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Abstract 
This paper describes a hand-eye system we developed to perform the bin- 

picking task. Two basic tools are employed: the photometric stereo method and the 
extended Gaussian image. The photometric stereo method generates the surface 
normal distribution of a scene. The extended Gaussian image allows us to determine 
the attitude of the object based on the normal distribution. 

Visual anaIysis of an image  consist,^ .of two stages. The first stage segments 
t,he image into regions and determines the target region. The photometric stereo 
system provides the surface normal distribution of the scene. The system segments 
the scene into isolated regions using the surface normal distribution rather than the 
brightness distribution. The second stage determines the object attitude and position 
by comparing the surface normal distribution with the extended-Gaussian-image. 

Fingers, with LED sensor, mounted on the PUMA arm can successfully pick 
an object from a pile based on the information from the vision part. 
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I. Introduction 

Sensory capabilities will extend the functional range of robots. Without sensing 
the outer world, robots can only repeat prc-prograinrned tasks. Thus, the task 
is very rigid; such a system cannot overcome any small disturbance. Therefore, 
sensory capability is an essential component of' a flexible robot. 

Vision could be the most important type of robotic sensor. Since a vision 
sensor is a non-contact sensor, we can get the necessary input information without 
disturbing the  environment. Also vision can acquire global information about a 
scene. This is not the case for t he  tactile sensor. 

There are basically three tasks where the vision feedback could play a essential 
role: 

(i) finding the  target object and determining the grasping point, 

(ii) bringing an object from a n  initial point to a destination point while 
avoiding collision with other objects, 

(iii) assembling something using the object brought. 

This report explores the method of manipulator visual guidance in domain (i). A 
manipulator without vision can only pick u p  an object whose position and atti tude 
is pre-determined. Such a system needs the help of another machine or human for 
feeding objects at a pre-determined place in a pre-determined atti tude. Since this 
feeding job is tedious, the job is quite unsuitable for a human being. Some research 
has aimed at solving this feeding problem by introducing mechanical vibration 
methods. These methods may cause defects in objects due to  collisions. This paper 
proposes a method to solve this problem by visual guidance of man ip~ la t~o r s  instead. 

Thcre are two problems in this task. The first one is how to  isolate an object 
from the background. The second one is how to determine the att i tude of the 
object relative to the camera. Historically, these two problems have been attacked 
by detecting brightness changes [Tsuji and Kakamura, 1975, Yachida and Tsuji, 
1975, Baird, 1977, Perkins, 1977, Shirai, 1978, Bolles and Cain, 19821. Detecting 
br~ghtness changes gives boundaries between regions corresponding to  the objects. 
The  boundaries obtained are compared with internal models to  determine the 
att i tude of t he  object. 'Ihese edge-based approaches work particularly well with 
isolated objects lying on a uniform background provided the objects only rotate  in 
the plane of support. In other words, these algorithms work well on binary images. 
However, such methods car~not extract the contour of an object from the image of 
a set of overlapping objects, which is the typical case in bin-picking. 

The extracted contours should also be compared with some interna.1 model 
to determine the attitude. A contour is usually approximated as a collection of 
straight lines. The internal model consists of the lengths of each segment and the 
angles between segments [Price and Reddy, 1979, Davis, 1979, Sakane, 19811. This 
approach cannot treat 3D curved objects. 

Kelley and  others [Kelley, 19821 highlight scenes to segment and determine the 
position and orientation of an object in a bin. This system is limited Lo cylindrical 
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workpieccs with metallic surface. Also, their yision system only determines two 
degrees out of three degrees of f r c d o m  in att i tude. 

Recent work in image understanding [Barrow and Tenebaum, 1978, Marr,  1982, 
Brady, 1982, Ballard, 1982, Grirnson, 19811 has led to techniques for computing local 
surface gradient. Such mcthods include shape from shading [Horn, 1975, Ilieuchi 
and Horn, 1981, Terzopoulos, 19821, shape from phot,ometric stereo [Woodham, 
1978, Silver, 1980, Ikeuchi, 1981b, Colernan e t  al,, 19811, shape from texture 
[Kender, 1980, Witkin, 1981, Kanade, 1981, Kender and Kanade, 1980, Ikeuchi, 
1980, Ohta et  al., 19811, and shape from polarization [Koshikatva, 19791. The  local 
gradient representation is called a needle map [13orn, 19791 or 24D eketch [Marr, 
1982, Nishihara, 19811. Since this local information is obtained over a region, it is 
more robust than silhouette information which comes only from the boundaries. 
The use of this robust local information should be explored. 

This paper attacks the bin-picking problem using a needle map obtained 
by photometric stereo for both segmentation and attitude-determination. The 
segmentation is done with a needle map rather than  a brightness map. An extended 
Gaussian irnage (EGI) [Smith, 1979, Bajcsy, 1980, Ikeuchi, 1981, Ballard and 
Sabbah, 19811 obtained From the surface normal distribution of an isolated region 
determines the object attitude. 

2. Overview of the system 

2.1. Problem 

The basic assumptions are as follows: 

(i) T h e  objec ts  stored in a pile are all of t h e  s a m e  k i n d .  
In order to simplify the problem, we introduce this assumption. We do 
not worry about "recognition" in t'his paper. The system, however, can be 
easily extended to  treat multiple kinds of objects [Ikeuchi, 1981al. 

(ii) T h e  sur face  m a t e r i a l  of t h e  object  i s  known. 
The photometric stereo method determines the  surface orimtation using 
the relationship between apparent brightness and the surface orientations. 
Thus, it is necessary to know the surface material. 

