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ABSTRACT. 
a1 qori tllms 

I n  a previous paper a technique was developed for  finding reconstruction 
for  arbi t rary ray-sampling schemes. The resulting algorithms use a 

near operator, the kernel of which depends on the de ta i l s  of the scanning 
geometry. Here th i s  method i s  applied to the problem of reconstructing density 
distributions from arbi t rary fan-beam data. The general fan-beam method i s  then 
specialized t o  a number of scanning geometries of practical importance. Included 
are two cases where the kernel of the general 1 inear operator can be factored and 
rewritten as a function of the difference of coordinates only and the superposition 
integral consequently simplifies into a convolution integral .  Algorithms for these 
special cases of the fan-beam problem have been developed previously by others. 
In the general case, however, Fourier transforms and convolutions do not apply, and 
l inear  space-variant operators must be used. As a demonstration, de ta i l s  of a f a n -  
beam method for data obtained with uniform ray-sampling density are developed. 



REV I EbI . 

In a previous paper [ I ] ,  I developed a technique fo r  finding reconstruc- 

t ion algorithms appl icable to arbi t rary ray-sampl ing schemes. This general 

method was applied t o  the problem of reconstruction from parallel-beam data 

w i t h  uneven spacing between rays and uneven spacing between projections. The 

resu l t s  were based on Radon's famous integral [ z ] ,  

where p ( w )  i s  the density integral or ray-sum measured along the ray inc3 ined 

e w i t h  respect t o  a ver t ical  axis and passing w i t h i n  a distance a from t he  cen- 
ss9)* 

I t e r  of the region being scanned (see figure 1 ) .  Further, f ( r  ,$) i s  the density 

a t  the point w i t h  polar coordinates ( r , @ )  i n  t h i s  region, while t = a - r cos(% - $1 

i s  the perpendicular distance between the ray and t h i s  point. 
* 

When ray sums i n  a given projection a re  spaced evenly i n  II, and projections 

a re  spaced evenly in 6 ,  a simple reconstruction method can be found d i r ec t ly  

from equation 7 by approximating both integrals  by sums and approximating t he  

part ia l  derivative by an appropriate f i r s t  difference. 



UNIFORM SCANNING COORDINATES. 

When spacing i s  uneven, i t  i s  h e l p f u l  t o  in t roduce f i r s t  new ray-sampling 

coordinates 5 and n, chosen so t h a t  successive r a y s  i n  a general ized p r o j e c t i o n  

correspond t o  evenly spaced values o f  5, w h i l e  successive p ro jec t i ons  cor res-  

pond t o  evenly spaced values o f  Q. Radon's i n t e g r a l  can then be transformed 

t o  t h i s  new coord inate  system us ing the  Jacobian, 

and equat ion 1 becomes, 

It i s  poss ib le  t o  show t h a t  t h i s  can be r e w r i t t e n  as 

I t  i s  n o t  c l e a r  whether t h i s  forms a good bas is  f o r  a recons t ruc t i on  a l g o r i t h m  

i n  t h e  general case, s ince i t  seems t o  imp ly  t h a t  computations must be c a r r i e d  

o u t  -- across p r o j e c t i o n s  as w e l l  as w i t h i n  p ro jec t i ons .  



P"" 

GENERAL PARALLEL BEAI.1 NETHOD. 

In t h e  previous paper [ I ] ,  t h e  emphasis was on p a r a l l e l - r a y  scanning, a n d ,  

i n  t h i s  case ,  s i s  a funct ion  of 5 only,  while e i s  a func t ion  of only.  The 

Jacobian then reduces t o ,  

and equation 4 s i m p l i f i e s  a s  fo l lows,  

rBsu.4, 

1 Here t = a - s t ,  wherea.= ~ ( c ) ,  while s '  = x(c'), and 6' i s  t h e  value of 5 

associa ted  with t h e  ray  t h a t  passes through t h e  po in t  ( r , @ ) .  The above can 

be convenient ly s p l i t  i n t o  an o u t e r  and an inner  i n t e g r a l :  

I f  t h e s e  i n t e g r a l s  a r e  approximated by sums, one obta ins :  



This straightforward s e t  of equations i s  one r e su l t  of the analysis i n  the 

previous paper (equations 29 and 40 i n  [I]). Here 6 0  = (ej , - 
j ej - 1 )/2 

i s  the angular interval associated with the jth projection, while a; = 

( a i  + a i t 1  ) / 2  i s  the value of e corresponding t o  the center of the i th  beam. 

