)

	

0

	

cos(Y) 0 sin(P) cos(P)

Using the abbreviation c for cosine and s for sine we have :

	

cR cY

	

cR sY sP - sP cP

	

cR sY cP + sR s P

	

A = j sR cY

	

sR sY sP + cR cP

	

sR sY cP - cR s P

k -sY

	

cY sP

	

cY c P

The various parameters controlling the object rotation an d

the projective mapping can either be preset or continousl y

read in from a number of potentiometers (connected to a

multiplexor and an A/D convertor) controlled by the viewer .

While one display list appears, the other is being calculated

using the latest set of parameters and will in turn be

displayed when completed . The parameters are also displayed ,

they are :
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PITCH, YAW and ROLL (P, Y and R )

S I ;?EC or MAG - magnification of the objec t

FDIS or DIMG - distance from eye to display (f )

DOBJ - distance from eye to object (d o )

DSEY or EYES - seperation of the eyes (ds )

For photographic purposes each of the two images in turn ca n

be blown up (to account for the reduction in size in th e

camera) and displayed a fixed number of times while th e

shutter is open .

	

Windowing at the edge of the screen i s

automatic and some very

	

simple kinds of hidden

	

lin e

elimination are available but not normally used . The same

stereo display package is used by the Later version of th e

program (new SHADE) .

4 .1 .1 .2 MEASURING THE REFLECTIVITY FUNCTION :

The reflectivity functions of some paints were measured usin g

spheres (large rubber bal I s) as calibration objects . Bot h

camera and source were moved as far away as possible t o

achieve almost constant phase angle g . The image of a conve x

object is especially useful because it contains two point s

for all possible combinations of the incident and emittanc e

angles (i and e) for a given phase angle (g) .

	

The position
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of the tight-source is measured, as well as the distance fro m

the front of the sphere to the entrance pup i t .

	

The image -

disfector is focused on the edge of the sphere ;

With the sphere temporarily illuminated from several sources ,

the program finds its exact position and size, as well as th e

difference in horieontal and vertical deflection sensitivit y

of the image-dissector . It is now in a position to calculat e

the points in the image which correspond to given inciden t

and emittance angles . For a number of choices of both o f

these angles it then reads the intensity at a small raster o f

points (to reduce noise and the effect of pin-holes in th e

photo-cathode) near these positions and averages them . Sinc e

there are usually two places

	

in the image with the same

incident and emittance angle, a check on the data i s

available . The resultant table of values (usuall y

normalized w .r .t . the brightest intensity) can he printed an d

the whole process repeated after moving the light-source to a

new position for a new phase angle . The program accounts fo r

such things as change

	

in incident

	

light intensity as th e

light-source gets moved around .
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4 .1 .1 .3 FINDING THE CALIBRATION SPHERE :

This subsection and the next deal with details, needed in th e

program for measuring the reflectivity function, which ma y

not be of general interest .

For good accuracy we first need to know the exit pupil t o

image plane distance (the focal length is given) . This woul d

be easy if one could focus on the front of the sphere . I t

turns out that a simple approximation will work in a fe w

iterations . At each step one recalculates the estimate d

distance to the edge of the sphere, the estimated exit pupi l

to image plane distance and the estimated radius of th e

sphere, using the previous estimates and the measured radiu s

of the image .

Next we need to find the exact center and radius of th e

sphere from its image coordinates and the known distance t o

its front .

	

First consider horizontal coordinates only ,

x, = f tan(a), xz = f tan(a+b) and x 3 = f tan(a+2b )

We are given x, and x 3 and wish to calculate x l , which can b e

done after expanding the tangents .
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Figure 30 : Determining the exact position of the calibratio n

sphere .

Figure 31 : Finding points for given incident and emittanc e

angles .
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tan(2b) = (x3-x,)/(f1-x3x, )

tan(b) = (/1 + tan'(2h) - 1)/tan(2b )

x 2 /f = (x i + f tan(b))/(f - x,tan(b) )

The same formulae are then used to find the vertical positio n

y, .

	

Finally we need to find Er :

r = R 5 tan(b) (3 1 + tan ' (b) + tan(b) )

• = R s f/ /fl' + x' + y 2 '

• = z (Rs 4- r)/R s

4 .1 .1 .4 FINDING POINTS FOR GIVEN i AND e :

Clearly the points for given incident angle lie on a circl e

(on the surface of the sphere) .

	

Similarly for points with a

given emittance angle .

	

These two circles may intersect i n

two, one or no points .

	

One can find this intersection b y

first

	

finding the line along which the planes containin g

these circles intersect .

	

Applying the sine and cosine

	

law s

we get :
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Let

	

I = cos(i)

	

as usual and

	

D = [vs '

0./s in(Ir-i) = r/sin(a)

	

b = i- a

r cos(b) = r(cos(i) cos(a) + sin(i) sin(a) )

= (r/D) (1/D 2. - r'-(1 - I ' ') ' + r (1 - I 2 ) )

d = r cos(b )

v = v + d vp

The equation of the plane in which the circle of points wit h

given incident angle i lies is :

v .vs = v .v = c say

	

(where v = (x,y,z) )

One can find a similar equation for the plane in which th e

circle of point with given emittence angle e lies .

	

Th e

introduction of an arbitrary third plane allows us to fin d

one point v on the intersection of the first two .

	

The lin e
N

of intersection of the first two planes must be parallel t o

the cross-product of their no rma l s (let them be v s , and vsz ) .

So the equation of the line we are looking for is :

(v - v ) = k v 1

	

where v = v S ~ x v s s

The points we are trying to find must also lie on the sphere,
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(v - v e )

	

= r
i

(v + k v - v )
i

	

L

r

k l v .v

	

+ 2 k v t . (vra - v ) + (v im - v c )

	

-

	

= 0

The above equation may have no solution for k, in which cas e

no point exists for the given incident and emittance angle .

Otherwise we can use the two solutions and substitute back t o

obtain the desired coordinates which are then transforme d

into image coordinates .

4 .1 .1 .5 SOME REFLECTIVITY FUNCTIONS :

The

	

first paint

	

investigated was

	

a matt white pain t

consisting of particles of S iOz and T iO 2 suspended

	

in a

transparent base .

	

Very

	

roughly one

	

finds that

	

the

reflectivity function behaves like cos (i) for a given g .

After playing with polynomial fits for a while, the followin g

fairly accurate formula was found by a prccess of littl e

interest here :

(1+G)(2+G)

	

1+2IEG-(I1 +E 1 +G t )
4(I,E,G) =

	

I +
6

	

16 (1-G )

Note the appearance of the discriminant discussed in a n

earlier section (2 .1 .3) .