(iii) T h e  objec t  shape i s  known. 
There are two reasons for this assumption. One is t h a t  we segment an 
image using rapid changes in surface orientation. Also the EGI system 
determines the object att i tude by comparing the observed EGI with 
prototypical EGI's. The  prototypical ECI's are obtained from the object 
shape. 
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Basically, the  problem consists of two tasks: (1) segmenting a scene into isolated 
regions and finding the target region and (2)  determining the position and at t i tude 
of the  object. The basic strategy for these tasks is as follows: 

(i) Obtain a needle map using photometric stereo. 

(ii) Segment a scene into isolated regions using the needle map. 

(iii) Use the EGI t o  determine the object att i tude, 

(iv) Determine x-y position of the grasping point using the target region's 
position in the image. 

(v) Determine the absolute depth of the grasping point using a proximity 
sensor. 

3. Basic Tools 

3.1. Photometric Stereo 

3.1.1. Reflectance Map 

The reflectance map represents the relationship betweec surface orientation and 
image brightness [Horn, 1977, Woodham, 1978, Horn and Sjoberg, 19791. Generally 
speaking, apparent brightness of a surface patch deperlds on four components: (1) 
surface material, (2) light source direction, (3) viewer direction, and (4) surface 
normal. Let us assume t h a t  every direction is expreswd with respect to the direction 
towards the viewer. This coordinate system is called a viewer-centered system. If 
we represent both light source direction and surface material in this coordinate 
system, the apparent brightness is a function of surface normal direction. This 
function is called a reflectance map. 

The reflectance map can be expressed on a stereographic plane. Since surface 
normal directions h a w  two degrees of freedom, we can cxpress the relationship 
between the apparent brightness and surface normal directions on a 2-T) plane. Here 
points on the 2-D plane represmt surfam normals. A t  each points, the apparent 
brightness value, which can be obtained either empiric:tlly[b~'oodham, 19791 or 
theoretically [IIorn and Sjoberg, 19791, is plotted. We use the stereographic plane 
for expressing surface orientations [Ikcuchi and Horn, 19811. Thus, the brightness 
distribution for knowri light source direction and surface material can be shown as 
height over the stereographic plane, 

3.1.2. Photonl~t~ric Stereo Method 

The photometric stereo method takes multiple irilages of the same scene frorn 
the same position with different illi~minat,ion [Woodham, 1078, Silver, 1980, Ikeuchi, 
1081b, Coleman and Jain, 19811. This setup gives multiple brightness valucs a t  
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each irnage point. Since tliff'ere~~t images are taken from t h e  same point, there is 
no disparity between images as wi th  binocular stereo; so there is no need to  match 
mult,ipIe images. 

The photometric stereo method determines the surface orientation from the 
brightness values at each point. Each iilumination situat,ion gives a unique reflectance 
map, because the reflectance map depends on illunination direction. We can track 
the iso-brightness contour corresponding to the obtained brightness value on each 
reflectance map. The  contour represents possible surface orientations. Since there 
is no change in the relationship between the viewer and the  surface orienthtion, 
the orientation should correspond to the same point in the  different reflectance 
maps. Thus, the  intersection point of the iso-brightness contours gives the surface 
orientation. Typically, a pair of contours intersect at two points due to non-linearity. 
The  third brightness value can resolve this ambiguity. 

This method is usually implemented using a lookup table. If we assume both 
the viewer and the light source are far from the object, then bobh the light source 
directions and the viewer direction are assumed constant over the  image. Thus, 
for each light source we can use a single reflectance map everywhere in the image. 
The points where iso-brightness lines cross can be pre-calculated. The  crossing 
points can be registered in a table. The table can convert triples of brightness 
values into surface orientation. The  indices to this 100liup table correspond to  the 
brightness values for each light source direction. The contents of the table are 
surface orientations corresponding to the brightness valucs. Since the calculation is 
performed by table lookup, the surface orientation a t  each point can be determined 
very rapidly. 

3.2. EGI Matching 

3.2.1. Extended Gaussian image 

Roughly speaking, the extended Gaussian image of an object is a spatial 
histogram of its surface normal distribution. Let  us assume that  there is a fixed 
number of surface patches per unit surface area and t h a t  a unit  normal is erected on 
each patch. The collection of these normals are like porcupine quills [IIorn, 18791. 
These vectors can be moved so tha t  their "t,ails" are a t  a common point and their 
"heads" lie on the surface of a unit  sphere. This mapping is called the Gauss map; 
the unit sphere is called the Gaussian sphere [Do Carmo, 19761. If we attach a unit 
mass to  each end point, we will observe a distribution of mass over the Gaussian 
sphere. The resulting dislribution of mass is called the extended Gaussian image 
(EGI) of the object [Smith, 19791. 

Let us define a visible hemisphere. Commonly, one observes an  object from one 
direction. So we always obtain only one half of the EGI over a Gaussian hemisphere. 
This hemisphere will be referred t o  as the visible hemisphere [lkeuclii, 19833. The  
axis of symmetry of the visible hemisphere corresponds to the line of sight. Each 
point on the visible hemisphere corresponds to a surface orientation whose angle 
with the line of sight is no more than 3. In the following discussion we will work 



with this EG1 ovcr the visible hemisphere. Alsv we will normalize the distributior~ 
of I X I  mass to  have unit Inass over the visible hemisphere. 

