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SEQBJINS and QUILLS -- reprcsrntatioras for surface topography. 

Rertholcf F;. P. Horn 

~bstiac!. The shape of a continuous ~ 1 1 ~ f i l f ~  can be represented by a collection 
of surface norlnaIs. These nornds are like a porcupine's q u i k .  Equivalently, 
one can use the surfacc patches 011 which t lwe norrnals rest. These in turn are 
like sequins sewn on a costume. 

These and other reprcscntatiow for information which can be obtained 
from images and W F ' ~  i n  the recoplitinn ;lad description of objects in a scene will 
be briefly described. 

Th is  r e p o r t  d e s c r i b e s  r e s e a r c h  done a t  t h e  A r t i f i c i a l  I n t e l l i g e n c e  Labora- 
t o r y  of t h e  Massachuse t t s  I n s t i t u t e  of Technology, Support  f o r  t h e  l a b o r a -  
t o r y "  a r t i f i c i a l  i n t e l l i g e n c e  r e s e a r c h  i s  provided i n  p a r t  by t h e  O f f i c e  
of Naval Research under O f f i c e  of Naval Yesearch c o n t r a c t  N00014-77-C-0389. 



Gradient Images. 

The shape of a continuous surface can be represented by a collection of 
surface normals. These normals are iike a porcupine's quills or the spines sticking 
out of a cactus. Equivalently, one can use the surface patches on which these 
normals rest. These in turn are like sequins sewn on a costume or the scales of a 
fish. 

. - 

Surfaces can be approximated "in the largeq' using parameterized models 
suck as generalized cylinders [Binford 19711 or "in the small" using local patches. 
The distinction between these two extremes is not unlike that between the fitting 
of parameterized standard functions and the use of chains of local 
approximations. Each mode of representation is uniquely suited to some 
applications. Also, one form often is used as an intermediate step in the 
derivation of the other. n 



One view of machine vision is that information about the scene being 
itnaged is to be abstracted from the raw brightness values. The estimation of 
scene attributes leads to results useful in the recognition and description of 
objects. Naturally, the desired information must be obtainable from the image 
and useful in some application. Surface shape has these properties and is 
conveniently represented in terms of surface orientation sf numerous local facets. 
In addition one might also extract surface albedo, illumination and other 
properties. When this kind of information is maintained in registration with the 
raw image, it may be referred to as a component of &e 2 4 5  D sketch [Marr &, 
Nishihara 19781 or an intrinsic image [Barrow and Tenenbaum 19791. Here I will 
concentrate on the surface orientation component. 

The representation described is only of interest because it arises - 
naturally in certain computations using image data and is useful in re~jgniticn 
tasks, Ht is also valuable in the determination of the position an 

,objects in space. 



Computations Beading to local surface description. 

The shape of a surface can be computed from a single image using the 
imaging equation, 

where E(x,y) is the image irradiance at the point (xfy) in the image. The patch 
on the object imaged at (x ,y)  has gradient (p,qB. The hnction R(p, q), giving 
scene radiance as a function of surface gradient in a viewer-centered coordinate 
system, is called the reflectance map. The above first order non-linear partial 
differential equation in the two variables x and y can be solved for the depth, z, 
along so called characteristic strips, by finding an equivalent set of five ordinary 
differential equa tions [Horn 1 9701. 

The resulting representation of the surface and the method of 
chai-acteristics itself have. disadvantages which led to the suggestion that 
difference methods on a uniform grid might be more suitable [page 192, Morn 
19701. The notion was that such numerical methods would be similar to ones 
used for solving second order partial differential equations. These appear to  have 
been studied more intensively because of their greater interest to physicists. 
Some recent approaches to the shape from shading task can be viewed in this 
light [Wodlharn 1977, Brooks 1978, Strat 19791. 

Representation in terms of local surface normal also has been thought to 
have advantages when rotations of an object are to be studied [page 225, Horn 
19771. 

"Pseudo-locall" computations. 

Some computations on images appear to be "global" in the sense that 
each value depends on all or a large subset of the inputs. Many of these 
computations however can be carried out by iterated locat operations or in a 
locally connected network which includes feedback elements. This is true in 
particdar of global operators which happen to be inverses of local operators. 