	

The symbolic manipulation program
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I -->

1 .00

	

.97

	

.93

	

.87

	

.78

	

.68

	

.56

	

.43

	

.29

	

.1 5

	

1 .00

	

.7 7

.97 .87 .78 .6 6

.93 .93 .88 .78 .67 .5 7

.87 .97 .94 .89 .79 .67 .57 .4 5

E

	

.78

	

.99

	

.98

	

.95

	

.90

	

.81

	

.68

	

.59

	

.46

	

.3 2

.68 .98 .95 .91 .82 .71 .59 .47 .33 .1 8

	

.56

	

.94

	

.90

	

.83

	

.74

	

.61

	

.48

	

.34

	

.1 7

	

.43

	

.88

	

.79

	

.74

	

.62

	

.50

	

.34

	

.1 8

.29 .79 .70 .58 .42 .30 .1 5

.15 .65 .50 .38 .26 .1 3

Figure 32 :

Table of reflectivity

	

(for a white matt paint) versu s

I = cos(i)

	

and E = cos(e)

	

for C = cos(g) = 0 .81

	

.

	

Th e

intervals chosen correspond to constant size steps in th e

angles .

	

Note the blank areas for combinations of angle s

which cannot form a spherical triangle (see section 2 .1 .3)
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MATHLAB

	

[13] was used to find

	

the derivatives cl)_, tE and (1)6

needed for the shape-from-shading program .

	

For ' reasonable '

angles the above formula is about 5% accurate, becoming wors e

for extreme angles .

	

The repeatability of this measuremen t

was disappointingly low, depending on the depth of the pain t

coat and the conditions of its application .

	

Much of the

investigation of the behavior of the image-dissector was th e

result of efforts

	

to trace the

	

remaining causes

	

o f

inaccuracy .

Some other paints and an eggshell showed a matt componen t

similar to the above, plus a very strong specular componen t

(which is small except near the point for which i = e and i +

e = g) . This component is very sensitive to small changes i n

the surface properties such as can he brought about b y

handling the object .

The image of a convex object with such a surface will usuall y

have two local maxima in intensity . One of these will b e

broad (corresponding to the matt component), the other narro w

and bright (corresponding to the specular component) .

	

Thes e

may be distinguished by a computer program on the basis o f

just these properties .

	

It would then be possible to start a

solution from the matt maximum (which is not a globa l

maximum)

	

rather than the specular maximum .

	

This might he a
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good idea because of the increased accuracy (for one thin g

the normalization of image intensities would be more

accurate) .

For the nose-recognition program, a plaster nose was used

initially, coated with the matt paint described above .

	

Thi s

of course was not suitable for the final experiments .

	

The

1. A matt paint .

2. Lambertian reflec .

3. Skin on nose .

Figure 33 : Comparison of some reflectivity functions .

restricted lighting conditions described later were chose n

partly to avoid having to find the full-flegded function o o f

three angles for skin . Since no true sphere covered wit h

skin is available, measurements were taken of the shape of a

real nose and

	

intensities in an image (of a transparency )

used to estimate OI,I,1) .

	

In this way the non-linearitie s

of the photographic process (and they were great) did no t

have to be determined separately . The properties of skin are



Page 13 2

of course not very uniform and also vary from person t o

person, so no great effort toward accuracy was made .

	

Ski n

has

	

a

	

highly

	

variable

	

specular

	

component,

	

so an y

normalization had to be done not w .r .t . the brightest point ,

but one nearby . The resultant table of i(I) versus I lies

somewhat below the one obtained from the matt paint under th e

same lighting conditions .

4 .1 .1 .6 PROPERTIES OF THE IMAGE.-DISSECTOR :

In an attempt to track down poor results in the first try a t

finding

	

reflectivity

	

functions accurately,

	

the

	

image -

dissector was investigated in some detail W .

	

Amongs t

problems found were :

1. Unequal deflection

	

sensitivity

	

in horizontal

	

an d

vertical directi-ons (differed by 12%) .

2. Twist of image varying with distance from center o f

field of view .

3 . Poor resolution (3 line-pairs/mm - radius of tube 50
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Figure 34 : Geometric distortion in image-dissector for a

triangular raster of points covering the photo -

cathode . (The arrows are exaggerated 3 times .)
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4. Pinholes in the photo-cathode (about 20 of up to 0 . 5

mm in size) .

5. Non-uniform sensitivity of the photo-cathode (varie s

more than 3o%) .

6. Fairly long settling time of the deflection coils .

7. A

	

large amount of scatter, which reduces th e

contrast by almost one-half and causes intensitie s

measured on the image of a uniform square on a dar k

background to vary by 20%, depending on how close t o

the edge the measurement is taken .

Some of these difficulties are inherent in the state-of-the -

art of these devices, others were repaired . In any case, i t

was possible now to think about how to improve the program t o

be more insensitive to these shortcomings .

The program for finding reflectivity functions using sphere s

as calibration objects was sensitive to the (at that time )

severe deflection inaccuracies, since the emittance angl e

varies rapidly near the edge of the sphere (this effect coul d

be

	

reduced with a parabolic test-object) .

	

A cal ibrat ion

table was created by another program in which are recorded
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the image-dissector coordinates of a rectangular raster o f

equally spaced points on the photo-cathode . Also recorded i s

the sensitivity of the photo-cathode at each point . A simpl e

interpolation routine can then be applied to coordinates sen t

to the image-dissector to counteract the distortion and ,

similarly, the intensity values returned can be corrected . A

more convenient triangular raster of points covering th e

whole photo-cathode was later established .

	

Adjustments t o

the image-dissector eventually reduced the distortion by a

significant factor and use of this table was no longer vital ,

although it did improve accuracy .

4 .1 .2 NUMERICAL METHODS FOR SOLVING THE O .D .E . ' S :

The five O .D .E ' s were at first solved using a well know n

Runge-Kutta method [7, page 212) . The idea is that at a

given point we can calculate the derivatives of the fiv e

variables (x ' , y ' , E . p ' and q ' ) w .r .t . the parameter s .

Using these we take a half-step forward (increment s by h/ 2

and calculate new values for x ' , y ' , z, p ' and q ' as thoug h

derivatives higher than the first where zero) . We then

calculate the derivatives at this new point and take the same

step (now using the new derivatives, which will diffe r

slightly from the previous ones) .

	

We next take a full

	

step
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(increment s by h) The final full step is taken using a

weighted average of the four derivatives found in this way .

Written out in symbols this becomes :

Let h be the step-size (for the parameter s )

And Y = (x' ' y ,z , p , q' )

Also let the equations for the derivatives be :

Y ' = F(s,Y )

	







(In our case F is actually independent of s )

Denote

	

Y(s„) by Y

	

then at the Ok step :


K, = h F(s h , Y N )

Ku = h F(s h +h/2, Y h +K I /2 )

K 3 = h F(s„+h/2, Y„+K l /2 )

K 4 = h F(s,+h, Y,,+K 3 )

Yv,+t = Y h + (1/6)(K1 +2K,.+2K 3 +K 4 )

This method is easy to start (requires no previous values o f

Y) and stable, but requires four time-consuming evaluation o f

the derivatives per step . For this reason various predictor-

modifier-corrector methods [7, page 194] were tried and th e

simplest was found to give adequate accuracy :
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P n+t

	

Y h

	

+ 2 h F(s n , ',(h )

Nn+t

	

P 0,4.1 - (4/5)(Ph - C,, )

C= Y n

	

+ (h/2)(F(s)‘, hi h+t ) + F(sh , Yh ) )

,Ya+t = C ►,+i + (1/5)(P N+ 1 - C,

	

)

P, M and C are the predictor, modifier and correcto r

respectively .

