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ABSTRACT. In order t o  be ab le  t o  design a control  system f o r  high-speed 
control  of mechanical m a n i ~ u l a t o r s ,  i t  i s  necessary t o  understand properly 
their dynamics. Here we present an ana lys i s  of a d e t a i l e d  model of a three-  
l ink  device which may be viewed as  e i t h e r  a " l eg"  i n  a locomotory system, or  
the  f i r s t  th ree  degrees o f  freedom of an "arm" providing f o r  i t s  gross motions. 
The equations of motion a r e  shown t o  be non- t r iv ia l ,  y e t  manageable. 
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INTRODUCTION. 

In t h i s  paper, we analyze the relationship between actuator torques and 

jo in t  angular accelerations for  a device with three rotational degrees of free- 

dom, such as a "leg" on a locomotory system or the f i r s t  three joints of a 

manipulator or "arm". The k i n d  of analysis we present here leads t o  a clear  

understanding of the effects  of varying iner t ia ,  ,joint-interactions and cori - 

o l i s  forces and forms the basis for  simulations of such systems and, most i m -  

portantly, design of control systems. I t  i s  l ike ly  that  high speed control 

of articulated kinematic chains i s  not possible without th is  kind of detailed 

understanding; conversely, we show that  the computations required of such a 

control system are manageable. 

In i t i a l ly ,  we r e s t r i c t  our attention to arrangements w i t h  no offsets  be- 

tween l inks,  as shown in figure 1 .  Later, we consider a more r e a l i s t i c  case, 

the blIT-Scheinman e lec t r i c  arm, which has offsets ,  as do many practical devices. 

Further, we model links as t h i n  rods and, f ina l ly ,  consider more complicated 

mass distributions a t  the end of the paper. 

We use rather primitive techniques in order t o  avo id  possible complications 

due to  the potential d i f f icul ty  of visualizing angular rotation vectors and 

components of iner t ia  matrices. The same resul ts ,  however, could be obtained 

using such advanced notions, with l i t t l e  savings in e f fo r t  and considerable 

loss of insight. 



NOTATIONAL CONVENTIONS. 

The l inks,  modelled as thin rods (see figures 2 and 3 ) ,  are numbered 

s tar t ing  with the base. The base, link 0, i s  rigidly attached t o  a fixed 

Cartesian coordinate system with the z-axis pointing u p  through the column, 

link 1. Joints are number systematically, with joint  i connecting link ( i  - 1) 

t o  link i .  Thus the "hip" or  "shoulder" i s  joint  2, vri t h  the "knee" or  

"el bow" being joint  3. 

The lengths of the links will be a l  , e2 and a 3 ,  with masses ml , m2 and 

m3. The joint-angles will be called e l ,  e2  and e3  and the angular velocities 

represented as h l ,  82 ,  and h3. A t  t ines i t  i s  convenient to use vector nota- 

tion w i t h  

Clearly, e together with 4 specify the s t a t e  of the device completely. 



PLAN OF ACTION. 

We t r e a t  each 1  i n k  i n  tu rn :  f i r s t ,  we c a l c u l a t e  the  v e l o c i t y  o f  each p o i n t  

i n  the  l i n k  as a  f u n c t i o n  o f  the  jo in t -ang le  ra te ;  second, we ca lcu la te  the 

t o t a l  k i n e t i c  energy i n  each l i n k ;  t h i r d ,  we c a l c u l a t e  t h e  torques requ i red 

t o  support the motion o f  t h a t  l i n k ;  and, f i n a l l y ,  we add up the torques 

requ i red t o  move a l l  l i n k s  t o  ob ta in  the  t o t a l  torque t h a t  must be app l ied by 

each actuator .  We c a l c u l a t e  g r a v i t y  components o f  torque a t  the  very end. 



REVIEN OF BASIC MECHANICS. - 

I t  i s  convenient t o  calculate the total kinetic energy of each link by 

dividing i t  inbo infinitesimal parts and integrating along the length of each 

link. The kinetic energy of a part icle of mass m m o v i n g  with velocity v i s ,  

of course, (1/2)mv2 . Thus we can obtain the total kinetic energy of a link 

from 

where s i s  distance along the link and v(s)  i s  the velocity a t  a point located 

a distance s from one end. Here we have assumed that a l l  the mass i s  concen- 

trated along a l ine and i s  distributed uniformly from one end t o  the other 

with 1 inear density mja. More complicated models require more d i f f i cu l t  analy- 

s i s  and are warranted only i f  measurements can be made of the actual mass-dis- 

tribution in particular 1 imbs. 