The l e f t  edge of the beam str iking the i th  detector corresponds t o  ei and the 

r ight  edge t o  ei + (see figure 2) .  The density integral obtained from the 

i th  detector in the jth projection i s  p i j .  

Finally, note tha t  g j ( 6 ' )  has to  be found by interpolation from the dis- 

c re te  s e t  of values, (gi I .  If  1 i near interpol ation i s  t o  be used, one can 

work with the values giS and g ( i  
+ 

) , where 



RELATION T O  COIIVOLUTION-BACKPROJECTIOl4 METHOD. 

By sp l i t t i ng  the second sum and rearranging i t s  terms, one arr ives  a t  an 

a l te rna te  form (equation 38 i n  [ I ] ) ,  

4 ('i + 1 - t i )  
g i l j  = ( --- 

' i t  -+ 1 - i t  - i ' # i '  . ~ q i  i - . t i t~pi j  ( l a1  
1 

That i s ,  the sequence (Q..) i s  obtained from the sequence (p..)  by a general 
7 J I J  

l i nea r  operator. This i s  similar t o  a convolution except tha t  the weights or 

f i l t e r  coeff ic ients  a re  spa t ia l ly  variant. 

One has only t o  f i x  the width of the detectors,  a t  6 2  say, t o  be able t o  

r e l a t e  th i s  r e su l t  t o  the well-known convolutional-backprojection method. In 

i t h i s  case, 

This amounts t o  convolution of {p. . I  with a f i l t e r  function Fk , where 
13 

- - - 4 fo r  k # 0 and Fo = 4. 
Fk 4k2 - 1 

This happens t o  be the par t icular  s e t  o f  f i l t e r  coefficients popularized by 

Shepp and Logan [3]. 

My previous paper contains other formulations for  t h i s  problem as well as  

I a simulation of the method for reconstruction from ray sunis collected w i t h  



uneven spacing [l].  The main point i s  t ha t  convolutions a r e  inappropriate i n  

the  general case and must be replaced by s p a t i a l l y  varying operators o r  super- 

posit ion i n t eg ra l s ,  



RECONSTRUCTION FOR ARBITRARY RAY-SAMPLING SCHEMES. -- 

I n  the  general case, equat ion ( 4 )  does n o t  seem t o  prov ide  a  good s t a r t i n g  

p o i n t  f o r  ana lys is .  Ins tead i t  i s  he lp fu l  f i r s t  t o  remove t h e  p a r t i a l  d e r i v a -  

t i v e  f rom Radon's i n t e g r a l  by p a r t i a l  i n t e g r a t i o n .  Th i s  has t o  be done care-  

f u l l y  s ince  t h e  i n n e r  i n t e g r a l  i s  s ingu la r .  I t  can be w r i t t e n  as 

I n t e g r a t i n g  by p a r t s  one obta ins  (equat ion 8 i n  e l ] ) ,  

where 

I n t r o d u c t i o n  o f  the  t rans format ion  t o  un i fo rm scanning cbordinates ( 5  ,n) now 

leads t o  



This forms the basis for reconstruction methods f o r  a rb i t ra ry  ray- 

sampling schemes. I n  t h i s  paper the concern will be w i t h  techniques fo r  re- 

constructing density dis t r ibut ions from ray sums co1 lected using fan beams 

(see figure 3 ) .  Modern apparatus fo r  computerized tomographic analysis 

typically produces projection data in t h i s  form and there i s  a practical need 

fo r  accurate and rapid reconstruction methods f o r  a variety of d i f fe rent  

schemes f o r  sampling the fan beam. Such methods had been found previously fo r  

two special geometries [4,  5, 61. Here techniques will  be developed tha t  can 

be used for  arbi t rary ray-sum collection schemes. 