	

This method is stable and requires only tw o

derivative evaluations per step, but

	

is not self-starting .

The Runge-Kutta method was retained for the first step in th e

integration . Stability and accuracy were not seriou s

concerns since the noise in the data input contributes fa r

more to errors in the solution .

4 .1 .3 ACCURACY OBTAINABLE :

Under optimal conditions (using the methods described t o

cancel out most of the distortion and non-uniformity o f

photo-cathode sensitivity) the program was allowed to scan a

sphere of 100 mn radius .

	

A sphere was then fitted by a n

iterative least-square method to the data points found . The

data points nowhere deviated from the fitted sphere by mor e

than 10 mm, and by less than 5 rrm except near the very edg e

of the image .

	

Such accuracy will not usually be obtaine d

because of non-uniformity in the paint, shortcomings of the



Page 13 9

sensing device etc .

	

For many purposes however less accurac y

is quite acceptable and for object recognition in p articula r

a more important criterion

	

is most probably that simila r

objects are distorted in similar ways .

4 .1 .4 PROBLEMS WITH THE SEQUENTIAL APPROACH :

It soon become apparent that solving the characteristic s

sequentially had many disadvantages in the general case, eve n

though it works well for lunar topography . The first reason

is that as the characteristics spread out from the singula r

point, they begin to separate and leave large portions of th e

image unexplored, obtaining only a very uneven sampling o f

the surface of the object (This is no problem for luna r

topography since here the solution is not started from th e

singular point, but at a place where the spread of th e

characteristics is small) .

With a more parallel approach new characteristics can b e

interpolated as we go along (and some deleted as the y

approach too closely) .

Next we find that the base characteristics (projections o f

the characteristics onto the image) may sometimes cross .
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Figure 37 : Comparison of spread of characteristics fo r

typical solutions in case of lunar topography

and general case .

This is not possible

	

if the solution was exact, since

	

i t

indicates that the surface is double-valued or at least tha t

its gradient is double-valued .

	

Characteristics may converge

or diverge from a (singular) point however . Crossing o f

characteristics is really symptomatic of another proble m

which was touched upon when proving the equivalence of th e

five O .D .E . ' s to the P .D .E . : The differential equations fo r

p and q must continue to give consistent

	

results with th e

surface calculated - this does happen

	

if the solution i s

exact, but cannot be hoped for with the noisy data obtaine d

from the image . What one would like to do is continuousl y

monitor whether the current p and q match with the slope s

obtained by first differences from points on the current an d

neighboring characteristics .

	

This

	

is not possible if th e

characteristics are solved separately and are spreading apart
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as well . A later section (4 .2 .2 .1) will explain a metho d

used to cont inous l y adjust p and q to rennin consisten t

(derived from the method explained earlier for finding p an d

q on the initial curve) .

At a very minimum, to avoid embarassrnent one would like t o

detect when two characteristics approach one another and sto p

one before they cross .

	

This

	

is easy if the solutions ar e

carried along in parallel, but

	

involves lengthy compariso n

tests otherwise .

4 .2 A PROGRAM SOLVING THE CHARACTERISTICS IN PARALLEL :

Once it had been demonstrated that the equations were correc t

and a numerical solution possible it was decided to write a

second program which would sample the surface of the objec t

more evenly by interpolating new characteristics when needed .

Less attention was paid to accuracy in the solution whil e

attempting to be less sensitive to various noise-effects . A t

the same time an effort to, f ind a more convenient coordinat e

system produced the much shorter notation and resultan t

equations described in chapter 2 . The solution is achieve d

by taking all characteristics one step forward at the same

time .
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4 .2 .1 THE BASIC DATA STRUCTURE :

The values stored for each point

	

(x, y, z, intensity, p, q

and pointers

	

to

	

the

	

previous

	

point

	

on

	

the

	

same

characteristic) are here arranged not by characteristic bu t

by ' ring ' .

	

A ring is a curve of constant arc-distance fro m

the singular point - i .e . the n points on all th e

characteristics form one ring (arranged in counter-clockwis e

order of the corresponding image points) . The complete data -

structure is made up of a number of rings, the first of whic h

is the initial curve . As before, individual characteristics

may stop for a variety of reasons (s .a . crossing an angula r

edge) and this causes breaks to appear in the current ring .

The

	

break is indicated by a point fav ing a negativ e

intensity, the value being a code for the cause .

	

Some ring s

thus

	

represent closed curves (e .g .

	

the initial curve) an d

others more distant from the singular point are broken

	

int o

sections,

	

the final ring having no active point on it (i .e .

positive intensity) .

	

Scavenger routines are usually invoked

at each solution step and amongst other tasks, compres s

series of dead points

	

(i .e . negative

	

intensity) into one ,

since only one is needed to mark a break in the ring .

As we have seen one of the main inducements for using th e

parallel solution method is

	

to allow

	

interpolation of new
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characteristics - this is one of the reasons why the numbe r

of points in a ring may change from one to the next and wh y

each point has to have a pointer

	

into the previous ring ,

indicating which element

	

is

	

its predecessor

	

in the

	

same

characteristic .

	

This pointer

	

is -1 if no previous poin t

exists (e .g . on the

	

initial curve or the

	

first point in

	

a n

interpolated characteristic) .

We have seen how characteristics may be terminated causing a

break in the ring ;

	

it is also possible for a characteristi c

to

	

disappear,

	

without

	

causing

	

a

	

break,

	

when

	

tw o

characteristics approach too closely .

	

In addition a brea k

can reclose if the points on either side of the break are

within the step-size

	

(and pass the crossing-test explaine d

later) . With all of this in mind it becomes clear that th e

data-structure can at times look pretty confused and this ha s

to he remembered when defining a function which interrogate s

the neighbors of a point (s .a . some sort of differenc e

appp rox imat i on) .

It was decided to use as data only the coordinates and th e

slope at each point, because this was sufficient for the use s

to be made of the data and also was easily available . Fo r

some uses more complicated surface descriptors may be i n

place, such as the rational function approximations for each
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surface-sect ion described by Coon [101 . Usually th e

increased complexity imposed by such an approach can be side -

stepped by rather using a smaller step-size to obtain a fine r

grid .

It should be noted that the user of constant size steps alon g

the characteristics may produce difficulties on comple x

objects . For even with smooth surfaces the curves of

constant arc-distance from the singular point (the rings) ma y

have cusps .

	

This invalidates the use of difference methods

on points along these curves (s .a . are used in subsection

4 .2 .2 .1

	

and 4 .2 .2 .3) .

	

No

	

difficulty was

	

experienced wit h

images of the objects we experimented with .

	

An alternative ,

which would circumvent this problem, would be the use o f

steps traversing a constant

	

increment in

	

intensity .