We find that ,  in general, v(s)  i s  of the form 

Then clearly 



CALCULAT ION OF ACTUATOR TORQUES. 

The easiest  technique i s  based on the Euler-Lagrange formula, 

where B i  i s  the angular velocity 

and Ti i s  the torque required a t  joint  i to  support the motion. K i s  the 

kinetic energy. This may look complicated, but, in fac t ,  i s  very convenient. 

In general, i f  the potential energy term i s  added i n ,  t h i s  calculation leads 

t o  n equations for  a device with n degrees of freedom. 

n n n 
Ti = Gi(e)  + 1 I e .  + C 

j = 1  ' J -  J j = l  k = j  

Here T i ,  the actuator torque required a t  joint  i ,  i s  made u p  of three components. 

The f i r s t  i s  the gravitational term obtained from the potential energy P ,  

The second term i s  a sum of products of iner t ias  and angular acce 
. . 
e where 
j ' 

lerations 



This term i s  thus composed of the iner t ia l  forces needed t o  accelerate the 

1 inks along the desired trajectory. 

The third term i s  a double sum of velocity product terms and constitutes 

the torque required t o  balance Coriolis forces; these include the centrifugal 

forces. Note that  a l l  three kinds of coefficients Gi , I i  and C i j k  are  

functions of the configuration, e ,  only, where - 

That i s ,  they do not depend on jo in t  angle veloci t ies  (or  accelerations).  In 

f ac t ,  we find tha t  these terms are polynomials in link lengths and sines and 

cosines of the joint-angles. 

I t  i s  convenient to  think of the total  kinetic energy of the device as a 

sum of the kinetic energies of the individual links, 

and to  calculate the total  torque required of a part icular  actuator as a sum of 

components, each obtained by applying the Eul er-Lagrange equation t o  a component 

of the kinetic energy, 



where Tij i s  t h e  ac tua to r  torque required a t  j o i n t  i t o  support  the  motion 

of l i n k  j. 



THE UPRIGHT COLUMN. - 

If  we model th is  link as a thin rod, i t  will have no iner t ia  and not im- 

pede accelerations about i t s  axis a t  a l l .  I t  i s  more r e a l i s t i c  to  model i t  as 

a cylinder of uniform mass distr ibution.  If  i t  has height H ,  radius R and 

mass m, , i t  has iner t ia  

To introduce the 

from f i r s t  princ 

techniques used l a t e r  for  the other l inks,  we calculate th is  

iples.  The volume of the cylinder i s  

Consequently, i t s  mass density i s  ml/(nR2H). 

Now consider a cylindrical shell of thickness dS a t  distance s from the 

axis as in figure 4.  I t  has mass 

Particles i n  t h i s  shell move with velocity sel when the column rotates a t  angular 

ra te  e l .  The kinetic energy of the cylindrical shell i s  then 

1 ml . 2 (dm) [ s i l l 2  = 2T s 3  0f  ds 

Integrating over the whole cylinder we find the total  kinetic energy i s  



The term I ,  = mR2/2 i s  the i n e r t i a  of t h e  upr ight  column, l i n k  1 ,  about i t s  

a x i s  of r o t a t i o n .  



ACTUATOR TORQUES REQUIRED TO SUPPORT MOTION OF LINK 1 .  

We are now ready t o  apply the Euler-Lagrange equations t o  find the required 

actuator torques. 

where 

and 

This rather obvious conclusion shows that we need only an inertia1 torque t o  

support this motion. No other joints are affected. 



THE SECOND LINK. 

Link 2 i s  modelled as a thin rod of mass m2 and length e2 (see figures 5 

and 6 ) .  To compress long expressions we adopt a convention for trigonometric 

terms : 

and 

The infinitesimal part icle L of length ds has mass 

First  we determine the velocity of th i s  particle; i t  can be found by differenti-  

ating i t s  position with respect t o  time. Let r - = (x,y,z) be the par t ic le ' s  posi- 

tion in reference to  the rectangular coordinate system introduced ear l ier .  If 

i ,  j ,  k are unit vectors in the directions x, y ,  z respectively, then, - - - 