SOURCE POSITIONS DISTRIBUTED AROUND THE CIRCUMFERENCE OF A CIRCLE. 

Let the source be located a t  (D,r/2 + B ) ,  where D i s  the radius of the 

c i r c l e  (see figure 1 ) .  Let a ray be emitted i n  a direction tha t  makes an angle 

a w i t h  the source-to-origin l ine.  Clearly a and 6 are as good fo r  specifying 

a par t icular  ray as 1 and e are. For fan beams, these new parameters will be 

mare d i rec t ly  useful,  and so the relationships between the two se t s  of variables 

will be needed. From figure 1 ,  

9, = D s i n  a and 0 = a + B  

a = sin-I (g/D) and B = e - sin'l(a/B) 

If  6 and TI are  uniform scanning coordinates, then i t  i s  natural to  l e t  
P 

where a and 6 are .continuous, different iable  monotonic functions of 5 and TI. 

Then  (see equation 2) , 
I 

Further, since 0 = a + B ,  

a a at .  aa a B  w D , o s  a -  J = - - - = -  
act at a~ a n  a 6 

I :low J i s  a fac tor  i n  the inner integral  (equation 1 9 ) ,  b u t  the f i r s t  term of the 
I 



above product can clearly be brought out of the inner integral and incorporated i-.cI 

into the outer integral (equation 18). The l as t  term o f  the product will depend 

on the way in which rays in a fan are sampled. This corresponds to the place- 

ment of detectors i n  the fan and depends on the scanning scheme used. Ne will 

study several cases af ter  developing a few more tool s that wi 11 be needed. 



THE PERPENDICULAR DISTANCE FROM A POINT TO A RAY FOR FAN BEAMS. 

From the diagram (f igure 4)  we can develop a useful new way of writing t, 

the distance between a given ray (a ,$) and a given point ( r  ,$) : 

t = K s in  (a - a') 

where, by the cosine rule f o r  tr iangles (see figure 5) ,  

K2 = r* + D2 + 2r D sin ( B  - 4 )  (26) 

Here a '  i s  the value of a corresponding t o  a ray from t h e  source which passes 

d i rec t ly  through the given point ( r , $ ) .  Note tha t  K i s  simply the distance 

sb9 
I from the source to  t he  point (r ,4) and thus c lear ly  does not depend on a .  

From the diagram we can calculate a '  as follows (see figure 5 ) :  

and so, 

tan a' = r cos ( B  - 4 )  
[D + r s in ( B  - $) I  



SOME PROPERTIES OF THE F I L T E R I N G  FUNCTION. 

Note t h a t  i f  c  # 0, then 

Th is  r e s u l t  can be e a s i l y  checked by separa te ly  cons ider ing  the  cases ( c t l  < E 

and [ c t l  2 E. F r o m  t h i s  i t  fo l lows t h a t  

and 

Furthermore i f  i b ( t ) l  2 bo > 0 i s  continuous and d i f f e r e n t i a b l e  w i t h  respect  t o  

"' /- F E [ b ( t ) t ]  a ( t ) d t  = li" lW F E (t) -% d t  (32 ) 
€ - t o  

-m € + ( I  -m 

These r e s u l t s  a re  useful i n  d e r i v i n g  t h e  general recons t ruc t i on  formula f o r  fan-  

beam scanning schemes. 



P4. RECONSTRUCTION ALGORITHM FCIR ARBITRARY FAN BEAM GEOIIETRI ES. 