Convsliution with 

( 1 2  o g ( 1 )  where r = \I x2 + 2- 
for example, is the inverse to the application of the iaplacian operator 



The latter operator is clearly local in nature, while its inverse appears to be 
global. One can however exploit the "pseudo-localv' nature of this inverte using 
either iterative or feedback schemes [page 290, Horn 39743. In the application to 
the lightness task, the result is an "albedo image" and an "illumination imageqq, 
both registered with the raw image. 

Similar methods have been called relaxation computations because of t 
analogy with iterative "relaxation" methods [Rosenfeld 19781 Tor solving large sets 
of simultaneous equations, often discretized versions of partial differential 
equations. There are also similarities with "cooperative computation", in an 
interconnected network of computing element% where each node or cell is 
thought of as having the ability to perform simple wmgratations 
states of its neighbors [Marr & Poggio 19761. 

Hn the case of interest to us here, the "forwar 
image formation, which we are attempting to "invert" by solving the imaging 
equation. 



Local Constraints. 

The underlying justification for these kinds of algorithms is often stated 
in the form of constraints to be applied at each node. Consider for example two 
images of the same scene with different lighting. At each p i n t  of the image one 
finds two constraints: 

where El and E2 are image irradiances measured in the first and second images 
respectively, while RI and R2 are the corresponding reflectance maps. The two 
equations can be solved for the local gradient (p ,g) .  Since the equations a re  
typically non-linear there may be more than one solution. 

This method and similar ones using multiple images taken from the same 
viewpoint have been referred to as "photometric stereo" methods [Woodham 
1978). They produce descriptions of surface shape in just the form here 
advocated: values for p and q at each node of a mesh of points registered with 
the  image. 



Smoothness and Continuity. 
t 

Local constraints may arise from implicit assumptions rather than direct 
measurement on images. In one stereo algorithm, for example, it is assumed tha t  
an entity in one image matches at most one entity in the other, and that nearby 
image points usually have similar disparities [Marr & 

Similarly, whep~ the shape of a surface is to be computed from the  
shading, it  is reasonable to assume that what is imaged constitutes one surface 
rather than a colliection of disconnected patches. This adds a second constraint, 

t o  the one resulting from the innaging equation. Iterated mmpattations based on 
the  two constraints lead to s o h t i ~ n s  for the surface sha rooks 1978, Strat 
19791. Here too, the end product are values of p and (a on a mats of pin t s .  

The  values of p and q assigned to each point are updated during each 
iteration in a way designed to bring them into closer agreement with the two 
local constraints. One way to  do this is to consider eNE9 eNWv eSW9 and esE9 the 
errors in four loop integrals along square contours passing through a given cell. ,---= 

We wish to minimize, 



with respect t o  p and q. The values p' and q' which best "relieve the stralnqVin 
the local patch of the solution are linear combinations of the values of p and q of 
neighboring cells. 

The values found this way do not in general, satisfy the 
imaging equation however. One really wants to minimize the error subject to the 
constraint R(g, q) = E(x,y).  One can rewrite the sum of squares of errors as 



Introducing the Lagrangian multiplier, A, one can restate the problem: Minimize 

e2 + h (R - E f  subject to R = E, 

Differentiating with respect to p and q one gets, 

8 ( p  - p') + X Rp = 0, and 
a (q - q') + X Rq = 0. 

Elimit~ation of the Lagrangian multiplier X leads to, 

[p-p', q-d,Ol X [Rp. 

where ' X 9  denotes the cross-prcduct of two vectors. The 
just the point on the contour R(y,g)  -- E(x,y) nearest t 

remain to be worked out, including conditions for convergence. 



- - 
Recent work on "optical flow" [Clocksin 1978, Pramdny 19781 suggests 

that  in the analysis of moving images one also obtains ae,;e,PLntatisns of surfa 
in terms of local normals. Similar statements can be made a ut the analysis of 
"texture gradients" [Kender 19793, 

We have seen that this representation for surfaces arises naturally in a 
number of machine vision algorithms. We now have to discuss the properties and 
applications of this representation. To  start, we consider a mapping which 
preserves only part of the information, but greatly simplifia matters: 

' Extended Gaussian Images. 

Imagine moving all of the surface normals t o  t e s~igin ,  that  is, 
discarding the information about their position on the surface of the object. The 
result is a spiky ball with varying numbers of spines sticking out in different 
directions. Here we assume that there is a fixed number of patches per unit 
surface area and that a unit normal is erected on each patch. Regions on the 
object with small curvature lead to concentrations of normals winntiwg in more or 
less the same direction, orthogonal to the average tangent plane of the region. If 
the surface normals are unit vectors, their end points will lie on a unit sphere. 
We can replace the sea-urckin like arrangement of spines wit a spherical or 
gaussian image, where a dot on the unit sphere marks every place a unit vector 
touches the surface. 