Taking the derivative we get the velocity 



To calculate the kinetic energy we need only the square o f  the absolute value 

o f  the velocity, 

Finally, the kinetic energy i s  

That i s ,  



ACTUATOR TORQUES REQUIRED TO SUPPORT MOTION OF L I N K 2  

F i r s t ,  we f i n d  t h e  requ i red  d e r i v a t i v e s :  

a K2 - -  aK2 1 
a e ~  

- 0 and - - - - m  a2[s c i2] a e 2  3 2 2  2 2 1  

- -- aK2 1 aK2 - m, a2Is.26 ] and -- = - m p2[ i  ] 
3 2 2  2 1  

ael a g 2  3 2 2  2 

F i n a l  ly ,  us ing  the  Eul er-Lagrange equat ion,  



ANALYSIS OF TORQUE COMPONENTS. - 

The two components of T 2  represent inert ial  and coriolis  factors. Fi rs t ,  

note that  (l/3)m2e$s$ i s  the inert ia  of link 2 about the vertical axis. Multi- 

plying th is  by the angular acceleration of joint 1 gives us the torque re- 

quired to  produce that angular acceleration. The second term, containing a 

product of angular velocities i s  a coriol is  force factor which vanishes when 

i1 = 0, Q p  = 0 or e2  i s  an integer multiple of 90° since 

This torque term has to do with the change in kinetic energy when the inert ia  

about the vertical axis i s  changed -- i t  i s  the term which speeds u p  a spinning 

ice skater when (s)he pulls in his(her) arms and slows him(her) down as the 

arms are stretched out. I t  shows one of many interactions between motions for  

which i t  i s  hard to get an intuit ive grasp. 

The components of T&are even easier t o  understand. The f i r s t  term i s  just 

the inert ial  force needed to accelerate 1 ink 2 ,  since the inert ia  of 1 ink 2 

about joint 2 i s  simply (1/3)m2a$. The l as t  term i s  a centrifugal force term, 

which again i s  zero when e2 i s  an integer multiple of 90". I t  represents the 

tendency for the second link t o  become horizontal as a result  of rotation about 

the vertical axis. 



THE THIRD AND LAST LINK. 

L ink  3 i s  modelled as a  t h i n  r o d  o f  mass m3 and leng th  a3 (see f i g u r e s  7 

and 8) .  The l o c a t i o n  r o f  the i n f i n i t e s i m a l  p a r t i c l e  o f  l eng th  ds and mass dm 

i s  found f i r s t ,  where 

We f i n d  t h a t ,  

'@'-I 

D i f f e r e n t i a t i o n  w i t h  respect  t o  tine, 

Then, 



Since c2cZ3 + s2s23 = cos(e2 - ( e2  + e3) )  = c3.  

becomes 

F"t, 

That i s ,  

Th i s  f i n a l l y  i s  t h e  k i n e t i c  energy l i n k  3! 



PARTIAL DERIVATIVES NEEDED. 





ACTUATOR TORQUES REQUIRED TO SUPPORT MOTION OF L I N K  3. 



GRAVITATIONAL TORQUE COMPONENTS IN SIMPLE CASE. 

If gravity acts  along the z-axis and has magnitude g ,  then the  potential 

energy of the device can be found easi ly from the vertical positions of the 

centers of mass of the two links. 

!L 2 $3 
=2 = 2 C2 and z3  = (a2c2 + cZ3) 

So the total  potential energy i s  

nl So the torque components are simply 

and 

These components may simply be added to the components already found for iner t ia l  

and cor io l i s  torques. 



G R A V I T Y  COMPENSATION I N  GENERAL CASE. 

The p o s i t i o n  o f  t he  cen te r  o f  mass o f  l i n k  2  i s  

I f  g  .. = (g1,g2,g3) i s  t h e  vec to r  o f  g r a v i t a t i o n a l  acce le ra t i on ,  then t h e  po- 

t e n t i a l  energy i s  

S i m i l a r l y ,  t h e  p o s i t i o n  o f  t he  cen te r  o f  mass o f  link 3  i s  

3  %3 3  
r 3  = cl(i2sZ + - 2  ~ ~ ~ ) j  + sl(a2s2 + T s 2 3 ) i  - + (a2c2 + ~ 2 3 ) ~  

The t o t a l  p o t e n t i a l  energy i s  t h e  sum o f  P2  and P3. The g r a v i t y  compensation 

torques can be found f rom P by d i f f e r e n t i a t i o n .  





MASS CONCENTRATION AT THE END OF LINK 2.  

Let the re  be an addi t ional  mass M2 attached a t  the  end of l i n k  2. I t s  ve loc i ty  

squared i s  ' 

So t h e  torque components would come t o  



MASS CONCENTRATION A T  THE END OF  L I N K  3 -- LOAD CARRIED.  

