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FAN-BEAM RECONSTRUCTION METHODS
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ABSTRACT. In a previous paper a technique was developed for finding reconstruction

algorithms for arbitrary ray-sampling schemes. The resulting algorithms use a

general linear operator, the kernel of which depends on the details of the scanning
geometry. Here this method is applied to the problem of reconstructing density
distributions from arbitrary fan-beam data. The general fan-beam method is then
specialized to a number of scanning geometries of practical importance. Included
are two cases where the kernel of the general linear operator can be factored and
rewritten as a function of the difference of coordinates only and the superposition
integral consequently simplifies into a convolution integral. Algorithms for these
special cases of the fan-beam problem have been developed previously by others.

In the general case, however, Fourier transforms and convolutions do not apply, and
linear space-variant operators must be used. As a demonstration, details of a fan-
beam method for data obtained with uniform ray-sampling density are developed.



REVIEW.

In a previous paper [1], I developed a technique for ffnding reconstruc-
tion algorithms applicable to arbitrary ray-sampling schemes. This general
method was applied to the problem of reconstruction from parallel-beam data
with uneven spacing between rays and uneven spacing between projections. The

results were based on Radon's famous integral [2],
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where p(2,8) is the density integral or ray-sum measured along the ray inclined
o with respect to a vertical axis and passing within a distance & from the cen-
ter of the region being scanned (see figure 1). Further, f(r,¢) is the denéity
at the point with polar coordinates (r,4) in this region, while t = 2 - r cos(s
is the perpendicular distance between the ray and this point.

When ray sums in a given projection are‘spaced evenly in ¢ and projections
are spaced evenly in 8, a simple reconstruction mefhod can be found directly
from equation 1 by approximating both integrals by sums and approximating the

partial derivative by an appropriate first difference.
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UNIFORM SCANNING COORDINATES.

When spacing is uneven, it is helpful to introduce first new ray-sampling

coordinates £ and n, chosen so that successive rays in a generalized projection

correspond to evenly spaced values of &, while successive projections corres-
pond to evenly spaced values of n. Radon's integral can then be transformed

to this new coordinate system using the Jacobian,

_ 9% . 38 3%, 38 | (2)

and equation 1 becomes,
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It is possible to show that this can be rewritten as

SO [fly .. 20
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It is not clear whether this forms a good basis for a reconstruction algorithm
in the general case, since it seems to imply that computations must be carried

out across projections as well as within projections.




GENERAL PARALLEL BEAM METHOD.

In the previous paper [1], the emphasis was on parallel-ray scanning, and,
in this case, ¢ is a function of £ only, while 8 is a function of n only. The

Jacobian then reduces to,

TR T
=3 20 (5)

and equation 4 simplifies as follows,

o) s L [ L[ 13 el o (6)

Here t = ¢ - 2', whereg = 2(g), while ' = 2(g'), and £' is the value of ¢
associated with the ray that passes through the point (r,¢). The above can

be conveniently split into an outer and an inner integral:

£r,o) = jg@,>-—dn (7)

gle'an) = - [ ey =tacey 3 Pleen) & (8)

If these integrals are approximated by sums, one obtains:
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_ (Pij = P3 - 1)y
gi'j—- % (2‘1_2‘1.‘_') (]0)

This straightforward set of equations is one result of the analysis in the
previous paper (equations 29 and 40 in [1]). Here aej = (ej $1 " ej } ])/2

is the angular interval associated with the Jth projection, while 2% =

th

(2. + i 4 ])/2 is the value of & corresponding to the center of the i~ beam.

i
The left edge of the beam striking the ith detector corresponds to 25 and the

right edge to 2: 41 (see figure 2). The density integral obtained from the

ith detector in the jth

projection is pij‘
Finally, note that gj(g') has to be found by interpolation from the dis-
crete set of values, {gi'j}' If linear interpolation is to be used, one can

work with the values gij and g(i. ¥ 1)5° where

L.
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RELATION TO CONVOLUTION-BACKPROJECTION METHOD.

By splitting the second sum and rearranging its terms, one arrives at an

alternate form (equation 38 in [1]),

.i+ -2'-)

= 4 _ 1 i
gilj Zgia + 1 - lilyipi'j i E; il zhi + ] - 2;‘)(2i - Q%vj—pjj (12)

That is, the sequence {gij} is obtained from the sequence {pij} by a general
linear operator. This is similar to a convolution except that the weights or
filter coefficients are spatially variant.