3.2.2. Freedom of matching 

,4n apparent image of an object varies with the following factors: (a)transl t '  a ion 
of the object, (b)cxpansion of the  object, (c)rotation of the object. The normalized 
EGI is independent of (a) and (b). The EGI rotates in the same way as (c) as will 
be shown next: 

(a) Neither the surface normals nor the Gauss map depend on the position of 
the origin. Thus, the resulting EGI is not affected by translation of the object. 

(b) If the object expands, the total mass over the Gaussian hemisphere increases. 
Yet, the EGI mass is normalized to  have unit mass over the hemisphere. Thus, t he  
normalized EGI  does not change with object expansion. This characteristic is very 
convenient in object recognition. In general, the distance between the TV camera 
and the object changes in each situation. Thus, the apparent size of an object will 
also vary, bu t  the normalized EGI derived from the image is independent of t he  
apparent size. 

(c) When an object rotates, its EGI also rotates. Fortunately, the EGI rotates 
in the same manner as the object. In other words, this rotation does not effect, the 
relative EGI mass distribution over the sphere. This is analogous t o  the fact t h a t  
the relative distribution of continents on the earth does not change as the ear th 
rotates. If an observed EGI is identical to one part  of the prototypical EGI, we can  
find which par t  of the object, is observed a t  tha t  time, and we can find the  object's 
relative attitude. In other words, matching an observed EGI  with a model EGI 
involves three degrees of freedom. There are two degrees of freedom corresponding 
to  which point on the Gaussian sphere is perpendicular to the  line of sight. T h e  
remaining degree of freedom comes from rotation about the line of sight. 

We will use two constraints to reduce these degrees of freedom. Although 
a brute force technique, such as search through the space of possible att i tudes 
[Ballard, 1981, Urou, 19831 can be used, we will reduce this search space using 
 constraint.^ before EGI comparison [Ikeuchi, 19831. The EGI mass center position 
constrains the line of sight. Furthermore, the EGI inertia direction constrairis t he  
rotation around the  line of sight. 

3.2.3. EGI mass center 

Elevation of the EGI mass center from the hemisphere base plane gives a 
constraint on the line of sight [liceuchi, 19831. Even though the EGI mess center orer  
the wl~ole sphere is at  t.he center of t'he sphere [Srnit'h, 19791, the EGI distribution 
over a visible hemisphere always has some bias. Since this mass center is different 
for d i h e n t  visible hemispheres, correspondence of the ECjI mass ce~itcrs becomes 
a necessary condition for corrcspondencc of the ECI distribution. Thus, comparing 
the observed EGI mass center with tha t  of the protot.ypes reduces t h e  freedom of 
the line of sight. 

'l'his elevatiori A(v) at  the direction, v is obtained as 
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where (s,t) is a parameterization over the Gaussian hemisphere, EGIM(s ,  t )  is EGI 
mass density there, V is the line of sight direction, and V . H .  stands for a visible 
hemisphere defined by v. (A>(s, t ) ,  I>(s ,  t ) ,  Z,(s, t ) )  denotes the coordinate value 
of the point ( 3 ,  t )  on the Gaussian hemisphere in the viewer-centered coordi~iate 
system. E , F ,  G are the coeficients in the first fundamental form of the --- Gaussian 
hemisphere of the parametcriaation (s ,  2 )  [Do Carmo, 1076, pg.2681. ~ E ' G  - F 2  
may be regarded as a Jacobian of' the tran;formation from (s,  i) to the hemisphere 
surface. Note tha t  the  line of sight, v is equivalent to  the Zo asis from the definition. 

We will call this elevation, A(v) the projection area ratio, because this value 
equals the ratio of projected area to surface area [Ikeuchi, 19831. Comparing a,n 
observed ratio with the registered ratios prunes the search for the correct line of 
sight. 

3.2.4. EGI inertia direction 

T h e  Gaussian hemisphere can also be rotated about the candidate line of sight. 
This degree of freedom is determined using the 2D EGI inertia axis [Ikeuchi, 19831. 
This inertia axis is defined on the tangential plane (image plane) to  the visible 
hemisphere a t  the north pole. The  axis direction is going by: 

Ix,(v), Ixy(v), Iyy(v) gives the principal inertia direction for t,he line of sight v, 

Thus, a (v)  gives the direction of the minimum inertia axis on the  image plane. 

4. Inpleme&ation of the system 

4.1. Irnplemcntation of the Photometric Stereo Method 

4.1.1. Orthographic Projection: Image modeling 

If the size of the  object is small compared to the viewing distzince, then 
the image-formation can be approxirnatcd by an orthographic projection. To 
standardize the  image geometry, the viewer direction is aligned with the z-axis. 
The object point (x,y,z) maps into image point (u,v) where: 

u = x  

2) = y. 
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Mirror 

Figure 1. The experimental set up. A CCD camera is mounted in the ceiling 
and observes the scene through a mirror. Three light sources are controlled by the 
lispmachine. 

4.3. .2. L,ight Source Calibration 

Fluorescent lamps are employed for lighting. This kind of extended source can 
increase the range of normals which the photometric stereo method can handle. 
With point sources, the normal directions i l l~minat~ed by all three sources are 
limited. 

These light sources are controlled by a Lisp Machine. Fig. 1 shows the 
experimental setup. A CCD camera is mounted in the ceiling and observes the scene 
through a mirror. Thus, the optical axis of the TV camera is horizontal between 
the TV camera and the mirror, and is vertical between the mirror and the objects. 