	

Thi s

would turn the rings into contours of constant intensity .

4 .2 .2 EXTRA PROCESSING POSSIBLE :

4 .2 .2 .1 SHARPENING - UPDATING P AND q :

We have already described how one can obtain p(t) and q(t) o n

the initial curve by solving the set of non-linear equation s

(subsection 2 .3 .7) :
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p(t) X t(t) + q(t) y { (t) - i ,t (t) = 0

A(r) 4(I,E,G) - b( ,
~

r: ) = 0

In

	

the proof that the solution of the five ordinar y

differential equations

	

is also a solution of the origina l

partial differential equat ion, it was stated that the tw o

equations for p and q do in fact continue to give th e

derivatives of a w .r .t . x and y . When solving a differenc e

equation approximation from noisy data we can expect th e

solution for p and q to become progressively more inaccurate .

Yet the above pair of equations must hold on any path alon g

the surface of the object . In particular one can use them o n

the curve defined by one ring to determine values of p and q .

For the initial curve we had the additional difficulty tha t

the two equations might have more than one solution and we

selected one on the basis of some external knowledge (e .g .

that the object is convex near the singular point) . We hav e

already assumed that the object is smooth and therefore w e

will have fairly good values for p and q and cannot get int o

this difficulty at non-singular points . Even a simpl e

Newton-Raphsen method will suffice to get us more accurat e

values of p and q .
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Let

	

g( p , q ) = p x t + q yt - z t

h(p,q) = (I?(I,E,G) - h/ A

And suppose :

	

g(p +gp , q +gq ) = h( p+gp , q+ (q ) = 0

Then ignoring other than first-order terms we have :

(gp 1(1 g ( p , q )

hp

	

h(p,q )

That is :

xt y {

	

~p

	

(g(p,q) )

p

	

q

	

bq

	

h( p , q )

Here

	

x t and y t have to be estimated from differenc e

approximations .

	

One may not want to apply the ful l

correct ion

	

(El:), SO .

	

More than one iteration will not b e

required since p and q are very close to the correct values .

4 .2 .2 .2 INTERPOLATION AND CROSSING TESTS :

When the separation between two neighboring points in a rin g

becomes greater than 1 .5 times the step size along th e

characteristic, a new characteristic is interpolated . It s

x, y, z, p and q values are set to the average of it s

neighbors while the backward pointer is set to -1 .

	

A more
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complicated interpolation method can also be used whic h

constructs the line of intersection of the tangent planes a t

the two neighboring points . It then finds the point on thi s

line closest to the two neighbors and finally uses a poin t

half-way between the point determined previously by th e

simpler method and this new point {This,

	

for small angle s

between the tangent planes,

	

is accurate for a spherica l

surface),

	

This method does not however add significantly t o

the accuracy of the solution .

If two neighboring points in a section of a ring come close r

than 0 .7 times the step-size, one is deleted (It is importan t

that this factor be less than 0 .75, that is, one half of th e

factor used in the interpolation decision, or succesive ring s

on a flat region will have points interpolated on one step ,

only to be removed on the next, with consequent loss o f

accuracy) .

Finally one wants to stop neighboring characteristics from

crossing over each other . Consider the two points a and b o n

one ring and their successors c and d on the next . The tes t

consists of checking whether c is to the left of the directe d

line through bd and whether d is to the right of the directe d

line through ac (Both tests are needed) .

	

If either fails ,

the corresponding characteristic

	

is terminated, causing a
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Figure 38 : The four points used in the crossing test .

Figure 39 : The five neighbors used in determining th e

intensity gradient at P .

Figure 40 : Covering the image with the rasters of point s

read for each solution point .
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break to appear

	

in the

	

ring at that point .

	

The test i s

equivalent to checking whether the

	

line segment cd falls

	

i n

front of the line segment ab (and does not cross it) . Thi s

test is applied across short breaks in rings as well, to sto p

neighboring section of the ring from crossing over eac h

other .

Care has to be taken if the sections of a ring left all fal l

on one side of the singular point, since the break the n

actually encompasses an arc of more than TT and crossing test s

applied across it will invariable terminate more

characteristics on either side of it . This can he avoided i f

the crossing test is not applied to points whose images fal l

too far apart

	

(in terms of the projection of the curren t

step-size) .

4 .2 .2 .3 OBTAIN ING GOOD INTENSITY GRADIENTS :

To be more noise-immune than the previous program, a bette r

way had to be found to obtain intensity gradients .

	

Rathe r

than use the intensities at a small

	

raster of points t o

estimate the local gradient,

	

it was decided to use a

difference

	

approximation

	

from intensities

	

measured a t

neighboring points .

	

Using as many as possible of the
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intensities of the

	

point

	

itself and

	

its

	

five immediat e

neighbors, we can apply a simple least-squares method t o

estimate the gradient .

	

Some of the points may not exist a s

explained previously and the characteristic is terminated

	

I f

less than three points are available or only three which ar e

nearly colinear .

	

Suppose the coordinates of the points are

(xK,yic ) (image coordinate system) and the intensities ar e

We wish to find b o , b x , and b y' , to minimize the followin g

expression :

Z(b x ,x ''x + by 'yk. + b o - b l' )

This happens when :

	

I x k

	

~ x kyK G x k 1 b , ` /2 b k x k

2 x K yK

	

yt<~

	

2 yk

	

by, ~= ~ b k yk

	

ic

	

~ b0 J

	

b k

From b x , and by we can find bx , b y and b- by using th e

camera projection equations of an e a r l i e r section (2 .7 )

For good noise-immunity and some ability to detect surfac e

detail indicating that the solution is invalid, the intensit y

for each solution point

	

is not read from only one

	

imag e

point .

	

Small

	

tilted

	

rectangular rasters of points are
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established aromd each point of the solution .

	

The one axi s

of the rectangle is parallel to the base characteristic a t

that point, and the size

	

is adjusted to correspond to th e

projection on the image of a square on the object of side -

length equal to the step-size .

	

The intensity recorded for a

solution point is the average of the intensities read for th e

points in this raster and the r .m .s,/average is used to make

the edge-crossing decision . The rasters of all the points i n

the data-structure almost, but not quite, touch and take n

together almost cover the total area of the image explored .

This insures that the data is not much affected by pin-hole s

in the photo-cathode of the image-dissector and that edg e

crossing

	

can easily he detected, without

	

reducing th e

resolution .

Both this program and the one discussed in section 4 .1 spen d

more than half their time accessing the image-dissector .

Between 20 and 100 intensities are read for each point in th e

solution, and each access takes about

	

.2 to 1 .0 milli -

seconds .

	

A complete solution requires from 1 to 5 minute s

of real time .
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4 .2 .3 A DOREN REASONS TO TERtiINATE A CHARACTERISTIC :

This is a good place to summarize the reasons for terminatin g

the characteristics .

	

The values printed near the end of a

characteristic

	

(derived from the negative

	

intensity code

discussed earlier) can be used to index this table .