Using the general resu l t  for  reconstruction (equations 18 and 19) based on 

Radon's inversion formula [2] and using the expressions f o r  t and 3 jus t  de- 

rived, we have 

1 im 
act g l h $ , d  = F [ K  s in  (a - a')]D cos a ag ~ ( 6 . 0 )  d~ 

E - t O  

According t o  a resu l t  jus t  developed (equation 31 ), the fac tor  K can be extracted 

from the argument of the f i l t e r  function F. Since K does not depend on a i t  

can be fur ther  removed from the inner integral (equation 34) and placed into 
I 
P 

the ~ u t e r  integral (equation 33) .  The inner integral then no longer contains 

terms which depend expl ic i t ly  on r and 4,  only terms which a re  a function of 

a ' .  So the above can be rewritten,  

aa 
$ ' (a1  ,d = F [sin (a - a ' ) ]  cos a - a S p ( s , ~ )  d~ 

From the f a c t  tha t  the inner integral is  a function of a ' ,  and not r and 

@ expl ic i t ly ,  we conclude tha t  the reconstruction algorithm can be arranged 

ef f ic ien t ly .  That i s ,  fo r  a l l  fan beam schemes with source positions on the 

circumference of a c i r c l e  and sampling of the fan independent of source posit ion, 
n 

one need not expl ic i t ly  calculate the contribution of each ray t o  each point i n  



t he  recons t ruc t i on .  

We are  now ready t o  develop s p e c i f i c  r e c o n s t r u c t i o n  methods f o r  a  v a r i e t y  

o f  fan-sampl i n g  schemes. Some spec ia l  schemes w i l l  l ead  t o  simp1 i f i c a t i o n s  

which can be i n t e r p r e t e d  as  p r e - m u l t i p l i c a t i o n ,  convo lu t ion  and p o s t - m u l t i p l i c a -  

t i o n .  I n  general,  however, t he  i n n e r  i n t e g r a l  remains i n  t h e  form o f  a general 

l i n e a r  opera tor  o r  superpos i t ion  i n t e g r a l .  



r". UNIFORM SAMPLING ALONG A LINE AT RIGHT ANGLES T O  THE SOURCE-TO-ORIGIN LINE. 

Rays are  sampled evenly in x (see figure 6 ) ,  so i t  i s  natural to let 

A1 so, 

sin a = 5 and cos a = D 
J D2 + c L  J' o2 + 5* 

Further, i f  we l e t  

point (r ,$)  and 6 '  

s i n  a' = 

a '  be the value of a corresponding to the ray through the 

the  corresponding value of 5 ,  then 

e ' and cos a' = D 

J D' + p J D Z  t 5 ' 2  

s in  (a - a ' )  = sin a cos a '  - s in  a '  cos a 



sin (a - a ' )  = D ( 5  - S t )  
J D Z  + i D Z  + 5'2 

Hence, 

We can move the multiplier o f  ( 6  - E ' )  out of the f i l t e r  function F to get: 

Note t h a t  (from equation 37 or 41), 

5 '  = D tan a' 

arrd so 

( ~ 2  + 5 ' 2 )  = D2 sec2 a '  

Also, combining th is  with the term (I/@) in the outer integral one gets 

and so, finally, 



Here f ina l ly  we have used the coordinate natural t o  t h i s  par t icular  scanning 

scheme, namely A ,  the distance from the origin a t  which the ray intersects  the 

l ine  drawn perpendicular to  the source-to-origin l i n e .  

I t  i s  important t o  note that in t h i s  case the argument of the f i l t e r  function 

F contains only the difference of t h e  two parameters x and  A ' .  The above i s  

thus almost l ike  a convolution, except that  one has to  pre-multiply the projec- 

t ion data ~ ( x , B )  by a fac tor  depending on the position of the ray i n  the fan. 

Similarly, the convolved data, g"' , i s  used in the outer integral a f t e r  post- 

multiplication by a factor  which depends on the position of the point ( r , $ )  i n  

the fan currently being processed. 



DISCRETE APPROXItlATION. 