One has only to fix the width of the detectors, at &2 say, to be able to
relate this result to the well-known convo]utiona]—backprojéction mefhod. In

this case,

' 4
82 9., = [Bpsys - 3 ;] (13)
1] 1) 5 y 4(1 - 11)2_ 1 1]

This amounts to convolution of {pij} with a filter function Fk’ where

F = - — % fork#0and F_= 4. (14)
4k2 - 1 ©

This happens to be the particular set of filter coefficients popularized by
Shepp and Logan [3].
My previous paper contains other formulations for this problem as well as

a simulation of the method for reconstruction from ray sums collected with
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uneven spacing [1]. The main point is that convolutions are inappropriate in
the generaT case and must be replaced by spatially varying operators or super-

position integrals.




RECONSTRUCTION FOR ARBITRARY RAY-SAMPLING SCHEMES.

In the general case, equation (4) does not seem to provide a good starting
point for analysis. Instead it is helpful first to remove the partial deriva-
tive from Radon's integral by partial integration. This has to be done care-

fully since the inner integral is singular. It can be written as

' -

1im € 1y 3 Tim 1,5
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Integrating by parts one obtains (equation 8 in [1]),
' 2n o v
£(r,4) = 7 f Tim _[ F (t)p(e,0)dse de (16)
? [ e->0 € ’ N
0 -0
where
Fe(t) = 1/e2  for |t] < ¢ (17a)
= - 1/t2 for |t] 2 ¢ (17b)

Introduction of the transformation to uniform scanning coordinates (£,n) now

leads to
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Flr,9) = —— f g(rs¢,n) dn - (18)
42
a(rtan) = 1 [ F (©)3emplean) e | (19)

This forms the basis for reconstruction methods for arbitrary ray-
sampling schemes. In this paper the concern will be with techniques for re-
constructing density distributions from ray sums collected using fan beams
(see figure 3). Modern apparatus for computerized tomographic analysis
typically produces projection dafa in this form and there is a practical need
for accurate and rapid reconstruction methods for a variety of different
schemes for sampling the fén beam. Such methods had been found previously for
two special geometries [4, 5, 6]. Here techniques‘will be developed that can

be used for arbitrary ray-sum collection schemes.
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SOURCE POSITIONS DISTRIBUTED AROUND THE CIRCUMFERENCE OF A CIRCLE.

Let the source be located at (D,n/2 + B), where D is the radius of the
circle (see figure 1). Let a ray be emitted in a direction that makes an angle
a With the source-to-origin line. Clearly o and 8 are as good for specifying
a particular ray as 1 and 9 are. For fan beams, these new parameters will be
more difectly useful, and so the relationships between the two sets of variables

will be needed. From figure 1,

D sina ' and ]

o
1

a + B (20}

tt

sin"! (2/D) and B =06 - sin"1(a/D) (21)

[
"

If £ and n are uniform scanning coordinates, then it is natural to let
a = afg) and 8 = B(n) (22)

where o and B are continuous, differentiable monotonic functions of £ and n.

Then (see eguation 2),

3% 36 . 3L _
= 9% 39 ox - 2
J 5 o Since o 0 (23)
Further, since 8 = a + B8,
- 92 da 3B _ 3B 3 24
J 3% 5E 50 = Bn D cos a o (24)

dow J is a factor in the inner 1ntegré] (equation 19), but the first term of the
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above product can clearly be brought out of the inner integral and incorporated -
into the outer integral (equation 18). The last term of the product will depend
on the way in which rays in a fan are sampled. This corresponds to the place-
ment of detectors in the fan and depends on the scanning scheme used. We will

study several cases after developing a few more tools that will be needed.

o
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THE PERPENDICULAR DISTANCE FROM A POINT TO A RAY FOR FAN BEAMS.

From the diagram (figure 4) we can develop a useful new way of writing t,

the distance betweena given ray (a,s) and a given point {r,¢):

t =Ksin (o - a') (25)

where, by the cosine rule for triangles (see figure 5),

K2 = y2 + D2 + 2r D sin (B - ¢) (26)

Here o' is the value of a corresponding to a ray from the source which passes

directly through the given point (r,¢). Note that K is simply the distance

from the source to the point (r,¢) and thus clearly does not depend on o.