1. The characteristic has moved out of the field of vie w

of the image-dissector .

2. The r .m .s ./average for the intensities read in th e

raster has become too great, indicating overlap of tw o

objects or an angular joint on one object or som e

surface detail that Is being missed .

3. The intensity has become too low, indicating a shadow

region .

4. )\ is too large, indicating approach to either anothe r

singular point or an ambiguity edge .

5. There are too few neighbors to construct a goo d

estimate of the local intensity gardient .
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6. ae

	

is too small .

	

C4 is the Jacobian of the imag e

transformation from 2x and z y to zx , and zy' .

	

Thi s

transform becomes singular when o(= O .

	

In most cases E

will become too small before this happens .

7. A new point was interpolated but both its neighbors

were terminated before it could get anywhere .

8. I too small - indicating approach to a shadow edge .

9. E too small - indicating approach to an edge of th e

object .

10. This characteristic crossed over a neighboring one .

11. It was discovered that this point has a backwar d

pointer to a nonactive point . This is really an erro r

condition and shouldn ' t normally happen .

12. The intensity is equal to or greater than that measure d

at the singular point, indicating another singula r

point or ambiguity edge .

Note that several of these conditions are redundant to ensur e

that even with an inexact solution at least one will fail

	

at
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the right place .

4 .2 .4 OPERATION OF THE PROGRAt•? :

4 .2 .4 .1 THE INTEGRATION PROCES S

First the program needs to he given such parameters as th e

position of the light-source, the distance to the object ,

focal

	

length of the lens and the step-size to be used in th e

integration .

	

It then proceeds to find a point of maximu m

intensity (for some

	

reflectivity functions one needs t o

search for a min imum) .

	

This search can be directed to allow

a choice of one of several possible maxima . The program the n

assumes that this point of maximum intensity

	

is a singula r

point and that the object is convex at this point (in some

cases we would like to assume it to he concave) .

	

Afte r

constructing an

	

initial curve

	

(a small

	

circle) around th e

singular point, it proceeds

	

to read the

	

intensities at th e

corresponding image points .

	

The non-linear equations for p

and q on this curve are then solved iteratively .

All

	

intensities are normalized w .r .t . the

	

intensity at th e

singular point unless the surface has a specular component .

In

	

the latter case, the intensities on the initial curve are
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Figures 42 A, B, C : Stereo-pairs of solutions produced by

new SHADE for disc-shaped, spherical and bullet-shaped

objects (actually spheres with make-up applied) .
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Figures 43 A, B, C : Stereo-pairs of same solutions as i n

previous figures, rotated 900 .
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SHADE

	

314

	

70 :05 :06 06 :25 :27 BULLET I

Figures 44 A, B, C : Contour maps of same solution as i n

previous figures .
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used

	

to establish a normal izat ion value (The specula r

reflectivity is too variable for use in normalization) .

	

I t

is assumed that the initial curve has been chosen larg e

enough

	

f o fall outside the region of strong specula r

reflection .

For each step in the parameter s, the following procedure i s

then carried out :

1. For each point calculate the normal

	

(n), the inciden t
N

vector (rz ) and the emittance vector (re ) .

	

From thes e

obtain the derivatives

	

E h and G h .

2. Calculate

	

E , (1)6 and henc e

3. Then obtain F? , F 9 and )■ .

4. Add (ix, .gy, gz) to (x,y,z) to get the point on the nex t

ring for each characteristic . Here (Sx, Sz) =

\(F ? , Fq, pFp+qFI ) .

5. Interpolate new points where the points in the new rin g

are too far apart and delete points where they are to o

close together .

	

Produce breaks where characteristic s

have crossed over adjacent characteristics .
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6. Now read the intensities for all the points . Terminat e

those characteristics with points of very low intensit y

or high r .m .s/average .

7. Calculate b x ., b v , for all those points for which enoug h

neighbors exist . From these values obtain bx, by and b l

by the projection equations .

8. Now use n, r- and
re

to calculate Ir,, E . and Gr. .
ti

	

M

	

-

9. Next use cl)x,e and s to calculate i) r .

10. Then obtain Fx , F y and F2 .

11. Add ( g p,

	

Sa) to (p,q)

	

to obtain p and q for th e

uninterpolated points on the new ring .

	

Here ap, gq ) =

X( (-Fx -pF} ), (-Fy -qFI ) ) .

12. Interpolate p and q for the new points .

13. Sharpen up the values for p and q on all points in th e

new ring .

14. Garbage-collect various items, such as series of point s

with negative intensity .



Pa g e 16 1

15 . Stop if no points with positive intensity remain .

It should be apparent where the various tests for terminatin g

the characteristics fit into the above schema . The simpl e

Euler method for solving the differential equations could b e

replaced by a Runge-Kutta method with increases in runnin g

time of a factor of two, but little improvement in accuracy .

The sharpening method, on the other hand, is very cheap an d

contributes substantially to accuracy .

4 .2 .4 .2 OTHER PROCESSING AVAILABL E

As explained before, the data-structure is displayed as it i s

generated and can also be viewed from different angles whe n

completed . In addition a mode exists where the mapping fro m

three-space to the display surface is not performed by th e

projection explained earlier, but a simple map from a

rectangular area on the image-dissector to a rectangular are a

on the display surface .

	

This

	

is particularly valuable fo r

overlaying the solution on an intensity modulated display o f

what appears in the image . This aids greatly in debuggin g

since it is easy to pinpoint such problems as starting th e

solution from an inappropriate maximum in intensity .
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A number of other displays can be produced to aid in settin g

up the image-dissector . Prodigous amounts of detailed print -

out can be generated during a solution process and a mor e

parsimonious

	

listing of the final data is available .

	

It i s

possible

	

to substitute synthetic data

	

(with selectabl e

amounts

	

of noise)

	

for the

	

image-dissector input as a

repeatable way of checking out the program and to tide ove r

those days when the image-dissector is being repaired!

	

Th e

data can be written to and read from the disk and tape .

The stereoscopic display has to be viewed with an appropriat e

pair of lenses which are not always handy . For this reason a

routine was provided which produces a contour map from th e

data .

	

This map

	

is

	

produced by

	

first

	

listing

	

th e

intersections of all the lines in the data structure (fro m

point to point in each characteristic, as well as from poin t

to point in each ring) with the selected contour planes . Th e

intersections are then sorted on contour plane . Within eac h

contour plane the following process is applied repeatedl y

until no points are left :

Pick a point and find the closest neighbor within a

' reasonable ' distance .

	

' Reasonable ' distance is define d

to be 1 .5 times the step-siFe used in the solution .

	

Now

another point is selected closest to the new point also
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within a reasonable distance and so on until no more ca n

be found . The point chosen at each step may not he th e

first in the chain so constructed (which would close th e

loop) unless no other points are available .

	

Also th e

line-segments connecting sucessive points may not make

angles of more than TT/2 with one another . The point s

are removed from the data as they are used in generatin g

the contour except the very first point (to allow fo r

the eventuality of closing the contour) .