The photometric stereo method assumes tha t  the illumination due to a given 
light-source is constant over the point,s of the Field of view. This assumption works 
if the field of view is narrow or the light source is distant. In our case, it does not 
work, due to the finite distance between the object and the light source, 

This distance effect can be modeled as 
standard E:'~"X, 9) = di(x, y)Ez 

where i denotes light source i, E ; ~ ~ ' ( X ,  y) denotes brightness of the source i a t  the 
point (x, Y), of the image plane. And d,(x, y )  is the effect due to distance a t  the 
point (x, Y).  We assume that  the distance between the point and the light source is 
much larger than the width of the field of view. Then, the formula can be expanded 
by Taylor series: 

d1'""~7 Y) = di(xo, yo) + ai(x - zo) + bi (y  - yo) 

We can determine coefficients d,(x0, yo), a,, b,, from the brightness distribution of a 
white board using a least squares fit. 

Conversion factors, ;i/;;i from E : ~ ~ ~  to ~f~~~~~~~ are calculated a t  each point 
under each light source, and are stored in the computer. Fig. 2a shows the 
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Figure 2. Calibration of brightness distribution. 

original brightness distribution of a test board whose orientation is different from 
the calibration board used to make the coefficients. Fig. 2b shows the converted 
brightness distribution. Note tha t  it is almost constant after the correction. 

4.1.3. Albedo Effect Calibration 

Sometimes the object surface has a slightly variable color. Also the TV camera 
has uneven sensitivity across its image plane. The collection of these effects may 
be called the albedo eflect.  

Let the real brightness values be E ; ~ ~ " x ,  y) and the measured values be 
E ~ e a s u r e ( x ,  y). 

where ~ ( x ,  y) is an albedo function, and i ranges over the light sources. 

We can cancel y by normalizing the ~ileasured brightness values. 
  yea sure(^, y) 

Ez(') y) = pmrasure 
. (4 ( x ,  y )  + Eyeasure ( x ,  Y) + E?easure(5, Y)) 

- E : ~ ~ " X ,  Y) 
real- 

( ~ i ' ~ ' ( x ,  Y) + ~ i ~ ~ ~ ( x 1  Y) + E3 ( x >  $)' 
Fig. 2c shows the result of this operation. Note that  the TV camera has a dark 
spot indicated by an arrow. This defect is canceled by this operation. 

4.1.4. Constructing Lookup Table 

The photometric stereo method is usually implemented using a lookup table 
which converts triples of image values into surface orientations. The lookup table is 
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- -/-- - - _ _ _  I -- -- 
Figure 3. The lookup table for photometrid stereo system. 

indexed by the  brightness values and contains the surface normal. Thus, the lookup 
table should be constructed either from a reflectance map given as an explicit 
formula [Ikeuchi, 1981b, Coleman, 19811 or experimentally [Silver, 1980]. 

We will follow the experimental method t o  construct the lookup table. An 
object of known shape, a sphere in our case, is imaged. At first, all three light 
sources are turned on to extract the contour lines. No self shadow lines arc: observed 
from the TV camera, when three light sources are on. Thus, we can easily extract 
the sphere's contour line from the dark background by thresholding the brightness 
array. 

The grey-levels obtained a t  a particular point under each light source are 
used to locate an entry in the table. A t  that  point the surface orientation can be 
computed using the known shape of the calibration object. This orientation value 
is entered in the lookup table. The resulting lookup table is a 3-D lookup table; 
each dimension corresponds to one of the three values. Fig. 3 shows the 3-D lookup 
table which converts a triple of brightness values into the surface orientation. 

4.2. Segmentation 

4.2.1. Smoothness Constraints a i d  Occluding Boundary 

A segmentation process is necessary for finding a target object. In order t o  
find a target object from the jurribled background, it is necessary to  cut the scene 
into pieces of connected regions. This segmentation process requires two operations: 
(I) making a binary irnage to indicate objects, (2) isolating the  binary image into 
connecting regions corresponding to individual objects. 
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We use a needle map for tkiis segl~~entat ion.  Previously, this constructing- 
binary-image has been at,tenlptetl using thresholding of brightness arrays. In this 
paper, however, a binary image is produced by the  phot,ometric stereo system. A 
point is one in a binary image if the photometric stereo can determine surface 
orientation; a point is zero if tihe system carinot determine it. 

Previously, the isolation process also has been done by detecting brightness 
changes over the scene or thresholding brightness values. However, these edges are 
strongly disturbed by noise. Sometimes even "higher level knowledge" is employed 
to track edges [Shirai, 1978j 

On the other hand, overlapping is a physical fact. There are many useful 
consequences which are caused by overlapping. The brightness change is only one 
among them. TWO consequences of the physical situation are used in this paper. 
The first is tha t  smoothly curved surfaces turn away from the viewer a t  occluding 
boundaries. Here, occluding boundaries are boundaries where an object overlaps 
another object [Ikeuchi and Horn, 19811. Regions near occluding boundaries haw. 
surface normals nearly perpendicular to the viewer direction. The  photometric 
stereo system cannot determine surface orientation if the surface is too steep. Thus, 
we cannot calculate orientation just inside occluding boundaries. 

The second consequence is t ha t  the surface-smoothness assumption [Ikeuchi 
and Horn, 1981) is violated at the occluding boundary. I t  is necessary to use this 
consequence because in some cases, mutual illumination from one object t o  another 
makes an area near the edge appear as if it, was less steep than it actually is. 
This bridging effect can be avoided using the smoothness constraints, provided 
tha t  we can assume tha t  the target object has a smooth surface. The  smoothness 
constraints tells us t ha t  neighboring points should have similar surface orientations. 
It is unlikely tha t  the orientation of the occluded object matches tha t  of the 
occluding object. Thus, these regions violate the conditions. By using the first and  
second consequences we can reliably segment the binary image into isolated regions. 