Finally, we have to  approximate these integrals  by sums because i n  practice 

only a f i n i t e  se t  of ray sums i s  available:  

1 
4 C ~ ~ ( x l )  

D2 
2 ' B j  

j [D + r s in ( B ~  - 4 ) ]  

Here 

A '  = D tan a '  - 

t h - 
I n  the above s e t  o f  reconstruction equations, P i j  is  the i th  ray sum i n  the j 

fan,  while a x  i s  the (fixed) interval between intersect ian of successive rays 

with the l ine  perpendicular t o  the source-to-origin l ine.  The angular interval 

associated with a par t icular  fan i s  68 where 
j ' 

The f i l t e r  factors  are 



,f- 
As mentioned i n  the paper on which t h i s  analysis  i s  based, the  weights w a re  

k 
chosen t o  provide good numerical approximations f o r  the s ingular  in tegra l .  

Typical choices are :  

1 .  wk = 2 fo r  k even, wk = 0 fo r  k odd 

Note t ha t  the  above operation can be viewed a s  a pre-multiplication of the  

ray sums by D/[D2 + xi2]1 '2,  followed by a convolution, w i t h  a f i n a l  post-multi- 

,t"" pl icat ion by D2/[D + r s i n  ($ j  - $)I2. While the  method i s  not s t r i c t l y  can- 
L 

volutional , i t  can be conveniently viewed i n  t h i s  way. The above i s  one of 

two specia l  cases of t he  fan-beam problem t h a t  had previously been solved [4, 51. 

An attempt was made here t o  use s imi la r  notation t o  simp1 i f y  comparison. 

We ought t o  specify how g . ( A ' )  i s  found from g 
3 i 3- As i n  t h e  previous 

paper [I] ,  we approximate g . ( A ' )  by in terpola t ion.  I f  we sample N rays u n i -  
J 

formly along a segment o f  length L of t he  l i n e  a t  r i gh t  angles t o  t he  source-to- 

o r ig in  l i n e ,  then 6~ = L / ( N  - I ) ,  and the i th  ray corresponds t o  

A i = -L/2 + i sx (57) 

Consequently, ( A )  i s  found by in terpola t ion from g i t j  and g(i, + where, 
J 



I n  practice,  of course, detectors would not be arranged on a l i n e  passing 

through the scanned space. The geometric transformationsfroma more d i s t an t ,  

l inear  detector array t o  positions on the l ine  passing through the origin are 

fortunately t r i v i a l  (see figure 3 ) .  Such an array of equally wide detectors 

positioned behind the object being scanned would have t o  move in  synchrony 

with the source, so as to  always remain perpendicular to  the source-to-origin 

l ine.  There i s  great i n t e re s t  in scanning schemes which can instead use a 

Fixed  array of detectors. One such arrangement will be discussed i n  the 

next section. 



EVEN SAMPLIFIG OF RAYS IN FAN ANGLE. 

Even sampling of rays in fan angle a can be achieved eas i ly  using a s e t  

of equally wide detectors arrayed on a sector of a c i r c l e  with center a t  the 

source position. Curiously equal spacing of samples in fan angle can also be 

achieved when these detectors a re  instead placed on a c i r c l e  passing through 

the source, w i t h  center a t  the origin (see figure 7 ) .  This follows from the 

f ac t  tha t  the angle a t  the center i s  j u s t  twice the angle a t  the source, and 

so equal angular spacing of detectors when viewed from the origin corresponds 

to  equal angular spacing o f  detectors when viewed from the source. Such an 

arrangement of detectors has an advantage i n  t h a t  the detectors could remain 

stationary during scanning i f  the potential mechanical conf l ic t  between source 

and detectors could be solved. In any case, i t  i s  natural here t o  l e t  

Proceeding as in the previous section, we obtain (from equations 35 and 36 ), 

P% 
- where (by equation 25),  



~2 = t-2 + ~2 + 2rD sin ( 6  9 )  

Next, we obtain the discrete  approximation, 

where 

r  cos ( 6 .  
= tan-' [-*I D + r sin 6 

Once again pi i s  simply the i th  ray sum in the jth fan, while 6a i s  the (fixed) a 

angular interval between rays in the fan. The angular interval associated 

wi th  a particular fan, 6sj,  i s  as defined before (equation 40). The f i l t e r  

factors  are: 