The distances are usually weighted with the dot-product o f

the new segment with the previous segment, to give preferenc e

to continuation of contours

	

in the direction of the las t

segment used .

	

The method generates good contours where th e

data

	

is complete and smooth, and does fairly well otherwise .

4 .2 .5 INSENSITIVITY TO IMPERFECTIONS IN THE SENSOR :

This program is not quite as accurate as the one that solve s

the characteristics se•rially (mostly because of the simpl e

method for solving the differential equations numerically) ,

but vastly superior in its behavior when faced with nois y

data .

	

Most of the improvement is due to the better way o f

obtaining

	

intensity gradients and to the use of the lateral
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70 :05 :07 10 :26 :31 CUBE
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Figures 47 and 48 : Stereo-pairs of solutions obtained fo r

the plaster object and the cube with rounded corners .
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PITCH= 0 .000 YAW=-1 .300 ROLL= 0 .000 MAC= 3 . 0
D I PSG= 114 .0 DOBJ=1000.0 EYES= 68 . 0

Figure 49 : Stereo-pair of side-view of solution obtaine d

for the plaster object .
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Figure 50 and 51 : Contour maps of the solutions obtained

for the plaster object and the cube with rounded corners .



Parse 16 9

connection between the characteristics . The differenc e

approximation for the intensity gradients uses a support are a

about six times as large as the one used by the least square s

approximation of the first program .

Distortions

	

in

	

the

	

imaging

	

device

	

' merely ' produc e

distortions in x and y, while non-uniformities in th e

sensitivity will affect p and q and hence z . The only effec t

of low resolution will be that some edges will not be notice d

and the solution erroneously continued across them .

4 .3 A NOSE-RECOGNITION PROGRAM :

To illustrate one use of the shape-from-shading method,

	

i t

was applied to a simple recognition task .

	

Although there i s

great interest in face-recognition [121 (partly because ther e

is a practical use for it),

	

it was decided to tackle a sub -

problem - that of nose-recognition . In principle, face -

recognit ion could he carried out by repeating the proces s

explained here for not only the nose, but the chin, forehea d

and the two cheeks . Transparencies of noses, rather tha n

real noses were used because they are always ready and do no t

move during the minute or so it takes to determine the shape .

To avoid having to determine the reflectivity function for
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skin as

	

a funct ion

	

of all

	

three angles,

	

special

	

l ight in g

conditions were employed . The light-source was placed nea r

the camera and the reflectivity function as a function of th e

incident angle determined from the transparencies taken .

This meant that no separate determination of the non -

l inearit ies in the photographic process was needed .

4 .3 .1 I,IODIFICATIONS TO THE BASIC PROGRAt REQUIRED :

A few minor changes and addit ions had to be installed in th e

main program for this task . 1\1ost prominent amongst these i s

the procedure used to normalize the intensities read from th e

image .

	

Because of the strong specular component of highl y

variable nature, the singular point could not be used fo r

this norrnalization . The specular component in th e

transparencies not only varies from person to person and tim e

to time but depends on the exposure used, since it usually i s

bright enough to saturate the film .

	

Normal izat ion was thu s

carried out w .r .t . an intensity derived from that measured o n

the

	

initial . curve, which was assumed to be outside th e

specular region .
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D I MG= 140 .0 DOBJ=1000 .0 EYES=

	

0 . 0

Figure 52 : Solution obtained for a nose .

Note gaps left by the breaks caused b y

the nostrils .
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Figure 53 : Contour map of solution obtained for a nose .
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Figure 54 : Four views of solution obtained for a nose .

(With some hidden lines eliminated) .
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Figure 55 : Stereo-pair of solution obtained for a nose .
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4 .3 .2 NORrALIZATION PROCEDURE :

In order to simplify photographing the subjects, it i s

necessary to make some decisions about which factors one i s

going hold fixed and which are to be taken care of by some

normalization in the program . Altough it is possible to hol d

the head in a standard position by means of a bite-bar, it i s

inconvenient and it

	

is preferable to let the program take

care of small head-rotations .

	

The distance from the camer a

to the subject on the other hand is very easy to determin e

and therefore no normalization of size was used . Fo r

pictures of the whole head such size normalization would b e

fairly accurate, whereas it cannot be for images of the nos e

alone which does not

	

present sharp features to

	

tak e

measurements of .

The rotational normal izat ion procedure to be described ca n

handle quite large (<TT/6) rotations in both pitch (rotatio n

about an ear to ear axis) and roll (rotation about a tip-of -

nose to back-of-head axis) .

	

Yaw (rotation about a top-of -

head to throat axis)

	

is restricted by the requirement tha t

almost all of the surface of the nose should be visible . Fo r

some noses this restricts the rotation to fairly small angle s

- of course this presents no problem when taking th e

photograph .
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Figure 56 : Illustration of rotational normalizatio n

procedure .

Figure 57 : Illustration of parameters abstracted from on e

horizontal contour through the nose .

LINE ALONG RIDG E

I‘-OF NOSE
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Independence of rotation is achieved by means of a routin e

which establishes the orientation of the shape calculated an d

then rotates it into a standard position . In addition th e

parameters in the final comparison procedure where chosen t o

be independent of small remaining errors in the orientations .

The orientation of the shape calculated is estimated from two

horizontal contours through the nose, one passing through th e

tip of the nose, the other higher up on the ridge . Thes e

contours of course are only defined as sequences of point s

where the characteristics and rings pass through each plane .

The most forward points defined by these contours ar e

calculated by fitting a parabola to the three points wit h

lowest z coordinates . For each of the two contours we ge t

one such forward point, connecting them we obtain a lin e

which runs approximately along the ridge of the nose .

	

Thi s

line is rotated into a standard position

	

(Lying in the y- z

plane and leaning TT/6 from the vertical) .

The lower contour (through the tip of the nose) is also use d

to estimate rotation about the vertical axis . The two point s

on this contour at a given distance from the most forwar d

point

	

define two angles w .r .t .

	

the z-axis .

	

The desire d

rotation is one half of the difference of these two angles .
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The three angles so determined are small and can thus h e

treated independently . The rotation of the shape i s

performed about the center of the spherical cap used t o

determine the initial curve, i .e . a point just inside the ti p

of the nose . The whole process is repeated iteratively thre e

times . The errors remaining are almost always less than 0 .0 1

radian (0 .5 0 ) .

	

It was found that using only the few point s

indicated to determine the rotation was quite satisfactory ,

although better accuracy is no doubt obtainable if th e

calculation employed averages over several points .

4 .3 .3 COMPARISON PROCEDURE :

After the data has been brought into a standard orientation ,

we would like to abstract a small number of parameters whic h

contain most of the information for comparison purposes . A

rather arbitrary decision was taken to use estimates of th e

distance of the ridge of the nose from the standard line (I n

the y-z plane and leaning -t-r/6 from the vertical), the widt h

of the nose about half-way down to the cheek and the depth o f

the cheek from the ridge of the nose . These quantities wher e

measured for each of five horizontal contour planes, th e

lowest through the tip of the nose, the highest a bit belo w

the saddle point (the bridge between the eyes) .