4.2.2. Labeling 

Each connected region may be found by labeling [Winston and Horn, 1981]. 
A different number is assigned t o  every connected component of the  image. The  
labeling operation can be performed by moving a 2 by 2 window across the  image: 

We scan along each row from left to right starting a t  the top. 

If the smoothness nzeusure i s  large (not  smooth) enough 
between A und B or between A and D, 
A i s  0, otherwise 

If A is 0, 
it remains  0, otherwise 

If B and D are 0, 
A i s  assiy ned a new label, otherwise 
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If D is O and B i s  labeled n, 
so i s  A, otherwise 

If B is 0 and D i s  labeled m, 
so i s  A, otherwise 

If 23 and D are lubeled n, 
so i s  A, otherwise 

If B is  labeled n and D is labeled m, 
then  label A as n, 
and note that the m i s  equivalent to  n. 

After the first pass, some objects may have multiple labels. A second pass will solve 
t,his problem. First a lookup table for labels is constructed. The lookup table is 
then used to reassign each picture cell to  the srnallest label in an equivalence class. 

4.3. Decision-Making 

4.3.1. Area and Ruler Number:Feature 

In order to pick a target region, we have to use heuristics particular to t he  
object. We will use donuts for object. Thus, axea and Eulcr number may be used 
as features for objects. 

The easiest donut to pick u p  is the least tilted one on top of the pile. If t he  
donut IS nearly flat, we can observe a hole in the region. We cannot observe a hole 
for a highly tilted donut.  If' a donut is occluded by another donut,  the donut may 
appear as a horseshoe shape, and again, the region has no hole. Thus, the region 
having on€ hole is more favorable than $he region having no hole. The  largest region 
is the most favorable region because the region most likely is at the top of t he  
pile; if an  object is occluded by othcr objects, the observable area of the rcgion 
is reduced. Also, a less tilted donut has greater apparent area. Thus, the largest 
region whose Euler number is zero is the best rcgion for grasping. 

4.3.2. Area 

Each region's area can be obtained by counting the number of picture cells in 
each region. This operation is done a t  the same time as the labeling operation. The 
five largest regions are selected as candidate regions. 

4.3.3. Euler number 

Each region is swelled in 3 picture cells to erase noise spots inside of the  
region. This process assumes t h a t  the hole of the donut is Loo large to  be closed 
by this operation, Three-pixel swelling is done by applying eigltt-neighbor swelling, 
four-neighbor swelling, and then eight-neighbor swelling once more. Four-neighbor 
swelling propagates on-center into four-neighbor on cells: two horizontal ncighhoring 
cells and two vertical neighboring cells. Eight-neighbor swcllrng propagates on- 
center into eight-neighbor on-cells: two horicontal neighboring cells, two vcrtical 
neighboring cells, and four diagonal neighboring cells. 'Thus, one on-cell is swelled 
into forty-five neighboring on-cells as shown in Fig. 4. 
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Figure 4. Swelling operation. 

The Euler number is found by looking for distinctive patterns [Winston and 
Horn, 1981]: 

0 0  0 1  
0 1  1 1  

- 

The Euler number is obtained as the difference of the number of occurrences 
of the first pattern and the  number of occurrences of the second pattern. 

4.3.4. Decision Procedure 

The target region is selected using the following procedures. 

(step 1) 

Five  largest  regions a m o n g  t h e  isolated regions  are selected. 

(step 2) 

If more than two regions have Euler  n u m b e r  0, 
t h e n  t h e  largest region i s  selected. 

If only one region h a s  Euler  n u m b e r  0, 
t h e n  tha t  region i s  selected.  

If no region has  Euler  n u m b e r  0, 
t h e n  t h e  largest region i s  selected 
and  also no t ice  the  the  reg ion  has  n o  holes for the  EGI m a t c h e r .  

4.4. Implementation of EGI 

4.4.1. Tessellation of the Gaussian sphere 

In order to represent and manipulate an EGI on a digital computer, one must 
tessellate the Gaussian sphere uniformly. A continuous surface such as an elliptic 
surface is mapped to a continuous EGI mass distribution. A tessellated sphere is 
needed to represent this image .in a computer. The tessellation method must provide 
a uniform division of the Gaussian sphere. Since we cannot predict the line of sight, 
a tessel!ation method should have the same angular resolution in eirery direction. 
Thus, each cell on the tessellated sphere is required to have the same area and the 
same distance from its adjacent cells. 

The projection of a regular polyhedron onto a sphere has this property 
[Wenninger, 19791. A regular polyhedron has faces of equal area, which are evenly 
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distributed in direction with respect to thc center of gravity. Projecting edges 
of a polyhedron onto the circumscribed sphere with respect to  the sphere center 
tessellates the sphere uniformly. 

Since the highest order regular polyhedron, the icosahedron only has twenty 
faces, we actually have to use a geodesic dome [Ikeuchi, 1981al. A geodesic dome is 
obtained by division of each triangle of the tessellated sphere into smaller triangles. 
We use a geodesic dome made from a two frequency dodecahedron, because this 
geodesic dome has a more uniform facet area distribution than  other domes of the 
same tessellation order [Wenninger, 19793. 