Finally, one needs t o  detai l  the interpolation procedure f o r  finding g 3 . ( a 1 )  from 

the discrete  s e t  of values g i I j  If  N rays a re  sampled uniformly along an arc  

of angle A ,  then 6e = A/(N - 1 ) .  The i th  ray then corresponds t o  



Consequently, g . ( a 1 )  i s  found by in terpola t ion from gi , and g(i, + 
where 

J 

This reconstruction method may be viewed as  a pre-mu1 t ip1  icat ion of the  ray 

sums by D cos a i ,  followed by convolution, w i t h  a f i na l  post-multiplication by 

1/[r2 + D2 + 2rD s in (6  - $)I. This i s  the  second special  case o f  the  fan beam 
j 

reconstruction problem which had been solved previously [5, 61. 

Other fan-beam scanning geometries do = l e a d  t o  such special  case solu- 

t ions  however. Usually, a general 1 inear  operati  on i s  required. Fortunately,  

t he  method presented e a r l i e r  allows one t o  t r e a t  a r b i t r a r y  fan beam scanning 
I 

geometries. We wil l  study one in de t a i l  as an i l l u s t r a t i o n .  



A METHOD WITH UN I FORt4 SAIIPL I NG DENSITY. - 

Both o f  t h e  scanning schemes discussed so f a r  sample areas near t h e  o r i g i n  

l ess  densely than they  do areas near t h e  edge of t he  reg ion  o f  recons t ruc t i on .  

This  can be seen when i t  i s  remembered t h a t  t h e  r a y  sampling d e n s i t y  i s  t h e  i n -  

verse of the  Jacobian J [I] and t h a t  f o r  f a n  beam scanning (equat ion  24),  

J = -  D cos a - aa a a 6 

Now f o r  t h e  f i r s t  method (equat ion 38) 

w h i l e  f o r  

D cos a (*) = C O S ~  a 
a c 

t he  second method (equat ion 66) 

D cos cr (2) = D cos a 

The r e s u l t  o f  t h i s  v a r i a t i o n  i n  sampling d e n s i t y  i s  t h a t  recons t ruc t i ons  w i l l  

have somewhat b e t t e r  r e s o l u t i o n  ( p a r t i c u l a r l y  i n  t h e  r a d i a l ,  as opposed t o  

tangen t ia l ,  d i r e c t i o n )  i n  o u t l y i n g  regions.  Whi le t h i s  e f f e c t  i s  n o t  very pro-  

nounced f o r  fans t h a t  a re  f a i r l y  narrow, i t  i s  s t i l l  o f  i n t e r e s t  t o  i n v e s t i g a t e  

schemes p r o v i d i n g  un i fo rm sampling dens i ty .  That  i s ,  

D cos a(&) = 1 
a 6 

If t h i s  equat ion i s  i n t e g r a t e d  one f i n d s ,  



This means that  rays are  spaced evenly in the i r  perpendicular distance 2 from 

the origin (see figure 8 ) .  No convenient arrangenent of equally wide detectors 

will  provide fo r  sampling of the fan in t h i s  fashion, b u t  c lear ly detectors o f  

varying w i d t h  arranged on e i the r  a s t ra ight  or curved l ine  can be used. Their 

width will increase with distance from the central  detector.  

Now note that  

sin (a - a ' )  = sin a  cos a' - s in  a' cos a (76) 

s in  (a - a ' )  = cos a J ( t a n  a - t a n  a ' )  cos a (77  

where 5 '  = D s in  a ' .  Proceeding as before (usfng equatiors 35 and 36) ,  we get: 

The following ident i ty  was used for  the outer in tegra l ,  



Note that here a '  i s  the value of k for the ray inclined a '  to the source- ----. 
to-origin line (see figure 8) ,  

R' = D sin a '  (829 

(This differs from the parallel ray scanning schemes presented in t h e  previous 

paper [ l l ) .  