--- - 

,--2. 

If the original data describing the surface comes from an image, one half 
of the sphere will be unmarked, since surfaces turned away from the vie~vea are 
invisibie. Further, the representation is biased towards patches lying near nor 
to the viewer, since these are not foreshortened by the imaging projection., 
is, if we now assume a fixed number of patches per unit image 
surface region tilted with respect to the viewer contributes fewer 
gaussian image since it covers fewer mesh p i n t s  in the image. 

Aside from this, the result obtained is a discretized version sf the 
gaussian i m g e  of a smooth object, where the value at a particular 
sphere is proportional to the product sf the 

ogorelov 19561 at  the corresponding point on the object [ 
Vossen 19521. 'If the object is not convex, several distinct sur 
contribute to  s given point on the sphere. 

Ht seems natural to use the spherical, image iw sec i h l  as well as far 
the determination of the attitude of an object in space IS 91- g~mmetri  
06 the object are reflected as symmetries in the gaussiaw image and features sf 
low gaussim curvature show up as high concentrations of marks. 
developable surfaces such as planes, cylinders and cones, give rise 

istributions in this representation which can be used in 
against data derive from images. Brute force techniqua, such 
the space of possible attitudes em also provided that 
mu1tit;)lied by 



max [O, cos e] 

before entering in comparison, where e is the angle between the outward surface 
normal and the viewing direction. 

For simple geometric figures the prototypes may be represented by 
gaussian images given as closed formulas. More complicated objects lead to  
discretized numerical versions. Comparing two such discretired gaussian images is 
not trivial and may depend on the use of high-order semi-regular tesselations of 
the sphere [Fejes Torh 1964, Pearce & Pearce 19781. An alternative involves 
lining up the principal axes of inertia of the two gaussian images and matching 
the moments [Smith 19731. 

One big advantage of this representation is the ease with which arbitrary 
rotations can be handled. While the position of points in the image is altered in 
complicated ways when the object is rotated, the surface normals undergo a 
simple transformation that can be represented by an orthonormal 3 X 3 matrix. 

Uniqueness of the Gaussian Image, 

The extended gaussian image of a convex polyhedron consists of an 
impulse for each face of "weight" equal to the area of the face. The impulse lies 
on the sphere where the surface normal for that face pierces the unit sphere. 
Minkowski showed that two convex polyhedra are identical if corresponding faces 
have equal areas and the same surface normals [Lysternik 19631. The 
representation is therefore unique for convex polyhedra. Unfortunately the proof 
of this result is not constructive and at this time no effective method exists for 
the construction of the convex polyhedron from its extended gaussian image. 

Not all gaussian images correspond to real (closed) objects. Gaussian 
images must satisfy the center of mass conditions, that is, the center of mass of 
the "weights" associated with the marks on the surface must be at  the center of 
:he sphere. Equivalently, surface normals of length proportional to the area of 
the corresponding faces must form a closed chain when stuck together end to 
end. This can be shown by equating the cross-sectional areas of the object when 
viewed from two diametrically opposite directions [Smith 19781. 

Less is known about gaussian images of convex objects with continuous 
surface normals, but it is likely that similar results apply to them too. This 
representation thus appears to be useful in the recognition of convex objects and 
in the determination of their attitude in space, It may also be useful in the 
general case, provided details are checked out after initial alignment using the 
methods dischibed above for gaussian images of convex objects. 



Summary. 

Some representations for surfaces which can be obtained from images 
and used in the recognition and description of objects in a s e n e  have 
briefly described. 

Many of the ideas presented here are due to students working on 
machine vision in the Artificial Intelligence Laboratory. David Smith deals with 
extended gaussian images, while Thomas Strat implemented the iterative sha 
from shading method, William Silver and Katsushi Ikeuchi are extendinn Robert 
Woodham's work on photometric stereo. 

This short paper describes research one at the Artificial Iatelligehm 
Laboratory of the Massachusetts Institute of Technology, Support for t 
laboratory's artificial intelligence research is pro 
Research Projects Agency of the Department nf 
Research contract N00014-75-0643. 
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