The tessellated dome is used for two purposes. One is t o  accumulate an  EGI 
image. A particular object surface patch corresponds to a cell with 3 given surface 
orientation on the dome. IvIeasured surface area will be added to  the corresponding 
cell. The cumulative image on the  dome is the distributed version of the object's 
EGI. The other purpose is to  sample the possible line of sight. Since the cells are 
distributed unifornlly over the dome, the center position of each cell can define the 
spatial direction. Therefore, the line of sight space is sampled uniformly by this 
dome. 

4.4.2. Normalized EGI: Non-Convex Object 

A non-convex object may have hidden surfaces with orientations in the visible 
hemisphere. This occlusion problem requires us to  redefine the EGI for each line of 
sight. This can be done using either a geometrical modeler [IIosaka et al., 19741 or 
a mathemalical cxpression of the object. 

The EGI of a non-convex object can be expressed using four parameters. 
The line of sight can be expressed using two parameters ( s L ,  tl). A EGI mass 
distribution over the visible hemisphere: a t  a line of sight is expressed using another 
two parameters (s, t ) .  Namely, 

E G I  = E C I M ( s ,  t ,  sl, t l ) ,  

Note tha t  (sl, t l )  is similar to the light source direction and (s, t) is similar to the 
surface orientation of the reflectance map [Horn, 19773. 

W e  can store this four dimensional ECI distribution in a two dimensional table 
[Ikcuchi, 19831. Since tessellation cells on the dome can be ordered along a one 
dimensional row, an EGI mass distribution for t,he line of sight (s t ,  t t) ,  can be 
represented as a one dimensional vector. The possiblc lines of' sight are also ordered 
in one dimension. Therefore, an EGT can be stored in a t,wo dhensioni?l table, with 
each row corresponding one possible line of sight. Each elerne~lt contains an EGI 
mass (surface area) corresponding to the surface orientation for t h s t  line of sight. 

Storing co~lstrairit information adds t,wo additional colurnns to  each row. The 
first column keeps the projection ratio. The second column stores the original inertia 
direction relative t o  X, Y axis of the image plane. The ECI maqs distribution over 
the remaining elements is rotated so as for thr: FXT inertia dii*ect,ion to agree 
with thc axis of thc inage  plane. tVc will refer t o  this recslculatecl EGI as the 
normallxed EGI (NEGI). Comparing a NECT from an observed needle map -c\;ith 



NEGI's on the  table can bi: done without rderence to  rotation around the line of 
sight. 

4.4.3. Matching Function 

A matching function determines a similarity measure between an observed 
NEGI and the NEGIs on the table [lkeuchi, 19831. The matching function checks 
whether each column has a similar amount of EGI mass to the corresponding 
table column. More precisely, the following operation is done a t  each column. A 
cumulative sum represents the similarity of row v. Kote t h a t  this operation is done 
only when row v's projection area ratio is similar to the observed ratio. 

. , 
d = distance(i, i + e )  
if d < dstandard and A <  standard 

I 

add  E G I M ~ ~ ~ ~ ~ ~ ~ ( ~ )  . (1 - A) . cos d to total point, S o .  
~ ~ ~ ~ o b s e ? z ~ e  ( i )  is observed NEGI mass a t  i cell, E G I A . ~ ~ ~ ~ ~ ~ ~ ,  i + e) is EGI 

mass a t  (u, i + e )  cell of the table, and distance(i, i + e )  is the inner product 
between the cell direction;. A is the  relative error of EGI~P~~~~(V, i + e) assumed 
to correspond to E G I M * ~ " ~ " ~ ( ~ ) .  Thus, the first term represents hotv important the 
E G I ~ M ~ O ~ ~ ' ( ~ )  is. The  second t e r n  represer~t~s how different the two mass is. The 
third term represents how far the two cell are. If E G I M ~ " ~ ~ ' ( . L ' ,  i)  has the exactly 
same mass as  E G I M O ~ ~ " ~ ~  (i), (1 - A) = 1 and d = 1, then' E G I ; M ~ ~ ~ ~ ~ ~ ~  (i) is 
added to the total. If this correspondence is established at each column i, the total 
becomes 1, because total EGI mass is 1, one is the highest score of the matching 
function. 

The  direction having the highest score is the estimate of the observed line of 
sight. The NEGI table also registers how many degrees the prototype is rotated to 
align the least inertia axis with the  X axis, We alrrady know how many degrees 
thc observed image is rotated to bring the  least EGI-inertia axis into coincidence 
with the X axis, These two  angles give the rotatdion angle of the observed image 
about the line of sight. 

4.5. Eye and ITand Interface 

4.5.1. Determining the Gripper Configuration 

We, employ a paral!cl jaw gripper for grasping. The grasping position of the 
gripper is the  highest, point inside the target region, becausi. if  ;ve grasp an object 
at  the  highest point,, it is less likely tha t  the hand will hi t  ot,hcr objects. The 
approach direction of the gripper is the direction of the donut's axis. The orientation 
direction of the gripper about the iipproach vector is aligned with the steepest 
descent direction of the p l a ~ c  of t t i t .  donut. See fig. 5. 
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Figure 5. The gripper configuration. The approach direction of the gripper is 
the direction of the donut's axis. The orientation direction of the gripper about the  
approach vector is aligned with the steepest descent direction of the plane of the 
donut. 