Once again, a discrete approximation i s  required, 

where 

J . - 
= D sin a '  = 

F+ D2 + 2rD s i n ( s j  - $1 

The f i  1 ter  factors are 

- K 
F i l i - - r  ei e i ,  for  i # i' 



t+- I n  t h i s  case, then, as for  most scanning schemes, a general l inear  operator 

rather  than a modified convolution must be used. The methods presented here 

permit the derivation of algorithms t o  deal with these problems. Note by the 

way t h a t  here the factors  of s in  (a - a') were s p l i t  up in a similar fashion 

to  how th i s  had been done f o r  the f i r s t  two examples. This i s  not s t r i c t l y  

necessary, since a1 1 three components can be accomodated as par t  of the f i l t e r  

function FE(e,ai) or F i , i  i f  so desired. 



ANOTHER METHOD. - 

The existence of an elegant method for  reconstruction from parallel-beam 

data (equations 7 & 8 or 9 & 10) which uses derivatives of projection data and 

does not depend on arbi t rary f i l t e r  coefficients leads one t o  search f o r  a 

s imilar  expression for fan-beam reconstruction. Star t ing from the general 

form (equation 4 )  does not seem to  lead to such a resu l t .  Instead one may apply 

par t ia l  integration to  the form of the inner integral shown i n  equation 36, 

If one Sets s in (6 )  = E, then 



T h a t  i s ,  

C O S ( ~  - a ' )  
P ( ~ , B )  

DCOS a dclJ + ( 9 0 )  

-n/2 C O S ( ~  - a ' )  

1 i m  [ / + ~ / 2  - cos ( a  - a'  ) 

s i n 2 ( a  - a ' )  
P ( ~ ~ B ) ~ ~ ~ ~  a 

&+o 0'4.6 C O S ( ~  - a ' )  daI 
I 

D cos a 
[ s i n ( .  - a 1 )  ' ( @ * ' ' c o s ( a  a ]  , T / 2  - 

D cos a a [ ~ ( a , ' )  C O S ( ~  - a s i n ( a  - a ' )  aa lT]da + 
-R/2 

2 0 D COS a 
+8/2 

- 6 p (a '  ,B)  cos a '  + P ( ~ , B )  
! s i n ( a  - a ' )  cos(a - a ' ) ] a 1 + 6  - 



As 6 , 0 this becomes simply, 

D cos a 
-- [P(~,B) 1 da sin(a - a') aa 

TO summarize, 

Where, as before, 

~2 = 1-2 + 0 2  + 2r D sin(6 - 4 )  (95) 

The discrete approximation is 
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t h  Here ai corresponds to  the l e f t  edge of the i detector,  while ai+l marks i t s  

r ight  edge (see figure 9 ) .  The ray-sum seen by the i t h  detector i s  pij and i t s  

center i s  a t  a;. 



CONCLUSION AND SUPIMARY. 

The formulas for reconstruction from ray sums obtained by arb i t ra ry  

sampl ing schemes were specialized to  a system ut i  1 izing fan beams originating 

from sources on the circumference of a c i r c l e .  I t  was found tha t  one need 

not calculate  the contribution of each ray sum to  each point expl ic i t ly ,  b u t  

tha t  the calculation does involve the application of a general l inear  operator. 

In special cases, t h i s  l inear  operator becomes space invariant by a manipulation 

of the in tegra ls ,  and the superposition integral simp1 i f i e s  into a convolution. 

Two examples of t h i s  were shown, b o t h  corresponding t o  previously known solu- 

t ions to  the fan beam reconstruction problem fo r  par t icular  ray collection geometries. 

To i l l u s t r a t e  the u t i l i t y  of the new method, however, a third case was 

considered where the simplification does not occur. Previous techniques f o r  

finding reconstruction methods based on Fourier transforms cannot deal with 

i t .  Details of an algorithm were developed. T h e  u t i l i t y  of the new methods 

for  finding algorithms for  a rb i t ra ry  fan beam scanning schemes i s  therefore 

apparent. The introduction of uniform scanning coordinates in  par t icular  i s  of 

great importance in finding reconstruction methods fo r  the general case. 
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