From the diagram we can calculate o' as follows (see figure 5):

Ksina' =rcos (B-9¢) and Kcosa' =D+ r sin (B - ¢) (27)

and so,

tan o' = r COS (B ~ ¢) (28)
[D+rsin (8- ¢)]
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SOME PROPERTIES OF THE FILTERING FUNCTION.

Note that if ¢ # 0, then

Felet) = gr F e (t) (29)

This result can be easily checked by separately considering the cases [ct] < ¢

and |ct] 2 e. From this it follows that

fw F_(ct)dt = 0 (30)

-0

and

e->0 s—>0

f F(ct) a (t) dt = 1M f F(t) a (t) dt (31)

Furthermore if |b(t)] = b0 > 0 is continuous and differentiable with respect to

t,

f Folb(t)e] aft)ae = 1T f F(t) By dt (32)

These results are useful in deriving the general reconstruction formula for fan-

beam scanning schemes.
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RECONSTRUCTION ALGORITHM FOR ARBITRARY FAN BEAM GEOMETRIES.

Using the general result for reconstruction (equations 18 and 19) based on
Radon's inversion formula [2] and using the expressions for t and J just de-

rived, we have

f(r,e) = z%zJ/.g'(T,¢,n) %%-dn (33)
1im ;

g'(r,¢,n) = FE[K sin (¢ - a')]D cos « 5% p(g,n) de (34)
£ -

According to a result just developed (equation 31), the factor K can be extracted
from the argument of the filter function F. Since K does not depend on o it

can be further removed from the inner integral (equation 34) and placed into

the outer integral (equation 33). The inner integral then no longer ¢ontains
terms which depend explicitly on r and ¢, only terms which are a function of

i

a'. So the above can be rewritten,

f(r,¢) = E%z'jfg"(a'sn) (1/K2) %%‘dn (35)
1im 5
g"(a',n) = 0 F [sin (a - o)1 D cos a 3t P (g,n) de (36)
€ -

From the fact that the inner integral is a function of «', and not r and
o explicitly, we conclude that the reconstruction algorithm can be arranged
efficiently. That is, for all fan beam schemes with source positions on the
circumference of a circle and sampling of the fan independent of source position,

one need not explicitly calculate the contribution of each ray to each point in
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the reconstruction.

We are now ready to develop specific reconstruction methods for a variety
of fan-sampling schemes. Some special schemes will lead to simplifications
which can be interpreted as pre-multiplication, convolution and post-multiplica-
tion. In general, however, the inner integral remains in the form of a general

linear operator or superposition integral.




~
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UNIFORM SAMPLING ALONG A LINE AT RIGHT ANGLES TO THE SOURCE-TO-ORIGIN LINE.

Rays are sampled evenly in x (see figure 6), so it is natural to let

£=x=0Dtan « (37)
D cos o (%%) = cos3 o (38)
Also,
sing = —&— and  cos o = ——L2 (39)
v DZ + £2 vy DZ ¥ g2
So
D cos a(%%) = 5 +Dz - (40)

Further, if we let o' be the value of a corresponding to the ray through the

point (r,4) and ¢' the corresponding value of ¢, then

sin o' = ——5 and cos o' = ——D (41)
' VDI ¥ 2 Yy DZ ¥ 2
So,
sin (a - a') = sin a cos o' - sin a' cos a (42)
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sin (@ - ') = D (£ - £') (43)
Y D? + g2 /D? + g'?

Hence,

D3

1im
g'(g',8) = A [—— ( - £') —D (£,8)de
e >0 fel:/Dz + g2 DT+ €2 | [D? + 52]3/2p

(44)
We can move the multiplier of (¢ - £') out of the filter function F to get:
Tim

g"(g',e) = (Dz + €v2)

. O.I{FE (6 -¢') “E-Q;fg—' p(€,8) d&  (45)
Note that (from equation 37 or 41),

£ =D tan o (46)
and so

(D2 + £'2) = D? sec? o . (47)

Also, combining this with the term (1/K2) in the outer integral one gets

(D2 +g'2) _ D2 _ D?
K2 [Kcos « T2 TD + r sin (B - )12

and so, finally,

Faania

S TR g rrmere i) P AN
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2
2
'F(Y‘,Cb) = E}Z"/’Q‘”(Alg B) rD r— s[i)n (8 - 4))*_]2 dg (49)
0
Grey = f: ) —2 (r,8) d (50)
g'"{r',B) = A - AH) —— A.B A
e >0 € vDZ + 22 P

Here finally we have used the coordinate natural to this particular scanning
scheme, namely A, the distance from the origin at which the ray intersects the
Tine drawn perpendicular to the source-to-origin line.