Since we know the attitude of the object, we can determine the direction 
of steepest of decent of the object. The mass center of the binary image can be 
determined on the target region. We can determine a line along the steepest decent 
direction from the mass center. The highest point should lie on this line. The (x, y) 
position of the grasping point is the mid poirt  of the line segment cut by the two 
boundaries of the donut. 

4.5.2. Camera Model 

The relationship between the camera coordinates and the Puma's world 
coordinates is determined empirically. Although it would be possible to  solve the 
equations from the camera coordinates to Puma's world coordinates analytically 
using careful measuremcnt of camera position and attitude [Paul, 19311, we did 
not follow this method. Assume that (u, v )  is the camera coordinate system and 
(x, y, z)  is the Puma's world coordinate system. Then, (x, y) can be approximated 
using the affine transformation as 

These cocfficicnts can be determined using a least squares fitting. The board shown 
in Fig. 6 is displayed under the TV camera a t  9 points in the field of view. At each 
point both the T V  coordinate of the cross section and the Puma's world coordinate 
are registered. Least squares gives the matrix from these measurement. 
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Figure 6. Camera model calibration. At nine points both the TV coordinate 
of the cross section and the Puma's world coordinate are registered. Then, leait 
squares gives the coefficients from these measurement. 

- -- 

This matrix is a function of the Z axis of world coordinate. The matrix is 
determined at  two levels ( Z a x i s ) .  A linear interpolation method gives the desired 
matrix at any other level. 

5.  Experiment 

5.1. Control Structure 

The vision part consists of two stages. The first part  segments the image 
into regions and determines the target region. The second par t  determines the 
position and the attitude of the object. The (x, y) position of the  grasping point, 
the approach direction, and the orientation direction are computed. 

The segmentation part consists of four subparts: image acquisition module, 
photometric stereo 1 module, labeling module, and decision module. The labeling 
module isolates the image into connected regions using the needle map provided by 
photometric stereo 1. The decision module determines the  most; favorable region 
among the isolated regions. 

The attitude calculation part consist of four subparts: photometric stereo-2 
module, EGI-generating module, EGI-matching module, and planning module. The 
photometric stereo-:! module recalculates surface orientation using a more precise 
lookup table. EGI-generating module produces an EGI image from the output of the 
photometric stereo-:! module. The EGI-matching module determines the attitude 
of the object by comparing the generated EGI with the EGI lookup table. The 
planning Module determines the grasping point from the binary image of the target 
region and the attitude from the result of EGI matching. 

The manipulator motion controller picks up an object by two stages. The first 
step determines the absolute depth of the grasping point. The second step aligns 
the gripper to the object's attitude and moves to the grasping point. Then, the 
gripper grasps the object and moves to the destination point. 
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Figure 7. Image acquisition. Each picture shows a scene when one of the three 
light source is turned on. 

Figure 8. Obtained brightness value. 

5.2. Eye Part 

5.2.1. Image Acquisition 

The three light sources are controlled by the Lisp Machine. A Hitachi solid 
s tatc  CCD camera is connected directly into the Lisp Machine, and the input da t a  
is writken directly to the main memory of the Lisp Machine. Thus, a !isp program 
can access the  da t a  using ordinary array access functions. Fig. 7 shows pictures 
when one of the  three light sources is turned on. 

The thrre brightness arrays are shown in Fig. 8. Note tha t  a simple edge-based 
method would not work well in this case. 
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Figure 9. The needle diagram obtained by the photometric stereo1 

5.2.2. Photometric Stereo-1 Module 

This experiment uses two modules of the photometric stereo system. Photometric 
stereo-1 module is used to  produce input for the segmentation. The segmentation is 
done using a needle map made by the photometric stereo-l module, while a needle 
map by Photometric stereo-2 module is used to the input for the EGI-matching. 

We can adjust the characteristics of the photometric stereo systern by varying 
the accuracy of the lookup table. We can vary detectable areas in photometric 
stereo by pruning the needles in the lookup table. We can speed up  the system by 
using a coarse table. Since the purpose of the Photometric Stereo-1 module is to 
separate each region using the needle map, the Photometric stereo-l module uses 
a coarse table which contains surface orientations whose smi th  angle are less than 
40 degrees. 

If we reduce this zenith angle, we can separate each region more easily. 
However, this may cause an object to be divided into more than region. I t  is difficult 
to reconnect two regions into one region which corresponds to an object. On the 
other hand, the more steeply an object tilts, the less likely the puma can pickup 
the object due to joint limit 5. Thus, 40 degree is a trade off angle. Fig.9 shows the 
needle map obtained by photometric stereo-l module. 

5.2.3. Segmenting Module 

A segmentation program based on the surface smoothness is applied. The 
program labels the image with a different number for each isolated region. Fig.10 
shows the isolated regions. 

5.3. Decision-Making Module 

The target region is selected based on the E d e r  number and the area of each 
region. Fig.11 shows the target region eelected by a decision process. 
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Figure 10. The segmented regions. 

5.3.1. Photometric Stereo-:! Module 

I'hotometric Stereo-:! module determines surface orientation u p  to 60 degrees 
of zenith angle a t  the target region. In order to expand the reduced area by 
the segrrlenting module, the t)arget region is swelled. Over the cxpandect region, 
phot,ornctric s t e r~o-2  module detkrmines the surface orientation by using the precise 
100l i~p  table. This module also computes EG1 mass by look up in a table which 
converts triples of brightness values i n t ~  EGI mass. Fig.12 shows the needle map  
gencrated by Photometric stereo-2 module. 