	

The fifteen
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Figure 58 : The points on the 5 contours used to abstrac t

the fifteen values describing this nose .
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values so obtained are the only

	

data used

	

in the fina l

comparison procedure .

The distance down the side of the nose from wher e

measurements of the width of the nose are taken varies wit h

the contours, going from some large value for the plan e

passing through the tip of the nose to one-half that valu e

for the highest contour . The distance at which the depth o f

the cheek is measured is twice that at which the width of th e

nose is measured and thus also varies from contour t o

contour .

	

The depth of the cheek is the average of the dept h

obtained on the

	

left side and that obtained on the right .

The fifteen measurements obtained for each transparency ar e

stored

	

in a table

	

together with the

	

number of th e

transparency .

The purpose of the comparison procedure

	

is to establish

	

i f

any of the stored measurements match those obtained from a

new transparency .

	

To determine this, a pseudo-distance

	

i s

calculated (in the 15-dimensional vector space), between eac h

stored vector and the new vector . The pseudo-distance is a

weighted r .m .s . of differences in coordinates [12], where th e

weights are proportional to the standard deviation observe d

for that coordinate .
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z

	

/ Z

	

a
d =

	

Z' (x!-x L ) / - 

t

where d is the pseudo-distance, x . and x i, the components o f

the two vectors, and cr.,: the standard deviation of the

	

i {~'

component .

	

The uncertainty in the depth to the cheek i s

greater than that in the width of the nose, for example, an d

it therefore has a lower weight than the latter . Thi s

procedure gives a comparison test which is in some sens e

optimal [1 2] .

No doubt other comparison procedures and other choices o f

parameters would have been equally useful ; in particular i t

soon become apparent that fewer than 15 parameters would hav e

been equally as selective . The point is that once one ha s

data as complete as a full description of the shape, almos t

any method will work and it is not even necessary to displa y

great sophistication in ones use of stat ist ics .

4 .3 .4 RESULTS OF THE NOSE-RECOGNITION PROCRAV :

15 transparencies of 12 noses were used in this experiment .

The pairs of transparencies for the three noses which wer e

photographed twice differed in camera to subject distance ,

head rotation and exposure .

	

A total of 30 shapes were
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FIGURES 59 A,B)C
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FIGURES 60 A,B,C
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calculated, two each for those noses of which only on e

transparency was available

	

(they differed because of th e

noisy nature of the data) .

	

For each shave so determined, th e

rotational

	

normal izat ion was applied

	

and the

	

15-tupl e

description abstracted .

	

The pseudo-distances between all

pairs of 15-tuples were then determined .

The pseudo-distance between

	

15-tuples averaged to

	

the

following (the units are about 0 .3 mm ' s r .m .s .) :

1. Between transparencies of different noses - 1 0 .

	

(rang e

2 .4 - 15 .3 )

2. Between transparencies of the same nose - 2 .

	

(range 1 . 4

to 2 .5 )

3. Between shapes calculated from the same transparenc y

1 .

	

(range 0 .1 to 2 .1 )

In all cases the distance from a given shape to a relate d

shape was less than a quarter of the distance to a unrelate d

shape . Simply looking for the smallest pseudo-distance (an d

checking whether it is fairly small), thus gives an effectiv e

recognition procedure for this small data-set .

	

It is clea r

that for a much

	

larger data-set unique identification would
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1 0

1B 1 0 11
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11 6

	

6 10

	

11 10

	

1 1

2A 10 11 0

	

2 11 11

	

14

	

14 7

	

8 14

	

15 13

	

1 2

2B 9 10 2

	

0 11 11

	

13

	

13 7

	

7 13

	

14 13

	

1 2

3A 8 8 11

	

11 0 2

	

8

	

8 4

	

4 6

	

7 8

	

9

38 8 8 11

	

11 2 0

	

9

	

9 4

	

4 7

	

8 9

	

1 0

4A 11 11 14

	

13 8 9

	

0

	

0 10

	

8 3

	

3 3

	

4

4B 11 11 14

	

13 8 9

	

0

	

0 10

	

8 3

	

3 3

	

4

5A 6 6 7

	

7 4 4

	

10

	

10 0

	

2 9

	

10 9

	

9

5B 6 6 8

	

7 4 4

	

8

	

8 2

	

0 7

	

8 8

	

8

6A 10 10 14

	

13 6 7

	

3

	

3 9

	

7 0

	

1 4

	

5

6B 11 11 15

	

14 7 8

	

3

	

3 10

	

8 1

	

0 5

	

6

7A 10 10 13

	

13 8 9

	

3

	

3 9

	

8 4

	

5 0

	

2

7B 10 11 12

	

12 9 10

	

4

	

4 9

	

8 5

	

6 2

	

0

Table of pseudo-distances between some of the shapes

calculated .

	

Pairs 2, 3 and 5 are each of two differen t

transparencies of one nose, while the other pairs are eac h

two shapes calculated from one transparency .

	

The units o f

distance are about 0 .3 mm r .m .s .
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be more unlikely without

	

improving the accuracy

	

in th e

solution and a

	

detailed analysis of which parameters

	

t o

abstract for optimal recognition . It would however always b e

possible to separate out some small subset of the tota l

stored set of nose-descriptions with very high probabilit y

that the nose looked for will be in this set . Bledsoe [12 ]

uses the ratio of the size of this subset to the size of th e

complete stored set as a measure of the effectiveness of th e

recognition procedure .

Repeating the operations we described here for the othe r

large

	

frontal planes (planes with normal parallel to the z -

axis), one would obtain a face-recognition procedure .

	

It i s

very

	

likely that the subsets

	

of all stored face-decription s

determined by applying the above method to cheeks, chin ,

forehead and nose

	

in

	

turn

	

will

	

have

	

only a

	

sma l l

intersect ion .

	

This is

	

not to say

	

that other informatio n

about the face, not obtainable from the shape--from-shadin g

method could not add to the accuracy of such a procedure . I t

must be pointed out that some of the feature points used i n

previous attacks on the face-recognition problem are no t

defined by sharp discontinuities (for example the tip of th e

nose) and could best be obtained from a description of th e

shape .
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The restriction about the positioning of the light-sourc e

could be removed if one took the trouble to measure th e

reflectivity function in more detail and either recorded the

positioning of the

	

light-source or worked out

	

in detail a

method for finding the single

	

light-source from the shadow s

in the image

	

(which should not he very difficult since w e

know the approximate shape of the object we are looking at) .

The full face-recognition problem was not tackled since

	

i t

would require a great deal more work without

	

furthe r

illustrating the method of determining shape-from-shading .

Also it will be noted that the study involved a small set o f

noses - a study with a large data-set would contribute littl e

more to the understanding of the method .

Some of the difficulties encountered when determining th e

shape of noses are perhaps worth mentioning . Firstly, mos t

noses are not completely visible from any given point o f

view .

	

Most notably the underside (between the nostrils) i s

frequently not visible, and often a small area on the side o f

the nostrils

	

is also hidden .