It is important to note that in this case the argument of the filter function
F contains only the difference of the two parameters A and A'. The above is
thus almost 1ike a convolution, except that one has to pre-multiply the projec-
tion data p(x,8) by a factor depending on the position of the ray in the fan.
Similarly, the convolved data, g"', is used in the outer integral after post-
muljtiplication by a factor which depends on the position 6f the point (r,¢) in

the fan currently being processed.
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DISCRETE APPROXIMATION.

Finally, we have to approximate these integrals by sums because in practice

only a finite set of ray sums is available:

2
flro) = gz 2 9500 )———" 7 o8, (51)
3 [D+ r sin (Bj - ¢)]
o= X Fis —2——p & | (52)
L B D7 + 3, iy
Here
D r cos (Bj - 4)

)\=Dtana=D+rsin(Bj_¢) (53)

th th

In the above set of reconstruction equations, Pij is the i~ ray sum in the J

fan, while &1 is the (fixed) interval between intersection of successive rays
with the line perpendicular to the source-to-origin line. The angular interval

associated with a particular fan is 5Bj,_where

885 = (B4 = B5.9)/2 (54)
The filter factors are

F = - | k#0 | (55)




-19-

As mentioned in the paper on which this analysis is based, the weights W, are
chosen to provide good numerical approximations for the singular integral.

Typical choices are:
1. W, = 2 for k even, W = 0 for k odd

2. W = 4k27(4k? - 1)

Note that the above operatﬁon can be viewed as a pre-multiplication of the
ray sums by D/[D2 + Ai2]1/2’ followed by a convolution, with a final post-multi-
plication by D2/[D + r sin (3j - ¢)]2. UWhile the method is not strictly con-
volutional, it can be conveniently viewed in this way. The above is one of
two special cases of the fan-beam problem that had previously been solved [4, 5].
An attempt was made here to use similar notation to simplify comparison.

We ought to specify how gj(x') is found from 9515 As in the previous
paper [1], we approximate gj(A') by interpolation. If we sample N rays uni-
formly along a segment of length L of the line at right angles to the source-to-

origin line, then sx = L/(N - 1), and the ith ray corresponds to
A = -L/2 + 1 8x (57)
Consequently, gj(x ) is found by interpolation from gi'j and g(i. +1); where,

' = L{(x + L/2)/80] (58)
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In practice, of course, detectors would not be arranged on a line passing
through the scanned space. The geometric transformations froma more distant,
linear detector array to positions on the line passing through the origin are
fortunately trivial (see figure 3). Such an array of equally wide detectors
positioned behind the object being scanned would have to move in synchrony
with the source, so as to always remain perpendicular to the source-to-origin
line. There is great interest in scanning schemes which can instead use a
fixed array of detectors. One such arrangement will be discussed in the

next section.

o,
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EVEN SAMPLING OF RAYS IN FAN ANGLE.

Even sampling of rays in fan angle o can be achieved easily using a set
of equally wide detectors arrayed on a sector of a circle with center at the
source position. Curiously equal spacing of samples in fan angle can also be
achieved when these detectors are instead placed on a circle passing through
thé source, with center at the origin (see figure 7). This follows from the
fact that the angle at the center is just twice the angle at the source, and
so equal angular spacing of detectors when viewed from the origin corresponds
to equal angular spacing of detectors when viewed from the source. Such an
arrangement of detectors has an advantage in that the detectors could remain
stationary during scanning if the potential mechanical cohf1ict between source

and detectors could be solved. In any case, it is natural here to let
g = a (59)

So,

D cos a2 =D cos o (60)