5.3.2, EGI-Generating Module 

'I'he projection ratio, the least inertia axis, and the NECI are calculated from 
the sarface normals a t  the targct region. Fig. 13 shows the obtained NEGI on the  
visible Gaussian hemisphere observed from the north pole. Each needle represents 
the EGI mass there. Since Fig. 13 is the NECI rather than the EGT, Lhe Gaussian 
hernispherc is rotated around the Z axis (perpendicular to the paper surface) so 
tha t  the least EGI inertia axis agrees with the x axis. 

5.3-3. EGI-Matching Module 

Since a donut has an axis of rotational symmetry, the necessary sampling 
directions are points along a 90 degree section of a great circlc on the Gaussian 
sphere containing the symmetry axis of a donut. A t  10 degree increments along 
the great circle, the NEGI, projection ratio, and t,he least inertia axis dircction are 
calculat,ed using a msthematical model of' the donut shape. Since directions near 
the axis may h a w  relatively large error in the least inertia axis dircction, NEGI's 
rotated by a small a m ~ u n t  around the exact alignment are also rcgistcrcd in the 
lookup table. 

5.3.4. Planning Module 

The highest point among the targct region is selected as the grasping point. 
Fig.14 shows the output of the algorithrri which iridicatcs both tlic (s, y) coordinate 
~f the  grasping point and the gripper approach dircction. 
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Figure 13. Obtained NEGI 
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Figure 14. The output of the vision part. The  algorithm indicates both the 
(x, y) coordinate of the grasping point and the gripper approach direction. 

5.4. Hand Part 

5.4.1, Determining Absolute Depth 
0 

T h t  photoxnetric stereo can only determine relative depth. Thus, the hand 
system has to  deter~nine the absolute depth. Since the grasping points exists 
somewhere along the line of sight corresponding to the TV x-y coordinate, t,he 
gripper approaches the point along the line of sight in order to  deternrine the 
absolute depth. See Fig. 15(a). 

The gripper is a parallel jaw gripper developed a t  MIT. A pair of LED sensors 
is mounted and can detect an object between the finger. If the gripper senses the 
object between the  fingers, the position gives the actual target point,. See Fig. l5(b). 
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5.4.2. Grasping an Object 

The gripper moves to a point on the approach line defined by the target point 
and the approach direction. We will call this point as a entry point. Then, it begins 
to approach the donut along the approach line until the LED sensor senses an 
object between the fingers as shown in Fig.l5(c). 

After the LED sensor finds an object between the fingers, the gripper moves 1 
crn more along the direction for a firm grasp. Then, the gripper grasps the object 
by closing the fingers as shown in Fig.l5(d) 

5.4.3. Bringing an Object 

The gripper retracts along the approach line until it reaches the entry point as 
shown in Fig. 15(e) The gripper changes its attitude at that point as in Fig. 15(f). 
If the gripper faiis to grasp a donut, the system orders the eye module to repeat 
the analysis after moving the gripper to the original point. If the system succeeds 
in grasping the donut, the gripper brings the donut to the pre-determined point as 
shown in Fig.l5(g),15(h),15(i). 

Figure 15. Picking up an object. 
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Figure 15. Picking up an object. 
(con t i nued) 

2 2 
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A hand-eye system is presented which c2n perform tlie bin-picking task. Two 
basic tpools are used: photometric stereo and extended Gaussian images. The vision 
subsystem consists of two parts: segmentation based on t,he needle map and  
attitude-determination using the extended Gaussian image. The syst,e~n can pick 
up an  object out of a pile of objects successfully. 

The execution time of the vision part  is roughIy 40 - 50 seconds c11 a lisp- 
machine. This time includes framegrabbing time. The entire system is coded using 
zeta-lisp (lispmachine lisp). I t  is compiled into "machine code" using the zeta-lisp 
compiler. 

Vision is a very tough problem. Thus, we have t o  establish a well-defined 
domain. In the early days, the b!ncks world was attacked, because the world only 
consisted of straight lines. This paper explores the so-called bin-picking domain. 
We believe t h a t  the bin-picking domain is a substantial extension of the blocks 
world. This world involves curved objects whose surface shape may be much more 
complicated than an objeci in t h e  blocks world. However, we have prototypes of 
the object which the systenl may encounter. We also know the surface material of 
the objects. JVe can control the environment where the objects are observed. This 
is not the case in a natural scene. Befwe starting to worry about  a "general purpose 
.;ision machine7' w h ~ c h  works in the natural world, we should establish a small b u t  
well-defined subset domain and explore the solution in this domain. 

,-, 
It  may appear tha t  this paper does not address the problen-i of object recognition. 

However, in order to define the term recognition, we have to  define the domain of 
recognition. In cther words, recognition means to select the most likely one among' 
the candidates based on the observed data.  Since the 31) object varies its shape 
depending on the viewer dircction, to determine the att i tude of a n  object, is t h e  
most primitive and well-define domain for the recognition. It  is also not dificult to  
extend this system to multiple objects. [Ikeuchi, 19801. 

Previously, segmentation has been attacked using edge detection, because edge 
detcctior~ is believed to be the starting point for vision [Marr, 1882]. In some cases, 
however, higher levcls of representation help to segment the  scene into regions. 
In our case, we used nepdle maps for this purpose. The  dcpth map obtained 
from a range-finder is also a promising tool for ~egnlentahion [Oshima and Shirai, 
1951, Sugiliara, 19791. As the:;e higher level rcpre~entat~ions are becoming more 
easily obtainable, techniques which treat these representtations shculd be explored 
extensively. 
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