	

This forced a choice o f

parameters which did not depend on these areas .

	

Naturall y

the

	

information of whether these areas are visible could i n

itself be useful in the recognition procedure if it could b e

reliably determined .

	

In fact our program does not, becaus e

of the combination of poor resolution in the

	

image-dissector
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and the simple-minded

	

edge detector .

	

This could

	

b e

circumvented by placing the

	

light-source slightly above th e

camera, thus ensuring that there always

	

is a narrow shadow

below the nostrils .

When the solution

	

is erroneously continued across an edg e

(such as that above the nostrils), a second undes i reabl e

effect a ppears because of the sharpening procedure . Th e

incorrect coordinates of the points calculated after the edg e

is crossed have some effect on their neighbors due to thi s

and thus decrease the accuracy of the solution obtaine d

nearby .

Another problem is that some noses have not one, but tw o

closely spaced tips

	

(probably because of the underlyin g

cartilage consisting of two symmetrical parts) .

	

This cause s

the characteristic growing from one of these peaks toward s

the other to stop, since

	

it is approaching another singula r

point .

	

A simple solution consists of chasing the radius o f

the initial

	

curve large enough to completely include bot h

singular points .

	

Finnal ly one finds

	

that some

	

nose s

(particularly those belonging to females)

	

have very low

ridges near the eyes,

	

making it

	

difficult to determine a

meaningful value for the width of the nose at that point .
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It should be noted that the reflectivity function was no t

determined with great precision and no account was taken o f

its variation from person to person . It was not importan t

that the shape calculated was very close to that of the nos e

from which the image was taken, but rather that difference s

in the shapes of noses should show up as differences in th e

calculated

	

shapes

	

and

	

that

	

shapes

	

determined

	

fro m

transparencies of the same nose should he similar .

	

If the

images

	

were all produced with the heads in the same

rotational position, the distortions would have made no

difference at all . For the small head rotations encountered ,

the effect of the relatively minor distortions was ver y

small .

4 .4 SUtIMARY AND CONCLUSIONS :

After defining the reflectivity function, an equation wa s

found relating the intensity measured in the image of a

smooth opaque object to the shape of the object . Thi s

equation was then shmn to be a first-order non-linea r

partial

	

differential equation

	

in two unknowns and th e

equivalent set of five ordinary differential equations wa s

derived .

	

A number of especially sirple cases

	

were

discussed, in particular applications to lunar topography and
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the scanning electron microscope .

	

t-'ethods were described fo r

obtaining

	

the

	

auxiliary

	

information

	

required

	

(e .g .

	

the

reflectivity function) and how to avoid the need for a n

initial known curve on the object .

	

Of importance too is th e

method demonstrated for continuously updating p and

	

q

(sharpening) as the solution progresses .

The half-dozen or so other depth-cues were

	

ignored here t o

allow a comprehensive treatment of shading . The analytica l

approach to the problem of determining shape from shading wa s

developed to demonstrate that an exact solution is possibl e

and to determine just what

	

the limitations of this approac h

are .

	

This is not to say that a more heuristic, approximat e

approach does not have

	

its merits too for certain types o f

objects

	

[14] .

	

It was decided to produce a program to allow

experimentation with the solution method because many

	

idea s

in the field of artificial intelligence and visual perceptio n

are of l itt le value until they can he tried on real data .

Fortunately an image-dissector was available to provide inpu t

of image intensities to the computer .

Two programs were presented, one solving; the O .D .F . ' s for th e

characteristics sequentially, the other in parallel .

Advantages of the latter approach were found to be several .

Finally this latter program was adapted to provide input for
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a nose-recognition procedure .

It has been made apparent that shading

	

is valuable as a

monocular depth-cue altough it may not he as accurate as som e

others . It must be emphasized that no claim is made tha t

people employ this depth-cue in the same way . It may be tha t

the human visual system does not actually determine the shap e

in three-space and if it does so it is likely that it uses a

different method .

	

However there will be many similaritie s

between the two systems

	

(e .g . in the errors they make )

because they utilize the same data .

4 .4 .1 SUGGESTIONS FOR FUTURE WORK :

1 . It would be instructive (but very time consuming) t o

measure many reflectivity functions and see how man y

fall into the pattern of a matt component, approximatel y

varying with cos(i), plus a specular component .

	

If i t

could be shown that most real

	

reflectivity function s

fall into this class, the method presented would he mor e

useful since

	

it could determine approximate shape s

without

	

knowing much more

	

about the reflectivit y

function .
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2. It may he possible to find more simplifying condition s

s .a .

	

the ones

	

found with certain lighting conditions ,

positions of the

	

light-source and special

	

reflectivit y

funct ions .

3. Other solution methods may be found, or modifications t o

the integration method might increase the accuracy .

Perhaps a difference method on a fixed grid could h e

found which somehow gets around such problems as that o f

ambiguity edges .

4. One could study the two related problems of finding th e

reflectivity function, given the shape of the object an d

the light-source

	

distribution and finding the

	

light -

source

	

distribution given the reflectivity function an d

the shape .

5. Further study of certain types of inconsistencies an d

their use is indicated . Here for example we find th e

problem of deciding whether certain faces in an image o f

several polyhedra could consistently belong to on e

object .

6. Some effort could be directed towards implementing mor e

fully some of the ideas

	

developed theoretically here,
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s .a .

	

shadow bridging,

	

handling multiple

	

sources an d

multiple singular points .

7. Expanding the nose-recognition program into a full face -

recognition program would increase its usefulness .

8. One could study in more detail how people use the depth -

cue of shading and how had animals are at it . Perhap s

one can get a better clue as to whether people develop a

three-dimensional model of the object from the shadin g

or if they use the shading information in some othe r

way .

9. There are probably a few more loose ends such as th e

problem of how to start the solution if no convex o r

concave singular points are available . Can one d o

anything at all with saddle points (even though they ca n

camouflage themselves to be indistinguishable fro m

simple convex or concave singular points) ?

10. In

	

addition

	

to

	

interpolation,

	

is

	

it

	

reasonhle t o

extrapolate?

	

That

	

is, can

	

one

	

generate new

characteristics next to a solution sheet to explore ne w

areas .

	

In particular when a break appears

	

in a

solution surface can it he patched-up later?



Page 1 9 4

11. More methods will have to he

	

found to deal with th e

three-dimensional

	

structure once one has determined it .

12. As pointed out earlier, the use of constant size step s

along the characteristics may not he ideal (remembe r

that we can adjust the-step-size by choosing a differen t

) .

	

One particularly attractive idea would he to us e

steps corresponding to constant intensity change in th e

Image . This would turn the rings into constan t

intensity contours, rather than curves of constant arc -

distance from the singular point .

13. Many objects have surfaces whose reflectivity cannot h e

described by a function of three angles, or are s o

specular that our methods are of little avail . On e

might try to discover methods of dealing with suc h

objects . Examples are chrome car-bumpers, translucen t

wax, hair and a glass of water .
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