3

Proceeding as in the previous section, we obtain (from equations 35 and 36),

2n
fre) = gz [ 9"("2)(1/2) d8 (61)
Yim 72 '
g"(a',B) = J~Fs[sin(a - a')] D cosap(a,B) da (62)
€ - -’ﬂ'/2

where (by equation 25),




-22-

K2 = r2 + D2 + 2rD sin (8 - ¢) (63) —
Next, we obtain the discrete approximation,
f(ro) = ooz X g:(a’) ‘ 58 (64)
: ngj- ¥Z ¥ DZ ¥ 2rD sin (g5 - ) °%j
Sy T . P.. 65
9515 ; Fooy Dcosay Py sa (65)
where
r cos (8. - ¢)
[ -1 J
0 . ; . .th . .th . . .
nce again py s is simply the i~ ray sum in the j~ fan, while sa is the (fixed) —

angular interval between rays in the fan. The angular interval associated
with a particular fan, ssj, is as defined before (equation 40). The filter

factors are:

W
= . K 67
Fk sin k 8o k#0 (67)
Fo = -y F (68)
k40

Finally, one needs to detail the interpolation procedure for finding gj(a') from

the discrete set of values gi'j' If N rays are sampled uniformly along an arc

h

of angle A, then 8a = A/(N - 1). The it ray then corresponds to
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@, = -A/2 + i Sa ' (69)

Consequently, gj(a ) is found by interpolation from 9513 énd (i + 1) where

L{a' + A/2)/6u] (70)

This reconstruction method may be viewed as a pre-multiplication of the ray
sums by D cos s followed by convolution, with a final post-multiplication by
1/[r? + D2 + 2rD sin(ej - ¢)]. This is the second special case of the fan beam
reconstruction problem which had been solved previously [5, 6].

Other fan-beam scanning geometries do not lead to such special case solu-
tions however. Usually, a general linear operation is required. Foftunate]y,
the method presented earlier allows one to treat arbitrary fan beam scanning

geometries. We will study one in detail as an illustration.
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A METHOD WITH UNIFORM SAMPLING DENSITY.

Both of the scanning schemes discussed so far sample areas near the origin
less densely than they do areas near the edge of the region of reconstruction.
This can be seen when it is remembered that the ray sampling density is the in-

verse of the Jacobian J [1] and that for fan beam scanning (equation 24),

_ 38 2 |
J == D cos a 33 (71)

Now for the first method (equation 38)

D cos a (%%) = cos3 a (72)
while for the second method (equation 66)

D cos a (%%J =D cos a | (73)

The result of this variation in sampling density is that reconstructions will
have somewhat better resolution (particularly in the radial, as opposed to
tangential, direction) in outlying regions. While this effect is not very pro-
nounced for fans that are fairly narrow, it is still of interest to investigate

schemes providing uniform sampling density. That is,
D cos a(%%) = 1 (74)

If this equation is integrated one finds,
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£ = 2 =D sin « (75)

This means that rays are spaced evenly in their perpendicular distance 2 from
the origin (see figure 8). No convenient arrangement of equally wide detectors
will provide for sampling of the fan in this fashion, but clearly detectors of
varying width arranged on either a straight or curved line can be used. Their
width will increase with distance from the central detector.

Now note that

sin (@ - a') = sin a co0s a' - sin a' cOS « (76)

sin (¢ - o') = cos o'(tan o - tan a') cos o ' (77)

sin(a-a')=‘05-§ . — - ﬁg rh -t (78)
Y DZ - 2 VDZ - £'2 D

where ¢' = D sin o'. Proceeding as before (using equatiors 35 and 36), we get:

2n
2
fr.e) = gz 90038 e ¢ ()
o
lim *D ,
g"(2t.8) = [ F (—t— ) ——p(,p) & (80)
e >0 DE D2 -2 /DT -2 (D2 - 1?3

The following identity was used for the outer integral,

2
. o+ . __ Db . D (81)
DZ - 2'Z ~ K?D2%cos24 ~ [D + r sin (B - ¢)]°

7'3_4
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Note that here &' is the value of £ for the ray inclined o' to the source-

to-origin Tine (see figure 8),

L' =D sin o'

(82)

(This differs from the parallel ray scanning schemes presented in the previous

paper [1]).

Once again, a discrete approximation is required,

1 D2
flre) 2 qr X 9;(4') v+ sm (85 - 0)J° °¢;
J
_ ]
9413 ;F"‘ 07 - 5;7 Py *
where
Dr cos( - ¢)

=D sin o' =

yrz + DZ + 2rD s1n(sj - ¢)

The filter factors are

s : S for i # i
ity % ] oy
VD% - 21.2 VD% - sz?i-.