Let there be an additional mass M3 attached a t  the end of link 3. I t s  

velocity squared i s  



T i  = M [a ( a  c + a3)g2 + - a c (a s + a3sZ3)Qf + a2a3s3Q$] 3 3 2 3  3 2 3  2 2  

These expressions can be used t o  calculate  additional torques required to  support 

the movements of a load carried by the  third l ink.  



GRAVITY COMPENSATION FOR THE MASS CONCENTRATIONS AT THE ENDS OF LINK 2 AND 
LINK 3. 

The position of the mass concentration at the end of link 2 is 

'; = -(F2 ' !)M2 = -M2a2[c1s2g1 ' S1S292 c2g31 

Similarly, the position of the mass concentration at the end o f  link 3 is 

and the gravity compensation torques for the three links, on account of the 

mass concentrations, are 





T H R E E  D E G R E E  OF F R E E D O R  D E V I C E  IJITH OFFSETS. 
--P -- 

In some manipulators and 1 egs, trade-offs in the mechanical design d ic ta te  

a geometry with offsets  between links as seen in figure 9 ,  for example. Smaller 

and larger range of motion can be achieved th is  

increase in complexity of control. The MIT-Scheinman 

example o f  a device with offsets .  I t  will be found 

packag 

way i n  

el ec t r  

i ng ,  bet ter  strength 

return for  a small 

i c  manipulator i s  an 

that  only a few extra terms appear i n  the expressions for the torques required 

of the actuators. Obviously the torques required to support the motions of 

link 1 ,  the upright column, do not change, so we s t a r t  with link 2 .  



THE SECOND LINK IN A DEVICE WITH OFFSETS. - 

The position r of a particle on the second link can be found by considering 

figures 10 and 11. 

Differentiating, 

The kinetic energy can be found by integration 

9 - a 2 ~ 2 ~ 2 Q 1 i 2  + i$I 



ACTUATOR TORQUES REQUIRED T O  SUPPORT MOTION OF L I N K  2. -.- 

Final ly ,  



THE THIRD L INK I N  A DEVICE WITH OFFSETS. 

The p o s i t i o n  r o f  a p a r t i c l e  i n  t h e  t h i r d  l i n k  can be found from f i gu res  

12 and 13. 

D i f f e r e n t i a t i n g ,  



* 
That i s ,  



P A R T I A L  DERIVATIVES NEEDED. 



d a K m 2a: 
3 - 3  - (-) - -r [(a a c t -)" 

.. 
d t  ae3 2 3 3  3 e 2 t 3  e3 - a3(a3c23)61 - 



ACTUATOR TORQUES REQUIRED TO SUPPORT MOTION OF LINK 3 .  

Note the cancellation of terms in 9,e2 and e;e1. 



Note cancellation o f  terms in 8, i2 ,  k2G3 and d3i1. 



TORQUES REQUIRED TO SUPPORT GRAVITATIONAL FORCES. 

The cen te r  o f  g r a v i t y  o f  l i n k  2 i s  

I t s  p o t e n t i a l  energy i s ,  

S i m i l a r l y ,  t h e  p o s i t i o n  o f  t he  cen te r  o f  g r a v i t y  o f  l i n k  3 i s  

P3 = C(a2s2 3- 

63cllJ: + 

I t s  p o t e n t i a l  energy i s  

The t o t a l  p o t e n t i a l  energy i s  the sum o f  P2 and P3. 



Torques required then are: 



0 

I1 

z-1 CD- 
m m 









GRAVITY COMPENSATION FOR LOAD CARRIED. 

The position of the load is, 



SUMMARY AND CONCLUSIONS. 

We have shown that  detailed analysis of the dynamics of mechanical mani- 

p u l  ators i s  feasible and leads to complicated, b u t  manageable equations. Such 

equations may be used in the simulation of such devices or d i rec t ly  in control 

systems based on open-loop computation of required joint  torques. Simulations 

may be used in the design or analysis of t radi t ional  control systems, which 

can maintain stable control only for  low speeds. 

New kinds of control systems can be envisaged, where negative feedback i s  

only used to  account for small errors  which come about because of differences 

between the actual device and the mathematical model used in deriving these 

equations. 

Me have derived the necessary equations for  devices w i t h  rotational de- 

(pages 10, 13, 19 ) .  Compensation for  gravita- 

lculated for  arbi trary orientation of the de- 

vice (page 22) as have the torques required t o  move a load carried a t  the t i p  

of link 3 (page 25). Finally, compensation for gravitational forces on th i s  

extra load were considered (page 26).  

The same calculations were then repeated for  a device with offsets  

(pages 10, 29, 34, 35).  

grees 

tiona 

of freedom and no offsets  

1 forces have also been ca 
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