(83)

(84)

(85)

(86)

(87)

e e . m——— 1+
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In this case, then, as for most scanning schemes, a general linear operator
rather than a modified convolution must be used. The methods presented here
permit the derivation of algorithms to deal with these problems. Note by the
way that here the factorsofsin (o - o') were split up in a similar fashion

to how this had been done for the first two examples. This is not strictly
necessary, since all three components can be accomodated as part of the filter

function Fs(z,z') or Fi'i if so desired.
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ANOTHER METHOD.

The existence of an elegant method for reconstruction from parallel-beam
data (equations 7 & 8 or 9 & 10) which uses derivatives of projection data and
does not depend on arbitrary filter coefficients leads one to search for a
similar expression for fan-beam reconstruction. Starting from the general
form (equation 4) does not seem to lead to such a result. Instead one may apply
partial integration to the form of the inner integral shown in equation 36,

/2

9" (a',n) = 1M F [sin(a - a')] p(a,8) D cos o da (88)
€'>O _“/2 [

If one Tets sin(s) = ¢, then

P

9"(a',n) = llg [ /’ - ! : p(a,8) D cos o da +
a2 IO (@ - a')
“ 0.'+6
v j' p(a,B) D cos o da +
a'-6
+w/2
1
l - p{a,B) D cosa do] (89)

o+ S sin2{a - a')
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Or,
n ! - ]im al_é i '
g"(a'sn) = 9 [[ ccoslaza) pie ) 050 g+ (90)
/2 sin?(a - a') cos{a - a')
gg'P(q',B)DCOSa' +
1im[ (/2 _ cos(a - o' Dcos o
[T elenal) ey
e~>0 o0+ sin?(o - a') cos{a - a')
|
That is,
5 ’ ‘ a‘-é
COs o
[sinia -a') p(a’s)cosia - a'i] n )2 )

I D 5 [ (o,8) 052 ]d N
/2 sin{ec - o') 3 plas, cos(a - ¢ )]°°

+5/2
2D ' ) D €OS a
= pla’'s8) cos o' + g?ﬁxa—:faTj'p(asB) Eag(g—:“gry]8l+5 -

+7/2
n/ cos o

D
sin a"T"ET7.§E' p(a’g)bos(a - a'f] do (1)
8

o't




-30-

As & » 0 this becomes simply,

+n/2 €os & ] da

- f 1n<a - a ; "_'[p ) cosi\a

-/2

To summarize,

f(r,e) = zlz-'[zwg(a‘,s) D
i o K2(r,4,8)

/2
C0S a , ] da

Loy 1 2
gla',8) = - f /2 sinla = ') 2a [p(asB)5sla - o)

Where, as before,

K2 = r2 + D2 + 2r D sin(g - ¢)

. . _rcos(s - ¢)
tane” = I3 rsin(e - 97]

The discrete approximation is

flrs) = — T g.(a') —D2—— sp,
J K2(r0,85) J

~cos (a})
[p(d;.8) cos(al - agy) ~

(92)

(93)

(94)

(95)

(96)

(97)

(98)
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th detector, while o,

Here o corresponds to the left edge of the i i+
th

1 marks its
right edge (see figure 9). The ray-sum seen by the i~ detector is Pij and its

center is at a%.
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CONCLUSION AND SUMMARY.

The formulas for reconstruction from ray sums obtained by arbitrary
sampling schemes were specialized to a system utilizing fan beams originating
from sources -on the circumference of a circle. It was fand that one need
not calculate the contribution of each ray sum to each point explicitly, but
that the calculation does involve the application of a general linear operator.
In special cases, this linear operator becomes space invariant by a manipulation
of the integrals, and the superposition integral simplifies into a convolution.
Two examples of this were shown, both corresponding to previously known solu-
tions to the fan beam reconstruction problem for particular ray collection geometries.

To illustrate the utility of the new method, however, a third case was
considered where the simplification does not occur. Previous technidues for
finding reconstruction methods based on Fourier transforms cannot deal with
it. Details of an algorithm were developed. The utility of the new methods
for finding algorithms for arbitrary fan beam scanning schemes is therefore
apparent. The introduction of uniform scanning coordinates in particular is of

great importance in finding reconstruction methods for the general case.
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